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1

CHAPTER OVERVIEW

1: Vectors in Space
A quantity that has magnitude and direction is called a vector. Vectors have many real-life applications, including situations
involving force or velocity. For example, consider the forces acting on a boat crossing a river. The boat’s motor generates a force in
one direction, and the current of the river generates a force in another direction. Both forces are vectors. We must take both the
magnitude and direction of each force into account if we want to know where the boat will go.

1.1: Prelude to Vectors in Space
1.2: Vectors in the Plane
1.3: Vectors in Three Dimensions
1.4: The Dot Product
1.5: The Cross Product
1.6: Equations of Lines and Planes in Space
1.7: Cylindrical and Quadric Surfaces
1.8: Cylindrical and Spherical Coordinates
1.E: Vectors in Space (Exercises)
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1.1: Prelude to Vectors in Space
Modern astronomical observatories often consist of a large number of parabolic reflectors, connected by computers, used to
analyze radio waves. Each dish focuses the incoming parallel beams of radio waves to a precise focal point, where they can be

synchronized by computer. If the surface of one of the parabolic reflectors is described by the equation  where is
the focal point of the reflector? (See [link].)

Figure : The Karl G. Jansky Very Large Array, located in Socorro, New Mexico, consists of a large number of radio
telescopes that can collect radio waves and collate them as if they were gathering waves over a huge area with no gaps in coverage.
(credit: modification of work by CGP Grey, Wikimedia Commons)

We are now about to begin a new part of the calculus course, when we study functions of two or three independent variables in
multidimensional space. Many of the computations are similar to those in the study of single-variable functions, but there are also a
lot of differences. In this first chapter, we examine coordinate systems for working in three-dimensional space, along with vectors,
which are a key mathematical tool for dealing with quantities in more than one dimension. Let’s start here with the basic ideas and
work our way up to the more general and powerful tools of mathematics in later chapters.

This page titled 1.1: Prelude to Vectors in Space is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

12.0: Prelude to Vectors in Space by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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1.2: Vectors in the Plane

Describe a plane vector, using correct notation.
Perform basic vector operations (scalar multiplication, addition, subtraction).
Express a vector in component form.
Explain the formula for the magnitude of a vector.
Express a vector in terms of unit vectors.
Give two examples of vector quantities.

When describing the movement of an airplane in flight, it is important to communicate two pieces of information: the direction in
which the plane is traveling and the plane’s speed. When measuring a force, such as the thrust of the plane’s engines, it is important
to describe not only the strength of that force, but also the direction in which it is applied. Some quantities, such as or force, are
defined in terms of both size (also called magnitude) and direction. A quantity that has magnitude and direction is called a vector.
In textbooks, vectors are often denoted by boldface letters, such as . Since it is difficult to write in clear boldface when we write
vectors by hand, we will also include an arrow or harpoon above the letter representing the vector. To make the vectors clearer in
this textbook (and to reinforce the way you should write them by hand), we will generally use arrows or harpoons above boldface
(or italic) letters to represent vectors, giving us  or . Note that some figures will still only use boldface letters to denote vectors.

A vector is a quantity that has both magnitude and direction.

Vector Representation
A vector in a plane is represented by a directed line segment (an arrow). The endpoints of the segment are called the initial point
and the terminal point of the vector. An arrow from the initial point to the terminal point indicates the direction of the vector. The
length of the line segment represents its magnitude. We use the notation  to denote the magnitude of the vector . A vector
with an initial point and terminal point that are the same is called the zero vector, denoted . The zero vector is the only vector
without a direction, and by convention can be considered to have any direction convenient to the problem at hand.

Vectors with the same magnitude and direction are called equivalent vectors. We treat equivalent vectors as equal, even if they have
different initial points. Thus, if  and  are equivalent, we write

Vectors are said to be equivalent vectors if they have the same magnitude and direction.

The arrows in Figure  are equivalent. Each arrow has the same length and direction. A closely related concept is the idea of
parallel vectors. Two vectors are said to be parallel if they have the same or opposite directions. We explore this idea in more detail
later in the chapter. A vector is defined by its magnitude and direction, regardless of where its initial point is located.

Figure : (a) A vector is represented by a directed line segment from its initial point to its terminal point. (b) Vectors 
through  are equivalent.
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The use of boldface, lowercase letters to name vectors is a common representation in print, but there are alternative notations.
When writing the name of a vector by hand, for example, it is easier to sketch an arrow over the variable than to show it is a vector:

. When a vector has initial point  and terminal point , the notation  is useful because it indicates the direction and location
of the vector.

Sketch a vector in the plane from initial point  to terminal point .

Solution

See Figure . Because the vector goes from point  to point , we name it .

Figure : The vector with initial point  and terminal point  is named .

Sketch the vector  where  is point  and  is point 

Hint

The first point listed in the name of the vector is the initial point of the vector.

Answer

Combining Vectors
Vectors have many real-life applications, including situations involving force or velocity. For example, consider the forces acting
on a boat crossing a river. The boat’s motor generates a force in one direction, and the current of the river generates a force in
another direction. Both forces are vectors. We must take both the magnitude and direction of each force into account if we want to
know where the boat will go.

v ⃗  P Q P Q
−−⇀

 Example : Sketching Vectors1.2.1

P (1, 1) Q(8, 5)

1.2.2 P Q P Q
−−⇀

1.2.2 (1, 1) (8, 5) P Q
−−⇀

 Exercise 1.2.1

ST
−−⇀

S (3, −1) T (−2, 3).
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A second example that involves vectors is a quarterback throwing a football. The quarterback does not throw the ball parallel to the
ground; instead, he aims up into the air. The velocity of his throw can be represented by a vector. If we know how hard he throws
the ball (magnitude—in this case, speed), and the angle (direction), we can tell how far the ball will travel down the field.

A real number is often called a scalar in mathematics and physics. Unlike vectors, scalars are generally considered to have a
magnitude only, but no direction. Multiplying a vector by a scalar changes the vector’s magnitude. This is called scalar
multiplication. Note that changing the magnitude of a vector does not indicate a change in its direction. For example, wind blowing
from north to south might increase or decrease in speed while maintaining its direction from north to south.

The product  of a vector  and a scalar  is a vector with a magnitude that is  times the magnitude of , and with a
direction that is the same as the direction of  if , and opposite the direction of  if . This is called scalar
multiplication. If  or , then 

As you might expect, if , we denote the product  as

Note that  has the same magnitude as , but has the opposite direction (Figure ).

Figure : (a) The original vector  has length  units. (b) The length of  equals  units. (c) The length of  is  units.
(d) The vectors  and  have the same length but opposite directions.

Another operation we can perform on vectors is to add them together in vector addition, but because each vector may have its own
direction, the process is different from adding two numbers. The most common graphical method for adding two vectors is to place
the initial point of the second vector at the terminal point of the first, as in Figure . To see why this makes sense, suppose,
for example, that both vectors represent displacement. If an object moves first from the initial point to the terminal point of vector 

, then from the initial point to the terminal point of vector , the overall displacement is the same as if the object had made just
one movement from the initial point to the terminal point of the vector . For obvious reasons, this approach is called the
triangle method. Notice that if we had switched the order, so that  was our first vector and  was our second vector, we would
have ended up in the same place. (Again, see Figure .) Thus,

A second method for adding vectors is called the parallelogram method. With this method, we place the two vectors so they have
the same initial point, and then we draw a parallelogram with the vectors as two adjacent sides, as in Figure . The length of
the diagonal of the parallelogram is the sum. Comparing Figure  and Figure , we can see that we get the same
answer using either method. The vector  is called the vector sum.

The sum of two vectors  and  can be constructed graphically by placing the initial point of  at the terminal point of .
Then, the vector sum, , is the vector with an initial point that coincides with the initial point of  and has a terminal
point that coincides with the terminal point of . This operation is known as vector addition.

 Definition: Scalar Multiplication

kv
⇀

v
⇀ k |k| v

⇀

v
⇀ k > 0 v

⇀ k < 0

k = 0 =v
⇀

0
⇀

k = .v
⇀

0
⇀

k = −1 kv
⇀

k = (−1) = − .v
⇀

v
⇀

v
⇀

−v⇀ v⇀ 1.2.3

1.2.3 v
⇀

n 2v
⇀ 2n /2v

⇀
n/2

v⇀ −v⇀

1.2.4(a)

v
⇀

w
⇀

+v
⇀

w
⇀

w
⇀

v
⇀

1.2.4(a)

+ = + .v
⇀

w
⇀

w
⇀

v
⇀

1.2.4(b)
1.2.4(b) 1.2.4(a)

+v
⇀

w
⇀

 Definition: Vector Addition

v⇀ w⇀ w⇀ v⇀

+v⇀ w⇀ v⇀

w⇀

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/63983?pdf


Access for free at OpenStax 1.2.4 https://math.libretexts.org/@go/page/63983

Figure : (a) When adding vectors by the triangle method, the initial point of  is the terminal point of . (b) When
adding vectors by the parallelogram method, the vectors  and  have the same initial point.

It is also appropriate here to discuss vector subtraction. We define  as . The vector  is
called the vector difference. Graphically, the vector  is depicted by drawing a vector from the terminal point of  to the
terminal point of  (Figure ).

Figure : (a) The vector difference  is depicted by drawing a vector from the terminal point of  to the terminal point of
. (b) The vector  is equivalent to the vector .

In Figure , the initial point of  is the initial point of . The terminal point of  is the terminal point of .
These three vectors form the sides of a triangle. It follows that the length of any one side is less than the sum of the lengths of the
remaining sides. So we have

This is known more generally as the triangle inequality. There is one case, however, when the resultant vector  has the
same magnitude as the sum of the magnitudes of  and . This happens only when  and  have the same direction.

Given the vectors  and  shown in Figure , sketch the vectors

a. 
b. 
c. 

Figure : Vectors  and  lie in the same plane.

Solution

a. The vector  has the same direction as ; it is three times as long as .

1.2.4 w⇀ v⇀

v⇀ w⇀

−v⇀ w⇀ +(− ) = +(−1)v⇀ w⇀ v⇀ w⇀ −v⇀ w⇀

−v⇀ w⇀ w⇀

v⇀ 1.2.5

1.2.5 −v⇀ w⇀ w⇀

v
⇀ −v

⇀
w
⇀ + (− )v

⇀
w
⇀

1.2.4(a) +v
⇀

w
⇀

v
⇀ +v

⇀
w
⇀

w
⇀

∥ + ∥ ≤ ∥ ∥ +∥ ∥.v
⇀

w
⇀

v
⇀

w
⇀

+u
⇀

v
⇀

u
⇀

v
⇀

u
⇀

v
⇀

 Example : Combining Vectors1.2.2

v⇀ w⇀ 1.2.6

3w
⇀

+v
⇀

w
⇀

2 −v
⇀

w
⇀

1.2.6 v⇀ w⇀

3w
⇀

w
⇀

w
⇀
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Vector  has the same direction as  and is three times as long.

b. Use either addition method to find .

Figure : To find , align the vectors at their initial points or place the initial point of one vector at the terminal point
of the other. (a) The vector  is the diagonal of the parallelogram with sides  and . (b) The vector  is the third
side of a triangle formed with  placed at the terminal point of .

c. To find , we can first rewrite the expression as . Then we can draw the vector , then add it to the
vector .

Figure : To find , simply add .

Using vectors  and  from Example , sketch the vector .

Hint

First sketch vectors  and .

Answer

Vector Components
Working with vectors in a plane is easier when we are working in a coordinate system. When the initial points and terminal points
of vectors are given in Cartesian coordinates, computations become straightforward.

3w
⇀

w
⇀

+v⇀ w⇀

1.2.7 +v⇀ w⇀

+v
⇀

w
⇀

v
⇀

w
⇀ +v

⇀
w
⇀

w⇀ v⇀

2 −v⇀ w⇀ 2 +(− )v⇀ w⇀ −w⇀

2v⇀

1.2.8 2 −v⇀ w⇀ 2 + (− )v⇀ w⇀

 Exercise 1.2.2

v
⇀

w
⇀ 1.2.2 2 −w

⇀
v
⇀

2w
⇀ −v

⇀
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Are  and  equivalent vectors?

a.

 has initial point  and terminal point 
 has initial point  and terminal point 

b.

 has initial point  and terminal point 
 has initial point  and terminal point 

Solution

a. The vectors are each  units long, but they are oriented in different directions. So  and  are not equivalent (Figure ).

Figure : These vectors are not equivalent.

b. Based on Figure , and using a bit of geometry, it is clear these vectors have the same length and the same direction, so 
 and  are equivalent.

Figure : These vectors are equivalent.

Which of the following vectors are equivalent?

 Example : Comparing Vectors1.2.3

v⇀ w⇀

v⇀ (3, 2) (7, 2)
w⇀ (1, −4) (1, 0)

v
⇀ (0, 0) (1, 1)
w
⇀ (−2, 2) (−1, 3)

4 v
⇀

w
⇀ 1.2.9

1.2.9

1.2.10
v⇀ w⇀

1.2.10

 Exercise 1.2.3
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Hint

Equivalent vectors have both the same magnitude and the same direction.

Answer

Vectors , and  are equivalent.

We have seen how to plot a vector when we are given an initial point and a terminal point. However, because a vector can be
placed anywhere in a plane, it may be easier to perform calculations with a vector when its initial point coincides with the origin.
We call a vector with its initial point at the origin a standard-position vector. Because the initial point of any vector in standard
position is known to be , we can describe the vector by looking at the coordinates of its terminal point. Thus, if vector  has
its initial point at the origin and its terminal point at  we write the vector in component form as

When a vector is written in component form like this, the scalars x and y are called the components of .

The vector with initial point  and terminal point  can be written in component form as

The scalars  and  are called the components of .

Recall that vectors are named with lowercase letters in bold type or by drawing an arrow over their name. We have also learned that
we can name a vector by its component form, with the coordinates of its terminal point in angle brackets. However, when writing
the component form of a vector, it is important to distinguish between  and . The first ordered pair uses angle brackets
to describe a vector, whereas the second uses parentheses to describe a point in a plane. The initial point of  is ; the
terminal point of  is .

When we have a vector not already in standard position, we can determine its component form in one of two ways. We can use a
geometric approach, in which we sketch the vector in the coordinate plane, and then sketch an equivalent standard-position vector.
Alternatively, we can find it algebraically, using the coordinates of the initial point and the terminal point. To find it algebraically,
we subtract the -coordinate of the initial point from the -coordinate of the terminal point to get the -component, and we
subtract the -coordinate of the initial point from the -coordinate of the terminal point to get the -component.

Let  be a vector with initial point  and terminal point . Then we can express  in component form as 
.

,a
⇀

b
⇀

e
⇀

(0, 0) v
⇀

(x, y),

= ⟨x, y⟩.v
⇀

v
⇀

 Definition: Vector components

(0, 0) (x, y)

= ⟨x, y⟩.v⇀

x y v⇀

⟨x, y⟩ (x, y)
⟨x, y⟩ (0, 0)

⟨x, y⟩ (x, y)

x x x

y y y

 Rule: Component Form of a Vector

v
⇀ ( , )xi yi ( , )xt yt v

⇀

= ⟨ − , − ⟩v
⇀ xt xi yt yi
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Express vector  with initial point  and terminal point  in component form.

Solution:

a. Geometric

1. Sketch the vector in the coordinate plane (Figure ).

2. The terminal point is 4 units to the right and 2 units down from the initial point.

3. Find the point that is 4 units to the right and 2 units down from the origin.

4. In standard position, this vector has initial point  and terminal point :

Figure : These vectors are equivalent.

b. Algebraic

In the first solution, we used a sketch of the vector to see that the terminal point lies 4 units to the right. We can
accomplish this algebraically by finding the difference of the -coordinates:

Similarly, the difference of the -coordinates shows the vertical length of the vector.

So, in component form,

Vector  has initial point  and terminal point . Express  in component form.

Hint

You may use either geometric or algebraic method.

Answer

To find the magnitude of a vector, we calculate the distance between its initial point and its terminal point. The magnitude of
vector  is denoted  or , and can be computed using the formula

 Example : Expressing Vectors in Component Form1.2.4

v⇀ (−3, 4) (1, 2)

1.2.11

(0, 0) (4, −2)

= ⟨4, −2⟩.v⇀

1.2.11

x

− = 1 −(−3) = 4.xt xi

y

− = 2 −4 = −2.yt yi

= ⟨ − , − ⟩ = ⟨1 −(−3), 2 −4⟩ = ⟨4, −2⟩.v⇀ xt xi yt yi

 Exercise 1.2.4

w⇀ (−4, −5) (−1, 2) w⇀

⟨3, 7⟩

= ⟨x, y⟩v
⇀ ∥ ∥,v

⇀ | |v
⇀
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Note that because this vector is written in component form, it is equivalent to a vector in standard position, with its initial point at
the origin and terminal point . Thus, it suffices to calculate the magnitude of the vector in standard position. Using the
distance formula to calculate the distance between initial point  and terminal point , we have

Based on this formula, it is clear that for any vector  and  if and only if .

The magnitude of a vector can also be derived using the Pythagorean theorem, as in the following figure.

Figure : If you use the components of a vector to define a right triangle, the magnitude of the vector is the length of the
triangle’s hypotenuse.

We have defined scalar multiplication and vector addition geometrically. Expressing vectors in component form allows us to
perform these same operations algebraically.

Let  and  be vectors, and let  be a scalar.

Scalar multiplication:

Vector addition:

Let  be the vector with initial point  and terminal point , and let .

a. Express  in component form and find . Then, using algebra, find
b. ,
c. , and
d. .

Solution

a. To place the initial point of  at the origin, we must translate the vector 2 units to the left and 5 units down (Figure ).
Using the algebraic method, we can express  as :

.

∥ ∥ = .v⇀ +x2 y2
− −−−−−

√

(x, y)
(0, 0) (x, y)

∥ ∥ = = .v
⇀ (x −0 +(y −0)2 )2

− −−−−−−−−−−−−−−
√ +x2 y2

− −−−−−
√

, ∥ ∥ ≥ 0,v⇀ v⇀ ∥ ∥ = 0v⇀ =v⇀ 0
⇀

1.2.12

 Definition: Scalar multiplication and Vector addition

= ⟨ , ⟩v
⇀ x1 y1 = ⟨ , ⟩w

⇀ x2 y2 k

k = ⟨k , k ⟩v⇀ x1 y1

+ = ⟨ , ⟩+ ⟨ , ⟩ = ⟨ + , + ⟩v⇀ w⇀ x1 y1 x2 y2 x1 x2 y1 y2

 Example : Performing Operations in Component Form1.2.5

v
⇀ (2, 5) (8, 13) = ⟨−2, 4⟩w

⇀

v⇀ ∥ ∥v⇀

+v⇀ w⇀

3v⇀

−2v⇀ w⇀

v
⇀ 1.2.13

v
⇀ = ⟨8 −2, 13 −5⟩ = ⟨6, 8⟩v

⇀

∥ ∥ = = = = 10v⇀ +62 82− −−−−−√ 36 +64− −−−−−√ 100−−−√
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Figure : In component form, .

b. To find , add the -components and the -components separately:

c. To find , multiply  by the scalar :

d. To find , find  and add it to 

Let  and let  be the vector with initial point  and terminal point 

a. Find .
b. Express  in component form.
c. Find 

Hint

Use the Pythagorean Theorem to find . To find , start by finding the scalar multiples  and .

Answer a

Answer b

Answer c

Now that we have established the basic rules of vector arithmetic, we can state the properties of vector operations. We will prove
two of these properties. The others can be proved in a similar manner.

Let , and  be vectors in a plane. Let  and  be scalars.

i. Commutative property

ii. Associative property

1.2.13 = ⟨6, 8⟩v⇀

+v
⇀

w
⇀ x y

+ = ⟨6, 8⟩+ ⟨−2, 4⟩ = ⟨4, 12⟩.v⇀ w⇀

3v
⇀

v
⇀ k = 3

3 = 3 ⋅ ⟨6, 8⟩ = ⟨3 ⋅ 6, 3 ⋅ 8⟩ = ⟨18, 24⟩.v⇀

−2v
⇀

w
⇀ −2w

⇀ :v
⇀

−2 = ⟨6, 8⟩−2 ⋅ ⟨−2, 4⟩ = ⟨6, 8⟩+ ⟨4, −8⟩ = ⟨10, 0⟩.v
⇀

w
⇀

 Exercise 1.2.5A

= ⟨7, 1⟩a⇀ b
⇀

(3, 2) (−1, −1).

∥ ∥a
⇀

b
⇀

3 −4 .a
⇀

b
⇀

∥ ∥a
⇀ 3 −4a

⇀
b
⇀

3a
⇀ −4b

⇀

∥ ∥ = 5 ,a
⇀ 2–√

= ⟨−4, −3⟩,b
⇀

3 −4 = ⟨37, 15⟩a
⇀

b
⇀

 Properties of Vector Operations

,u⇀ v⇀ w⇀ r s

+ = +u
⇀

v
⇀

v
⇀

u
⇀ (1.2.1)
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iii. Additive identity property

iv. Additive inverse property

v. Associativity of scalar multiplication

vi. Distributive property

vii. Distributive property

viii. Identity and zero properties

Let  and  Apply the commutative property for real numbers:

□

Apply the distributive property for real numbers:

□

Prove the additive inverse property.

Hint

Use the component form of the vectors.

We have found the components of a vector given its initial and terminal points. In some cases, we may only have the magnitude
and direction of a vector, not the points. For these vectors, we can identify the horizontal and vertical components using

( + ) + = +( + )u
⇀

v
⇀

w
⇀

u
⇀

v
⇀

w
⇀

+ =u
⇀

0
⇀

u
⇀

+(− ) =u
⇀

u
⇀

0
⇀

r(s ) = (rs)u
⇀

u
⇀

(r +s) = r +su
⇀

u
⇀

u
⇀ (1.2.2)

r( + ) = r +ru⇀ v⇀ u⇀ v⇀

1 = , 0 =u
⇀

u
⇀

u
⇀

0
⇀

 Proof of Commutative Property

= ⟨ , ⟩u
⇀ x1 y1 = ⟨ , ⟩.v

⇀ x2 y2

+ = ⟨ + , + ⟩u
⇀

v
⇀ x1 x2 y1 y2

= ⟨ + , + ⟩x2 x1 y2 y1

= + .v
⇀

u
⇀

 Proof of Distributive Property

r( + ) = r ⋅ ⟨ + , + ⟩u⇀ v⇀ x1 x2 y1 y2

= ⟨r( + ), r( + )⟩x1 x2 y1 y2

= ⟨r +r , r +r ⟩x1 x2 y1 y2

= ⟨r , r ⟩+ ⟨r , r ⟩x1 y1 x2 y2

= r +r .u⇀ v⇀

 Exercise 1.2.5B
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trigonometry (Figure ).

Figure : The components of a vector form the legs of a right triangle, with the vector as the hypotenuse.

Consider the angle  formed by the vector  and the positive -axis. We can see from the triangle that the components of vector 
are . Therefore, given an angle and the magnitude of a vector, we can use the cosine and sine of the angle to
find the components of the vector.

Find the component form of a vector with magnitude 4 that forms an angle of  with the -axis.

Solution

Let  and  represent the components of the vector (Figure ). Then  and 
. The component form of the vector is .

Figure : Use trigonometric ratios,  and  to identify the components of the vector.

Find the component form of vector  with magnitude 10 that forms an angle of  with the positive -axis.

Hint

 and 

Answer

Unit Vectors
A unit vector is a vector with magnitude . For any nonzero vector , we can use scalar multiplication to find a unit vector  that
has the same direction as . To do this, we multiply the vector by the reciprocal of its magnitude:

Recall that when we defined scalar multiplication, we noted that . For , it follows that 

. We say that  is the unit vector in the direction of  (Figure ). The process of using scalar

multiplication to find a unit vector with a given direction is called normalization.

1.2.14

1.2.14

θ v
⇀ x v

⇀

⟨∥ ∥ cos θ, ∥ ∥ sinθ⟩v
⇀

v
⇀

 Example : Finding the Component Form of a Vector Using Trigonometry1.2.6

−45° x

x y 1.2.15 x = 4 cos(−45°) = 2 2–√

y = 4 sin(−45°) = −2 2
–√ ⟨2 , −2 ⟩2

–√ 2
–√

1.2.15 x = ∥ ∥ cos θv
⇀

y = ∥ ∥ sin θ,v
⇀

 Exercise 1.2.6

v
⇀ 120° x

x = ∥ ∥ cos θv
⇀ y = ∥ ∥ sinθv

⇀

= ⟨−5, 5 ⟩v
⇀ 3–√

1 v
⇀

u
⇀

v
⇀

= .u⇀
1

∥ ∥v
⇀ v⇀

∥k ∥ = |k| ⋅ ∥ ∥v⇀ v⇀ =u⇀
1

∥ ∥v⇀
v⇀

∥ ∥ = (∥ ∥) = 1u
⇀ 1

∥ ∥v
⇀ v

⇀
u
⇀

v
⇀ 1.2.16
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Figure : The vector  and associated unit vector . In this case, 

Let .

a. Find a unit vector with the same direction as .
b. Find a vector  with the same direction as  such that .

Solution:

a. First, find the magnitude of , then divide the components of  by the magnitude:

b. The vector  is in the same direction as  and . Use scalar multiplication to increase the length of  without
changing direction:

Let . Find a vector with magnitude  in the opposite direction as .

Hint

First, find a unit vector in the same direction as .

Answer

We have seen how convenient it can be to write a vector in component form. Sometimes, though, it is more convenient to write a
vector as a sum of a horizontal vector and a vertical vector. To make this easier, let’s look at standard unit vectors. The standard
unit vectors are the vectors  and  (Figure ).

Figure : The standard unit vectors  and .

By applying the properties of vectors, it is possible to express any vector in terms of  and  in what we call a linear combination:

Thus,  is the sum of a horizontal vector with magnitude , and a vertical vector with magnitude , as in Figure .

1.2.16 v⇀ =u⇀
1

∥ ∥v⇀
v⇀ ∥ ∥ > 1.v⇀

 Example : Finding a Unit Vector1.2.7

= ⟨1, 2⟩v
⇀

v
⇀

w
⇀

v
⇀ ∥ ∥ = 7w

⇀

v
⇀

v
⇀

∥ ∥ = = =v
⇀ +12 22− −−−−−

√ 1 +4− −−−√ 5–√

= = ⟨1, 2⟩ = ⟨ , ⟩.u
⇀ 1

∥ ∥v⇀
v⇀

1

5–√

1

5–√

2

5–√

u⇀ v⇀ ∥ ∥ = 1u⇀ u⇀

= 7 = 7⟨ , ⟩ = ⟨ , ⟩.w
⇀

u
⇀ 1

5
–√

2

5
–√

7

5
–√

14

5
–√

 Exercise 1.2.7

= ⟨9, 2⟩v⇀ 5 v⇀

v
⇀

⟨− , − ⟩
45

85−−√

10

85−−√

= ⟨1, 0⟩î = ⟨0, 1⟩ĵ 1.2.17

1.2.17 î ĵ

î ĵ

= ⟨x, y⟩ = ⟨x, 0⟩+ ⟨0, y⟩ = x⟨1, 0⟩+y⟨0, 1⟩ = x +y .v
⇀

î ĵ

v
⇀ x y 1.2.18
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Figure : The vector  is the sum of  and .

a. Express the vector  in terms of standard unit vectors.
b. Vector  is a unit vector that forms an angle of  with the positive -axis. Use standard unit vectors to describe .

Solution:

a. Resolve vector  into a vector with a zero -component and a vector with a zero -component:

b. Because  is a unit vector, the terminal point lies on the unit circle when the vector is placed in standard position (Figure 
).

Figure : The terminal point of  lies on the unit circle .

Let  and let  be a unit vector that forms an angle of  with the positive -axis. Express  and  in terms
of the standard unit vectors.

Hint

Use sine and cosine to find the components of .

Answer

1.2.18 v⇀ x î y ĵ

 Example : Using Standard Unit Vectors1.2.8

= ⟨3, −4⟩w
⇀

u
⇀ 60° x u

⇀

w⇀ y x

= ⟨3, −4⟩ = 3 −4 .w⇀ î ĵ

u⇀

1.2.19

= ⟨cos 60°, sin60°⟩u
⇀

= ⟨ , ⟩
1

2

3–√

2

= + .
1

2
î

3–√

2
ĵ

1.2.19 u⇀ (cos θ, sin θ)

 Exercise 1.2.8

= ⟨16, −11⟩a⇀ b
⇀

225° x a⇀ b
⇀

b
⇀

= 16 −11 , = − −a
⇀

î ĵ b
⇀ 2–√

2
î

2–√

2
ĵ
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Applications of Vectors
Because vectors have both direction and magnitude, they are valuable tools for solving problems involving such applications as
motion and force. Recall the boat example and the quarterback example we described earlier. Here we look at two other examples
in detail.

Jane’s car is stuck in the mud. Lisa and Jed come along in a truck to help pull her out. They attach one end of a tow strap to the
front of the car and the other end to the truck’s trailer hitch, and the truck starts to pull. Meanwhile, Jane and Jed get behind the
car and push. The truck generates a horizontal force of 300 lb on the car. Jane and Jed are pushing at a slight upward angle and
generate a force of 150 lb on the car. These forces can be represented by vectors, as shown in Figure . The angle
between these vectors is 15°. Find the resultant force (the vector sum) and give its magnitude to the nearest tenth of a pound
and its direction angle from the positive -axis.

Figure : Two forces acting on a car in different directions.

Solution

To find the effect of combining the two forces, add their representative vectors. First, express each vector in component form
or in terms of the standard unit vectors. For this purpose, it is easiest if we align one of the vectors with the positive -axis. The
horizontal vector, then, has initial point  and terminal point . It can be expressed as  or .

The second vector has magnitude  and makes an angle of  with the first, so we can express it as 
 or . Then, the sum of the vectors, or resultant vector, is 

 and we have

The angle  made by  and the positive -axis has , so , which

means the resultant force  has an angle of  above the horizontal axis.

An airplane flies due west at an airspeed of  mph. The wind is blowing from the northeast at  mph. What is the ground
speed of the airplane? What is the bearing of the airplane?

Solution

Let’s start by sketching the situation described (Figure ).

 Example : Finding Resultant Force1.2.9A

1.2.20

x

1.2.20

x

(0, 0) (300, 0) ⟨300, 0⟩ 300 î

150 15°

⟨150 cos(15°), 150 sin(15°)⟩, 150 cos(15°) +150 sin(15°)î ĵ

= ⟨300, 0⟩+ ⟨150 cos(15°), 150 sin(15°)⟩,r⇀

∥ ∥ = ≈ 446.6.r
⇀ (300 +150 cos(15°) +(150 sin(15°))2 )2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

θ r
⇀ x tanθ = ≈ 0.09

150 sin15°

(300 +150 cos 15°)
θ ≈ (0.09) ≈ 5°tan−1

r
⇀ 5°

 Example : Finding Resultant Velocity1.2.9B
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Figure : Initially, the plane travels due west. The wind is from the northeast, so it is blowing to the southwest. The angle
between the plane’s course and the wind is . (Figure not drawn to scale.)

Set up a sketch so that the initial points of the vectors lie at the origin. Then, the plane’s velocity vector is . The
vector describing the wind makes an angle of  with the positive -axis:

When the airspeed and the wind act together on the plane, we can add their vectors to find the resultant force:

The magnitude of the resultant vector shows the effect of the wind on the ground speed of the airplane:

 mph

As a result of the wind, the plane is traveling at approximately  mph relative to the ground.

To determine the bearing of the airplane, we want to find the direction of the vector :

.

The overall direction of the plane is  south of west.

An airplane flies due north at an airspeed of  mph. The wind is blowing from the northwest at  mph. What is the ground
speed of the airplane?

Hint

Sketch the vectors with the same initial point and find their sum.

Answer

Approximately  mph

Key Concepts
Vectors are used to represent quantities that have both magnitude and direction.
We can add vectors by using the parallelogram method or the triangle method to find the sum. We can multiply a vector by a
scalar to change its length or give it the opposite direction.

1.2.21
45°

= −425p
⇀

î

225° x

= ⟨40 cos(225°), 40 sin(225°)⟩ = ⟨− , − ⟩ = − − .w
⇀ 40

2
–√

40

2
–√

40

2
–√

î
40

2
–√

ĵ

+ = −425 +(− − ) = (−425 − ) − .p⇀ w⇀ î
40

2–√
î

40

2–√
ĵ

40

2–√
î

40

2–√
ĵ

∥ + ∥ = ≈ 454.17p
⇀

w
⇀ (−425 − +(−

40

2
–√

)2 40

2
–√

)2

− −−−−−−−−−−−−−−−−−−−−

√

454

+p
⇀

w
⇀

tanθ = ≈ 0.06

−
40

2
–√

(−425 − )
40

2–√

θ ≈ 3.57°

3.57°

 Exercise 1.2.9
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Subtraction of vectors is defined in terms of adding the negative of the vector.
A vector is written in component form as .
The magnitude of a vector is a scalar: .

A unit vector  has magnitude  and can be found by dividing a vector by its magnitude: . The standard unit

vectors are  and . A vector  can be expressed in terms of the standard unit vectors as 
.

Vectors are often used in physics and engineering to represent forces and velocities, among other quantities.

Glossary

component
a scalar that describes either the vertical or horizontal direction of a vector

equivalent vectors
vectors that have the same magnitude and the same direction

initial point
the starting point of a vector

magnitude
the length of a vector

normalization
using scalar multiplication to find a unit vector with a given direction

parallelogram method
a method for finding the sum of two vectors; position the vectors so they share the same initial point; the vectors then form two
adjacent sides of a parallelogram; the sum of the vectors is the diagonal of that parallelogram

scalar
a real number

scalar multiplication
a vector operation that defines the product of a scalar and a vector

standard-position vector
a vector with initial point 

standard unit vectors

unit vectors along the coordinate axes: 

terminal point
the endpoint of a vector

triangle inequality
the length of any side of a triangle is less than the sum of the lengths of the other two sides

triangle method
a method for finding the sum of two vectors; position the vectors so the terminal point of one vector is the initial point of the
other; these vectors then form two sides of a triangle; the sum of the vectors is the vector that forms the third side; the initial
point of the sum is the initial point of the first vector; the terminal point of the sum is the terminal point of the second vector

unit vector
a vector with magnitude 

= ⟨x, y⟩v
⇀

∥ ∥ =v
⇀ +x2 y2− −−−−−

√

u⇀ 1 =u⇀
1

∥ ∥v⇀
v⇀

= ⟨1, 0⟩î = ⟨0, 1⟩ĵ = ⟨x, y⟩v⇀

= x +yv⇀ î ĵ

(0, 0)

= ⟨1, 0⟩, = ⟨0, 1⟩î ĵ

1
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vector
a mathematical object that has both magnitude and direction

vector addition
a vector operation that defines the sum of two vectors

vector difference
the vector difference  is defined as 

vector sum
the sum of two vectors,  and , can be constructed graphically by placing the initial point of  at the terminal point of ;
then the vector sum  is the vector with an initial point that coincides with the initial point of , and with a terminal point
that coincides with the terminal point of 

zero vector
the vector with both initial point and terminal point 

This page titled 1.2: Vectors in the Plane is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

12.1: Vectors in the Plane by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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1.3: Vectors in Three Dimensions

Describe three-dimensional space mathematically.
Locate points in space using coordinates.
Write the distance formula in three dimensions.
Write the equations for simple planes and spheres.
Perform vector operations in .

Vectors are useful tools for solving two-dimensional problems. Life, however, happens in three dimensions. To expand the use of
vectors to more realistic applications, it is necessary to create a framework for describing three-dimensional space. For example,
although a two-dimensional map is a useful tool for navigating from one place to another, in some cases the topography of the land
is important. Does your planned route go through the mountains? Do you have to cross a river? To appreciate fully the impact of
these geographic features, you must use three dimensions. This section presents a natural extension of the two-dimensional
Cartesian coordinate plane into three dimensions.

Three-Dimensional Coordinate Systems 
As we have learned, the two-dimensional rectangular coordinate system contains two perpendicular axes: the horizontal -axis and
the vertical -axis. We can add a third dimension, the -axis, which is perpendicular to both the -axis and the -axis. We call this
system the three-dimensional rectangular coordinate system. It represents the three dimensions we encounter in real life.

The three-dimensional rectangular coordinate system consists of three perpendicular axes: the -axis, the -axis, and the -
axis. Because each axis is a number line representing all real numbers in , the three-dimensional system is often denoted by 

.

In Figure , the positive -axis is shown above the plane containing the - and -axes. The positive -axis appears to the left
and the positive -axis is to the right. A natural question to ask is: How was this arrangement determined? The system displayed
follows the right-hand rule. If we take our right hand and align the fingers with the positive -axis, then curl the fingers so they
point in the direction of the positive -axis, our thumb points in the direction of the positive -axis (Figure ). In this text, we
always work with coordinate systems set up in accordance with the right-hand rule. Some systems do follow a left-hand rule, but
the right-hand rule is considered the standard representation.

Figure : (a) We can extend the two-dimensional rectangular coordinate system by adding a third axis, the -axis, that is
perpendicular to both the -axis and the -axis. (b) The right-hand rule is used to determine the placement of the coordinate axes in
the standard Cartesian plane.

In two dimensions, we describe a point in the plane with the coordinates . Each coordinate describes how the point aligns
with the corresponding axis. In three dimensions, a new coordinate, , is appended to indicate alignment with the -axis: .

 Learning Objectives

R
3

x

y z x y

 Definition: Three-dimensional Rectangular Coordinate System

x y z

R

R
3

1.3.1a z x y x

y

x

y z 1.3.1b

1.3.1 z
x y

(x, y)
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A point in space is identified by all three coordinates (Figure ). To plot the point , go  units along the -axis, then 
units in the direction of the -axis, then  units in the direction of the -axis.

Figure : To plot the point  go  units along the -axis, then  units in the direction of the -axis, then  units in the
direction of the -axis.

Sketch the point  in three-dimensional space.

Solution

To sketch a point, start by sketching three sides of a rectangular prism along the coordinate axes: one unit in the positive 
direction,  units in the negative  direction, and  units in the positive  direction. Complete the prism to plot the point
(Figure ).

Figure : Sketching the point 

Sketch the point  in three-dimensional space.

Hint

Start by sketching the coordinate axes. e.g., Figure . Then sketch a rectangular prism to help find the point in space.

Answer

1.3.2 (x, y, z) x x y

y z z

1.3.2 (x,y,z) x x y y z

z

 Example : Locating Points in Space1.3.1

(1, −2, 3)

x

2 y 3 z

1.3.3

1.3.3 (1, −2, 3).

 Exercise 1.3.1

(−2, 3, −1)
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In two-dimensional space, the coordinate plane is defined by a pair of perpendicular axes. These axes allow us to name any
location within the plane. In three dimensions, we define coordinate planes by the coordinate axes, just as in two dimensions.
There are three axes now, so there are three intersecting pairs of axes. Each pair of axes forms a coordinate plane: the -plane, the 

-plane, and the -plane (Figure ). We define the -plane formally as the following set:  Similarly,
the -plane and the -plane are defined as  and  respectively.

To visualize this, imagine you’re building a house and are standing in a room with only two of the four walls finished. (Assume the
two finished walls are adjacent to each other.) If you stand with your back to the corner where the two finished walls meet, facing
out into the room, the floor is the -plane, the wall to your right is the -plane, and the wall to your left is the -plane.

Figure : The plane containing the - and -axes is called the -plane. The plane containing the - and -axes is called the 
-plane, and the - and -axes define the -plane.

In two dimensions, the coordinate axes partition the plane into four quadrants. Similarly, the coordinate planes divide space
between them into eight regions about the origin, called octants. The octants fill  in the same way that quadrants fill , as
shown in Figure .

xy

xz yz 1.3.4 xy {(x, y, 0) : x, y ∈ R}.
xz yz {(x, 0, z) : x, z ∈ R} {(0, y, z) : y, z ∈ R},

xy xz yz

1.3.4 x y xy x z
xz y z yz

R
3

R
2

1.3.5
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Figure : Points that lie in octants have three nonzero coordinates.

Most work in three-dimensional space is a comfortable extension of the corresponding concepts in two dimensions. In this section,
we use our knowledge of circles to describe spheres, then we expand our understanding of vectors to three dimensions. To
accomplish these goals, we begin by adapting the distance formula to three-dimensional space.

If two points lie in the same coordinate plane, then it is straightforward to calculate the distance between them. We know that the
distance  between two points  and  in the -coordinate plane is given by the formula

The formula for the distance between two points in space is a natural extension of this formula.

The distance  between points  and  is given by the formula

The proof of this theorem is left as an exercise. (Hint: First find the distance  between the points  and  as
shown in Figure .)

Figure : The distance between  and  is the length of the diagonal of the rectangular prism having  and  as opposite
corners.

Find the distance between points  and 

1.3.5

d ( , )x1 y1 ( , )x2 y2 xy

d = .( − +( −x2 x1)2 y2 y1)2
− −−−−−−−−−−−−−−−−−

√

 The Distance between Two Points in Space

d ( , , )x1 y1 z1 ( , , )x2 y2 z2

d = .( − +( − +( −x2 x1)2 y2 y1)2 z2 z1)2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−

√ (1.3.1)

d1 ( , , )x1 y1 z1 ( , , )x2 y2 z1

1.3.6

1.3.6 P1 P2 P1 P2

 Example : Distance in Space1.3.2

= (3, −1, 5)P1 = (2, 1, −1).P2
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Figure : Find the distance between the two points.

Solution

Substitute values directly into the distance formula (Equation ):

Find the distance between points  and .

Hint

Answer

Before moving on to the next section, let’s get a feel for how  differs from . For example, in , lines that are not parallel
must always intersect. This is not the case in . For example, consider the lines shown in Figure . These two lines are not
parallel, nor do they intersect.

1.3.7

1.3.1

d( , )P1 P2 = ( − +( − +( −x2 x1)2 y2 y1)2 z2 z1)2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= (2 −3 +(1 −(−1) +(−1 −5)2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−−−−−−

√

= (−1 + +(−6)2 22 )2
− −−−−−−−−−−−−−−

√

= .41−−√

 Exercise 1.3.2

= (1, −5, 4)P1 = (4, −1, −1)P2

d = ( − +( − +( −x2 x1)2 y2 y1)2 z2 z1)2− −−−−−−−−−−−−−−−−−−−−−−−−−−−
√

5 2–√
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Figure : These two lines are not parallel, but still do not intersect.

You can also have circles that are interconnected but have no points in common, as in Figure .

1.3.8

1.3.9
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Figure : These circles are interconnected, but have no points in common.

We have a lot more flexibility working in three dimensions than we do if we stuck with only two dimensions.

Writing Equations in  
Now that we can represent points in space and find the distance between them, we can learn how to write equations of geometric
objects such as lines, planes, and curved surfaces in . First, we start with a simple equation. Compare the graphs of the equation 

 in , ,and  (Figure ). From these graphs, we can see the same equation can describe a point, a line, or a plane.

Figure : (a) In , the equation  describes a single point. (b) In , the equation  describes a line, the -axis. (c)
In , the equation  describes a plane, the -plane.

1.3.9

R
3

R
3

x = 0 R R
2

R
3 1.3.10

1.3.10 R x = 0 R
2 x = 0 y

R3 x = 0 yz
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In space, the equation  describes all points . This equation defines the -plane. Similarly, the -plane contains all
points of the form . The equation  defines the -plane and the equation  describes the -plane (Figure 

).

Figure : (a) In space, the equation  describes the -plane. (b) All points in the -plane satisfy the equation .

Understanding the equations of the coordinate planes allows us to write an equation for any plane that is parallel to one of the
coordinate planes. When a plane is parallel to the -plane, for example, the -coordinate of each point in the plane has the same
constant value. Only the - and -coordinates of points in that plane vary from point to point.

1. The plane in space that is parallel to the -plane and contains point  can be represented by the equation .
2. The plane in space that is parallel to the -plane and contains point  can be represented by the equation .
3. The plane in space that is parallel to the -plane and contains point  can be represented by the equation .

a. Write an equation of the plane passing through point  that is parallel to the -plane.
b. Find an equation of the plane passing through points  and 

Solution

a. When a plane is parallel to the -plane, only the - and -coordinates may vary. The -coordinate has the same constant
value for all points in this plane, so this plane can be represented by the equation .

b. Each of the points  and  has the same -coordinate. This plane can be represented by the
equation .

Write an equation of the plane passing through point  that is parallel to the -plane.

Hint

If a plane is parallel to the -plane, the z-coordinates of the points in that plane do not vary.

Answer

As we have seen, in  the equation  describes the vertical line passing through point . This line is parallel to the -
axis. In a natural extension, the equation  in  describes the plane passing through point , which is parallel to the 

-plane. Another natural extension of a familiar equation is found in the equation of a sphere.

x = 0 (0, y, z) yz xy

(x, y, 0) z = 0 xy y = 0 xz

1.3.11

1.3.11 z = 0 xy xz y = 0

xy z

x y

 Equations of Planes Parallel to Coordinate Planes

xy (a, b, c) z = c

xz (a, b, c) y = b

yz (a, b, c) x = a

 Example : Writing Equations of Planes Parallel to Coordinate Planes1.3.3

(3, 11, 7) yz

(6, −2, 9), (0, −2, 4), (1, −2, −3).

yz y z x

x = 3
(6, −2, 9), (0, −2, 4), (1, −2, −3) y

y = −2

 Exercise 1.3.3

(1, −6, −4) xy

xy

z = −4

R
2 x = 5 (5, 0) y

x = 5 R
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A sphere is the set of all points in space equidistant from a fixed point, the center of the sphere (Figure ), just as the set
of all points in a plane that are equidistant from the center represents a circle. In a sphere, as in a circle, the distance from the
center to a point on the sphere is called the radius.

Figure : Each point  on the surface of a sphere is  units away from the center .

The equation of a circle is derived using the distance formula in two dimensions. In the same way, the equation of a sphere is based
on the three-dimensional formula for distance.

The sphere with center  and radius  can be represented by the equation

This equation is known as the standard equation of a sphere.

Find the standard equation of the sphere with center  and point , as shown in Figure .

 Definition: Sphere

1.3.12

1.3.12 (x,y,z) r (a, b, c)

 Standard Equation of a Sphere

(a, b, c) r

(x−a +(y−b +(z−c = .)2 )2 )2 r2

 Example : Finding an Equation of a Sphere1.3.4

(10, 7, 4) (−1, 3, −2) 1.3.13
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Figure : The sphere centered at  containing point 

Solution

Use the distance formula to find the radius  of the sphere:

The standard equation of the sphere is

Find the standard equation of the sphere with center  containing point 

Hint

First use the distance formula to find the radius of the sphere.

Answer

1.3.13 (10, 7, 4) (−1, 3, −2).

r

r = (−1 −10 +(3 −7 +(−2 −4)2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−−−−−−

√

= (−11 +(−4 +(−6)2 )2 )2
− −−−−−−−−−−−−−−−−−−

√

= 173
−−−

√

(x−10 +(y−7 +(z−4 = 173.)2 )2 )2

 Exercise 1.3.4

(−2, 4, −5) (4, 4, −1).

(x+2 +(y−4 +(z+5 = 52)2 )2 )2
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Let  and , and suppose line segment  forms the diameter of a sphere (Figure ). Find
the equation of the sphere.

Figure : Line segment .

Solution:

Since  is a diameter of the sphere, we know the center of the sphere is the midpoint of .Then,

Furthermore, we know the radius of the sphere is half the length of the diameter. This gives

Then, the equation of the sphere is 

Find the equation of the sphere with diameter , where  and 

Hint

Find the midpoint of the diameter first.

Answer

Describe the set of points that satisfies  and graph the set.

Solution

 Example : Finding the Equation of a Sphere1.3.5

P = (−5, 2, 3) Q = (3, 4, −1) PQ
¯ ¯¯̄¯̄¯̄ 1.3.14

1.3.14 PQ
¯ ¯¯̄¯̄¯̄

PQ
¯ ¯¯̄¯̄¯̄

PQ
¯ ¯¯̄¯̄¯̄

C =( , , ) = (−1, 3, 1).
−5 +3

2

2 +4

2

3 +(−1)

2

r =
1

2
(−5 −3 +(2 −4 +(3 −(−1))2 )2 )2

− −−−−−−−−−−−−−−−−−−−−−−−−−−
√

=
1

2
64 +4 +16− −−−−−−−−√

= 21
−−

√

(x+1 +(y−3 +(z−1 = 21.)2 )2 )2

 Exercise 1.3.5

PQ
¯ ¯¯̄¯̄¯̄

P = (2, −1, −3) Q = (−2, 5, −1).

+(y−2 +(z+2 = 14x2 )2 )2

 Example : Graphing Other Equations in Three Dimensions1.3.6

(x−4)(z−2) = 0,
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We must have either  or , so the set of points forms the two planes  and  (Figure ).

Figure : The set of points satisfying  forms the two planes  and .

Describe the set of points that satisfies  and graph the set.

Hint

One of the factors must be zero.

Answer

The set of points forms the two planes  and .

x−4 = 0 z−2 = 0 x = 4 z = 2 1.3.15

1.3.15 (x− 4)(z − 2) = 0 x = 4 z = 2

 Exercise 1.3.6

(y+2)(z−3) = 0,

y = −2 z = 3
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Describe the set of points in three-dimensional space that satisfies  and graph the set.

Solution

The - and -coordinates form a circle in the -plane of radius , centered at . Since there is no restriction on the -
coordinate, the three-dimensional result is a circular cylinder of radius  centered on the line with  and . The
cylinder extends indefinitely in the -direction (Figure ).

 Example : Graphing Other Equations in Three Dimensions1.3.7

(x−2 +(y−1 = 4,)2 )2

x y xy 2 (2, 1) z

2 x = 2 y = 1
z 1.3.16
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Figure : The set of points satisfying . This is a cylinder of radius  centered on the line with 
 and .

Describe the set of points in three dimensional space that satisfies , and graph the surface.

Hint

Think about what happens if you plot this equation in two dimensions in the -plane.

Answer

A cylinder of radius 4 centered on the line with  and .

1.3.16 (x− 2 + (y− 1 = 4)2 )2 2
x = 2 y = 1

 Exercise 1.3.7

+(z−2 = 16x2 )2

xz

x = 0 z = 2
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Working with Vectors in  

Just like two-dimensional vectors, three-dimensional vectors are quantities with both magnitude and direction, and they are
represented by directed line segments (arrows). With a three-dimensional vector, we use a three-dimensional arrow.

Three-dimensional vectors can also be represented in component form. The notation  is a natural extension of the two-
dimensional case, representing a vector with the initial point at the origin, , and terminal point . The zero vector is 

. So, for example, the three dimensional vector  is represented by a directed line segment from point 
 to point  (Figure ).

Figure : Vector  is represented by a directed line segment from point  to point 

Vector addition and scalar multiplication are defined analogously to the two-dimensional case. If  and 
 are vectors, and  is a scalar, then

and

If  then  is written as , and vector subtraction is defined by .

The standard unit vectors extend easily into three dimensions as well, , , and , and we use
them in the same way we used the standard unit vectors in two dimensions. Thus, we can represent a vector in  in the following
ways:

.

Let  be the vector with initial point  and terminal point  as shown in Figure . Express

 in both component form and using standard unit vectors.

R
3

= ⟨x, y, z⟩v⇀

(0, 0, 0) (x, y, z)

= ⟨0, 0, 0⟩0
⇀

= ⟨2, 4, 1⟩v⇀

(0, 0, 0) (2, 4, 1) 1.3.17

1.3.17 = ⟨2, 4, 1⟩v⇀ (0, 0, 0) (2, 4, 1).

= ⟨ , , ⟩v⇀ x1 y1 z1

= ⟨ , , ⟩w⇀ x2 y2 z2 k

+ = ⟨ + , + , + ⟩v⇀ w⇀ x1 x2 y1 y2 z1 z2

k = ⟨k , k , k ⟩.v⇀ x1 y1 z1

k = −1, k = (−1)v⇀ v⇀ −v⇀ − = +(− ) = +(−1)v⇀ w⇀ v⇀ w⇀ v⇀ w⇀

= ⟨1, 0, 0⟩î = ⟨0, 1, 0⟩ĵ = ⟨0, 0, 1⟩k̂

R
3

= ⟨x, y, z⟩ = x +y +zv⇀ î ĵ k̂

 Example : Vector Representations1.3.8

PQ
−−⇀

P = (3, 12, 6) Q = (−4, −3, 2) 1.3.18

PQ
−−⇀
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Figure : The vector with initial point  and terminal point .

Solution

In component form,

In standard unit form,

Let  and . Express  in component form and in standard unit form.

Hint

Write  in component form first.  is the terminal point of .

Answer

As described earlier, vectors in three dimensions behave in the same way as vectors in a plane. The geometric interpretation of
vector addition, for example, is the same in both two- and three-dimensional space (Figure ).

Figure : To add vectors in three dimensions, we follow the same procedures we learned for two dimensions.

1.3.18 P = (3, 12, 6) Q = (−4, −3, 2)

= ⟨ − , − , − ⟩PQ
−−⇀

x2 x1 y2 y1 z2 z1

= ⟨−4 −3, −3 −12, 2 −6⟩

= ⟨−7, −15, −4⟩.

= −7 −15 −4 .PQ
−−⇀

î ĵ k̂

 Exercise 1.3.8

S = (3, 8, 2) T = (2, −1, 3) ST
→

ST
−−⇀

T ST
−−⇀

= ⟨−1, −9, 1⟩ = − −9 +ST
−−⇀

î ĵ k̂

1.3.19

1.3.19
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We have already seen how some of the algebraic properties of vectors, such as vector addition and scalar multiplication, can be
extended to three dimensions. Other properties can be extended in similar fashion. They are summarized here for our reference.

Let  and  be vectors, and let  be a scalar.

Scalar multiplication:

Vector addition:

Vector subtraction:

Vector magnitude:

Unit vector in the direction of :

We have seen that vector addition in two dimensions satisfies the commutative, associative, and additive inverse properties. These
properties of vector operations are valid for three-dimensional vectors as well. Scalar multiplication of vectors satisfies the
distributive property, and the zero vector acts as an additive identity. The proofs to verify these properties in three dimensions are
straightforward extensions of the proofs in two dimensions.

Let  and  (Figure ). Find the following vectors.

a. 
b. 
c. 
d. A unit vector in the direction of 

 Properties of Vectors in Space

= ⟨ , , ⟩v⇀ x1 y1 z1 = ⟨ , , ⟩w⇀ x2 y2 z2 k

k = ⟨k , k , k ⟩v⇀ x1 y1 z1

+ = ⟨ , , ⟩+ ⟨ , , ⟩ = ⟨ + , + , + ⟩v⇀ w⇀ x1 y1 z1 x2 y2 z2 x1 x2 y1 y2 z1 z2

− = ⟨ , , ⟩− ⟨ , , ⟩ = ⟨ − , − , − ⟩v⇀ w⇀ x1 y1 z1 x2 y2 z2 x1 x2 y1 y2 z1 z2

∥ ∥ =v⇀ + +x2
1 y2

1 z2
1

− −−−−−−−−−
√

v⇀

= ⟨ , , ⟩ = ⟨ , , ⟩, if ≠
1

∥ ∥v⇀
v⇀

1

∥ ∥v⇀
x1 y1 z1

x1

∥ ∥v⇀
y1

∥ ∥v⇀
z1

∥ ∥v⇀
v⇀ 0

⇀

 Example : Vector Operations in Three Dimensions1.3.9

= ⟨−2, 9, 5⟩v⇀ = ⟨1, −1, 0⟩w⇀ 1.3.20

3 −2v⇀ w⇀

5∥ ∥w⇀

∥5 ∥w⇀

v⇀
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Figure : The vectors  and .

Solution

a. First, use scalar multiplication of each vector, then subtract:

b. Write the equation for the magnitude of the vector, then use scalar multiplication:

c. First, use scalar multiplication, then find the magnitude of the new vector. Note that the result is the same as for part b.:

d. Recall that to find a unit vector in two dimensions, we divide a vector by its magnitude. The procedure is the same in three
dimensions:

Let  and . Find a unit vector in the direction of 

Hint

1.3.20 = ⟨−2, 9, 5⟩v⇀ = ⟨1, −1, 0⟩w⇀

3 −2 = 3⟨−2, 9, 5⟩−2⟨1, −1, 0⟩v⇀ w⇀

= ⟨−6, 27, 15⟩− ⟨2, −2, 0⟩

= ⟨−6 −2, 27 −(−2), 15 −0⟩

= ⟨−8, 29, 15⟩.

5∥ ∥ = 5 = 5 .w⇀ +(−1 +12 )2 02
− −−−−−−−−−−−−

√ 2–√

∥5 ∥ =∥ ⟨5, −5, 0⟩ ∥= = = 5w⇀ +(−5 +52 )2 02
− −−−−−−−−−−−−

√ 50−−√ 2–√

= ⟨−2, 9, 5⟩
v⇀

∥ ∥v⇀
1

∥ ∥v⇀

= ⟨−2, 9, 5⟩
1

(−2 + +)2 92 52
− −−−−−−−−−−−−

√

= ⟨−2, 9, 5⟩
1

110
−−−√

= ⟨ , , ⟩.
−2

110−−−√

9

110−−−√

5

110−−−√

 Exercise :1.3.9

= ⟨−1, −1, 1⟩v⇀ = ⟨2, 0, 1⟩w⇀ 5 +3 .v⇀ w⇀
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Start by writing  in component form.

Answer

A quarterback is standing on the football field preparing to throw a pass. His receiver is standing 20 yd down the field and 15
yd to the quarterback’s left. The quarterback throws the ball at a velocity of 60 mph toward the receiver at an upward angle of 

 (see the following figure). Write the initial velocity vector of the ball, , in component form.

Solution

The first thing we want to do is find a vector in the same direction as the velocity vector of the ball. We then scale the vector
appropriately so that it has the right magnitude. Consider the vector  extending from the quarterback’s arm to a point directly
above the receiver’s head at an angle of  (see the following figure). This vector would have the same direction as , but it
may not have the right magnitude.

The receiver is 20 yd down the field and 15 yd to the quarterback’s left. Therefore, the straight-line distance from the
quarterback to the receiver is

Dist from QB to receiver  yd.

We have  Then the magnitude of  is given by

 yd

and the vertical distance from the receiver to the terminal point of  is

Vert dist from receiver to terminal point of  yd.

5 +3v⇀ w⇀

⟨ , − , ⟩
1

3 10
−−√

5

3 10
−−√

8

3 10
−−√

 Example : Throwing a Forward Pass1.3.10

30° v⇀

w⇀

30° v⇀

= = = = 25+152 202− −−−−−−−
√ 225 +400− −−−−−−−√ 625−−−√

= cos 30°.
25

∥ ∥w⇀
w⇀

∥ ∥ = = =w⇀
25

cos 30°

25 ⋅ 2

3–√

50

3–√

w⇀

= ∥ ∥ sin30° = ⋅ =w⇀ w⇀
50

3–√

1

2

25

3–√
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Then , and has the same direction as .

Recall, though, that we calculated the magnitude of  to be  yd, and  has magnitude  mph. So, we need to

multiply vector  by an appropriate constant, . We want to find a value of  so that  mph . We have

 yd,

so we want

 mph

 mph / yd

 mph / yd.

Then

.

Let’s double-check that  mph. We have

 mph.

So, we have found the correct components for .

Readers who have been watching the units of measurement may be wondering what exactly is going on at this point:
haven't we just mixed yards and miles per hour? We haven't, but the reason is subtle. One way to understand it is to realize
that there are really two parallel coordinate systems in this problem: one gives positions down the field, across the field,
and up into the air in units of yards; the other gives speeds down the field, across the field, and up into the air in units of
miles per hour. The vector  is calculated in the position coordinate system; vector  will be in the speed system. Because
corresponding axes in each system are parallel, directions in the two systems are also parallel, so the claim that  and 
point in the same direction is correct. The constant  that we're looking for is a conversion factor between the magnitudes
of these two vectors, converting from the position system to the speed one in the process. And as seen above, our
calculation of  produces the right units for such a conversion, namely miles per hour per yard.

Assume the quarterback and the receiver are in the same place as in the previous example. This time, however, the quarterback
throws the ball at velocity of  mph and an angle of . Write the initial velocity vector of the ball, , in component form.

Hint

Follow the process used in the previous example.

Answer

Key Concepts 
The three-dimensional coordinate system is built around a set of three axes that intersect at right angles at a single point, the
origin. Ordered triples  are used to describe the location of a point in space.
The distance  between points  and  is given by the formula

= ⟨20, 15, ⟩w⇀
25

3–√
v⇀

w⇀ ∥ ∥ =w⇀
50

3–√
v⇀ 60

w⇀ k k ∥k ∥= 60w⇀ *

∥k ∥ = k∥ ∥ = kw⇀ w⇀
50

3–√

k(  yd) = 60
50

3
–√

k =
60 3–√

50

k =
6 3–√

5

= k = k⟨20, 15, ⟩ = ⟨20, 15, ⟩ = ⟨24 , 18 , 30⟩v⇀ w⇀
25

3–√

6 3–√

5

25

3–√
3–√ 3–√

∥ ∥ = 60v⇀

∥ ∥ = = = = 60v⇀ (24 +(18 +(303
–√ )2 3

–√ )2 )2
− −−−−−−−−−−−−−−−−−−−−

√ 1728 +972 +900− −−−−−−−−−−−−−√ 3600
− −−−√

v⇀

 Note *

w⇀ v⇀

w⇀ v⇀

k

k

 Exercise 1.3.10

40 45° v⇀

v= ⟨16 , 12 , 20 ⟩2
–√ 2

–√ 2
–√

(x, y, z)
d ( , , )x1 y1 z1 ( , , )x2 y2 z2
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In three dimensions, the equations  and  describe planes that are parallel to the coordinate planes.
The standard equation of a sphere with center  and radius  is

In three dimensions, as in two, vectors are commonly expressed in component form, , or in terms of the standard
unit vectors, 
Properties of vectors in space are a natural extension of the properties for vectors in a plane. Let  and 

 be vectors, and let  be a scalar.

Scalar multiplication:

Vector addition:

Vector subtraction:

Vector magnitude:

Unit vector in the direction of :

Key Equations 
Distance between two points in space:

Sphere with center  and radius :

Glossary 

coordinate plane
a plane containing two of the three coordinate axes in the three-dimensional coordinate system, named by the axes it contains:
the -plane, -plane, or the -plane

right-hand rule
a common way to define the orientation of the three-dimensional coordinate system; when the right hand is curved around the 

-axis in such a way that the fingers curl from the positive -axis to the positive -axis, the thumb points in the direction of the
positive -axis

octants
the eight regions of space created by the coordinate planes

sphere
the set of all points equidistant from a given point known as the center

d = .( − +( − +( −x2 x1)2 y2 y1)2 z2 z1)2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−

√

x = a, y = b, z = c

(a, b, c) r

(x−a +(y−b +(z−c = .)2 )2 )2 r2

= ⟨x, y, z⟩v⇀

= x +y +z .v⇀ î ĵ k̂

= ⟨ , , ⟩v⇀ x1 y1 z1

= ⟨ , , ⟩w⇀ x2 y2 z2 k

k = ⟨k , k , k ⟩v⇀ x1 y1 z1

+ = ⟨ , , ⟩+ ⟨ , , ⟩ = ⟨ + , + , + ⟩v⇀ w⇀ x1 y1 z1 x2 y2 z2 x1 x2 y1 y2 z1 z2

− = ⟨ , , ⟩− ⟨ , , ⟩ = ⟨ − , − , − ⟩v⇀ w⇀ x1 y1 z1 x2 y2 z2 x1 x2 y1 y2 z1 z2

∥ ∥ =v⇀ + +x2
1 y2

1 z2
1

− −−−−−−−−−
√

v⇀

= ⟨ , , ⟩ = ⟨ , , ⟩, ≠
v⇀

∥ ∥v⇀
1

∥ ∥v⇀
x1 y1 z1

x1

∥ ∥v⇀
y1

∥ ∥v⇀
z1

∥ ∥v⇀
v⇀ 0

⇀

d = ( − +( − +( −x2 x1)2 y2 y1)2 z2 z1)2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−

√

(a, b, c) r

(x−a +(y−b +(z−c =)2 )2 )2 r2

xy xz yz

z x y

z
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standard equation of a sphere
 describes a sphere with center  and radius 

three-dimensional rectangular coordinate system
a coordinate system defined by three lines that intersect at right angles; every point in space is described by an ordered triple 

 that plots its location relative to the defining axes
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(x−a +(y−b +(z−c =)2 )2 )2 r2 (a, b, c) r

(x, y, z)
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1.4: The Dot Product

Calculate the dot product of two given vectors.
Determine whether two given vectors are perpendicular.
Find the direction cosines of a given vector.
Explain what is meant by the vector projection of one vector onto another vector, and describe how to compute it.
Calculate the work done by a given force.

If we apply a force to an object so that the object moves, we say that work is done by the force. Previously, we looked at a constant
force and we assumed the force was applied in the direction of motion of the object. Under those conditions, work can be expressed
as the product of the force acting on an object and the distance the object moves. In this chapter, however, we have seen that both
force and the motion of an object can be represented by vectors.

In this section, we develop an operation called the dot product, which allows us to calculate work in the case when the force vector
and the motion vector have different directions. The dot product essentially tells us how much of the force vector is applied in the
direction of the motion vector. The dot product can also help us measure the angle formed by a pair of vectors and the position of a
vector relative to the coordinate axes. It even provides a simple test to determine whether two vectors meet at a right angle.

The Dot Product and Its Properties 
We have already learned how to add and subtract vectors. In this chapter, we investigate two types of vector multiplication. The
first type of vector multiplication is called the dot product, based on the notation we use for it, and it is defined as follows:

The dot product of vectors  and  is given by the sum of the products of the components

Note that if  and  are two-dimensional vectors, we calculate the dot product in a similar fashion. Thus, if  and 
 then

When two vectors are combined under addition or subtraction, the result is a vector. When two vectors are combined using the dot
product, the result is a scalar. For this reason, the dot product is often called the scalar product. It may also be called the inner
product.

a. Find the dot product of  and .
b. Find the scalar product of  and 

Solution:

a. Substitute the vector components into the formula for the dot product:

b. The calculation is the same if the vectors are written using standard unit vectors. We still have three components for each
vector to substitute into the formula for the dot product:

 Learning Objectives

 Definition: dot product

= ⟨ , , ⟩u
⇀ u1 u2 u3 = ⟨ , , ⟩v

⇀ v1 v2 v3

⋅ = + + .u⇀ v⇀ u1v1 u2v2 u3v3

u v = ⟨ , ⟩u
⇀ u1 u2

= ⟨ , ⟩,v
⇀ v1 v2

⋅ = + .u
⇀

v
⇀ u1v1 u2v2

 Example : Calculating Dot Products1.4.1

= ⟨3, 5, 2⟩u
⇀ = ⟨−1, 3, 0⟩v

⇀

= 10 −4 +7p
⇀

î ĵ k̂ = −2 + +6 .q
⇀

î ĵ k̂

⋅u
⇀

v
⇀ = + +u1v1 u2v2 u3v3

= 3(−1) +5(3) +2(0)

= −3 +15 +0

= 12.
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Find , where  and 

Hint

Multiply corresponding components and then add their products.

Answer

Like vector addition and subtraction, the dot product has several algebraic properties. We prove three of these properties and leave
the rest as exercises.

Let , , and  be vectors, and let  be a scalar.

i. Commutative property

ii. Distributive property

iii. Associative property

iv. Property of magnitude

Let  and  Then

The associative property looks like the associative property for real-number multiplication, but pay close attention to the
difference between scalar and vector objects:

⋅p⇀ q⇀ = + +p1q1 p2q2 p3q3

= 10(−2) +(−4)(1) +(7)(6)

= −20 −4 +42

= 18.

 Exercise 1.4.1

⋅u
⇀

v
⇀ = ⟨2, 9, −1⟩u

⇀ = ⟨−3, 1, −4⟩.v
⇀

7

 Properties of the Dot Product

u
⇀

v
⇀

w
⇀ c

⋅ = ⋅u
⇀

v
⇀

v
⇀

u
⇀

⋅ ( + ) = ⋅ + ⋅u
⇀

v
⇀

w
⇀

u
⇀

v
⇀

u
⇀

w
⇀

c( ⋅ ) = (c ) ⋅ = ⋅ (c )u
⇀

v
⇀

u
⇀

v
⇀

u
⇀

v
⇀

⋅ = ∥v⇀ v⇀ v⇀∥2

 Proof

= ⟨ , , ⟩u
⇀ u1 u2 u3 = ⟨ , , ⟩.v

⇀ v1 v2 v3

⋅u
⇀

v
⇀ = ⟨ , , ⟩ ⋅ ⟨ , , ⟩u1 u2 u3 v1 v2 v3

= + +u1v1 u2v2 u3v3

= + +v1u1 v2u2 v3u3

= ⟨ , , ⟩ ⋅ ⟨ , , ⟩v1 v2 v3 u1 u2 u3

= ⋅ .v
⇀

u
⇀
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The proof that  is similar.

The fourth property shows the relationship between the magnitude of a vector and its dot product with itself:

□

Note that the definition of the dot product yields  By property iv. if  then 

Let , , and .

Find each of the following products.

a. 
b. 
c. 

Solution

a. Note that this expression asks for the scalar multiple of  by :

b. This expression is a dot product of vector  and scalar multiple 2 :

c. Simplifying this expression is a straightforward application of the dot product:

c( ⋅ )u⇀ v⇀ = c( + + )u1v1 u2v2 u3v3

= c( ) +c( ) +c( )u1v1 u2v2 u3v3

= (c ) +(c ) +(c )u1 v1 u2 v2 u3 v3

= ⟨c , c , c ⟩ ⋅ ⟨ , , ⟩u1 u2 u3 v1 v2 v3

= c⟨ , , ⟩ ⋅ ⟨ , , ⟩u1 u2 u3 v1 v2 v3

= (c ) ⋅ .u
⇀

v
⇀

c( ⋅ ) = ⋅ (c )u
⇀

v
⇀

u
⇀

v
⇀

⋅v
⇀

v
⇀ = ⟨ , , ⟩ ⋅ ⟨ , , ⟩v1 v2 v3 v1 v2 v3

= ( +( +(v1)2 v2)2 v3)2

= [ ]( +( +(v1)2 v2)2 v3)2
− −−−−−−−−−−−−−−−

√
2

= ∥ .v
⇀∥2

⋅ = 0.0
⇀

v
⇀ ⋅ = 0,v

⇀
v
⇀ = .v

⇀
0
⇀

 Example : Using Properties of the Dot Product1.4.2

= ⟨1, 2, −3⟩a
⇀ = ⟨0, 2, 4⟩b

⇀
= ⟨5, −1, 3⟩c

⇀

( ⋅ )a
⇀

b
⇀

c
⇀

⋅ (2 )a
⇀

c
⇀

∥b
⇀

∥2

c⇀ ⋅a⇀ b
⇀

( ⋅ )a
⇀

b
⇀

c
⇀ = (⟨1, 2, −3⟩ ⋅ ⟨0, 2, 4⟩)⟨5, −1, 3⟩

= (1(0) +2(2) +(−3)(4))⟨5, −1, 3⟩

= −8⟨5, −1, 3⟩

= ⟨−40, 8, −24⟩.

a
⇀

c
⇀

⋅ (2 )a
⇀

c
⇀ = 2( ⋅ )a

⇀
c
⇀

= 2(⟨1, 2, −3⟩ ⋅ ⟨5, −1, 3⟩)

= 2(1(5) +2(−1) +(−3)(3))

= 2(−6) = −12.
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Find the following products for , , and .

a. 
b. 

Hint

 is a scalar.

Answer

Using the Dot Product to Find the Angle between Two Vectors 
When two nonzero vectors are placed in standard position, whether in two dimensions or three dimensions, they form an angle
between them (Figure ). The dot product provides a way to find the measure of this angle. This property is a result of the fact
that we can express the dot product in terms of the cosine of the angle formed by two vectors.

Figure : Let  be the angle between two nonzero vectors  and  such that .

The dot product of two vectors is the product of the magnitude of each vector and the cosine of the angle between them:

Place vectors  and  in standard position and consider the vector  (Figure ). These three vectors form a triangle
with side lengths , and .

Figure : The lengths of the sides of the triangle are given by the magnitudes of the vectors that form the triangle.

Recall from trigonometry that the law of cosines describes the relationship among the side lengths of the triangle and the angle 
. Applying the law of cosines here gives

∥b
⇀

∥2 = ⋅b
⇀

b
⇀

= ⟨0, 2, 4⟩ ⋅ ⟨0, 2, 4⟩

= + +02 22 42

= 0 +4 +16

= 20.

 Exercise 1.4.2

= ⟨7, 0, 2⟩p⇀ = ⟨−2, 2, −2⟩q⇀ = ⟨0, 2, −3⟩r⇀

( ⋅ )r
⇀

p
⇀

q
⇀

∥p
⇀∥2

⋅r
⇀

p
⇀

a. ( ⋅ ) = ⟨12, −12, 12⟩; b. ∥ = 53r
⇀

p
⇀

q
⇀

p
⇀∥2

1.4.1

1.4.1 θ u⇀ v⇀ 0 ≤ θ ≤ π

 Evaluating a Dot Product

⋅ = ∥ ∥∥ ∥ cosθ.u⇀ v⇀ u⇀ v⇀ (1.4.1)

 Proof

u
⇀

v
⇀ −v

⇀
u
⇀ 1.4.2

∥ ∥, ∥ ∥u
⇀

v
⇀ ∥ − ∥v

⇀
u
⇀

1.4.2

θ

∥ − = ∥ +∥ −2∥ ∥∥ ∥ cosθ.v
⇀

u
⇀∥2

u
⇀∥2

v
⇀∥2

u
⇀

v
⇀ (1.4.2)
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The dot product provides a way to rewrite the left side of Equation :

Substituting into the law of cosines yields

□

We can use the form of the dot product in Equation  to find the measure of the angle between two nonzero vectors by
rearranging Equation  to solve for the cosine of the angle:

Using this equation, we can find the cosine of the angle between two nonzero vectors. Since we are considering the smallest angle
between the vectors, we assume  (or  if we are working in radians). The inverse cosine is unique over
this range, so we are then able to determine the measure of the angle .

Find the measure of the angle between each pair of vectors.

a.  and 
b.  and 

Solution

a. To find the cosine of the angle formed by the two vectors, substitute the components of the vectors into Equation :

Therefore,  rad.

b. Start by finding the value of the cosine of the angle between the vectors:

1.4.2

∥ −v⇀ u⇀∥2 = ( − ) ⋅ ( − )v⇀ u⇀ v⇀ u⇀

= ( − ) ⋅ −( − ) ⋅v
⇀

u
⇀

v
⇀

v
⇀

u
⇀

u
⇀

= ⋅ − ⋅ − ⋅ + ⋅v
⇀

v
⇀

u
⇀

v
⇀

v
⇀

u
⇀

u
⇀

u
⇀

= ⋅ − ⋅ − ⋅ + ⋅v
⇀

v
⇀

u
⇀

v
⇀

u
⇀

v
⇀

u
⇀

u
⇀

= ∥ −2 ⋅ +∥ .v⇀∥2
u
⇀

v⇀ u
⇀∥2

∥ −v⇀ u⇀∥2

∥ −2 ⋅ +∥v
⇀∥2

u
⇀

v
⇀

u
⇀∥2

−2 ⋅u
⇀

v
⇀

⋅u⇀ v⇀

= ∥ +∥ −2∥ ∥∥ ∥ cosθu⇀∥2
v⇀∥2

u⇀ v⇀

= ∥ +∥ −2∥ ∥∥ ∥ cosθu
⇀∥2

v
⇀∥2

u
⇀

v
⇀

= −2∥ ∥∥ ∥ cosθu
⇀

v
⇀

= ∥ ∥∥ ∥ cosθ.u⇀ v⇀

1.4.1
1.4.1

cosθ = .
⋅u

⇀
v
⇀

∥ ∥∥ ∥u⇀ v⇀
(1.4.3)

0° ≤ θ ≤ 180° 0 ≤ θ ≤ π

θ

 Example : Finding the Angle between Two Vectors1.4.3

+ +î ĵ k̂ 2 – – 3î ĵ k̂

⟨2, 5, 6⟩ ⟨−2, −4, 4⟩

1.4.3

cosθ =
( + + ) ⋅ (2 − −3 )î ĵ k̂ î ĵ k̂

+ + ∥ ⋅ ∥ 2 − −3∥∥ î ĵ k̂ î ĵ k̂∥∥

=
1(2) +(1)(−1) +(1)(−3)

+ +12 12 12− −−−−−−−−−
√ +(−1 +(−322 )2 )2

− −−−−−−−−−−−−−−
√

= = .
−2

3–√ 14−−√

−2

42−−√

θ = arccos
−2

42
−−√
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Now,  and , so .

Find the measure of the angle, in radians, formed by vectors  and . Round to the nearest hundredth.

Hint

Use the Equation .

Answer

 rad

The angle between two vectors can be acute  obtuse , or straight . If ,
then both vectors have the same direction. If , then the vectors, when placed in standard position, form a right angle
(Figure ). We can formalize this result into a theorem regarding orthogonal (perpendicular) vectors.

Figure : (a) An acute angle has . (b) An obtuse angle has  (c) A straight line has .
(d) If the vectors have the same direction, . (e) If the vectors are orthogonal (perpendicular), 

The nonzero vectors  and  are orthogonal vectors if and only if 

cosθ =
⟨2, 5, 6⟩ ⋅ ⟨−2, −4, 4⟩

∥⟨2, 5, 6⟩ ∥ ⋅ ∥ ⟨−2, −4, 4⟩∥

=
2(−2) +(5)(−4) +(6)(4)

+ +22 52 62− −−−−−−−−−√ (−2 +(−4 +)2 )2 42
− −−−−−−−−−−−−−−

√

= = 0.
0

65−−√ 36−−√

cosθ = 0 0 ≤ θ ≤ π θ = π/2

 Exercise 1.4.3

= ⟨1, 2, 0⟩a
⇀ = ⟨2, 4, 1⟩b

⇀

1.4.3

θ ≈ 0.22

(0 < cosθ < 1), (−1 < cosθ < 0) (cosθ = −1) cosθ = 1
cosθ = 0

1.4.3

1.4.3 0 < cos θ < 1 −1 < cos θ < 0. cos θ = −1
cos θ = 1 cos θ = 0.

 Orthogonal Vectors

u⇀ v⇀ ⋅ = 0.u⇀ v⇀
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Let  and  be nonzero vectors, and let  denote the angle between them. First, assume Then

However,  and  so we must have . Hence, , and the vectors are orthogonal.

Now assume  and  are orthogonal. Then  and we have

□

The terms orthogonal, perpendicular, and normal each indicate that mathematical objects are intersecting at right angles. The use
of each term is determined mainly by its context. We say that vectors are orthogonal and lines are perpendicular. The term normal
is used most often when measuring the angle made with a plane or other surface.

Determine whether  and  are orthogonal vectors.

Solution

Using the definition, we need only check the dot product of the vectors:

Because  the vectors are orthogonal (Figure ).

Figure : Vectors  and  form a right angle when their initial points are aligned.

For which value of  is  orthogonal to ?

Hint

Vectors  and  are orthogonal if and only if .

 Proof

u⇀ v⇀ θ ⋅ = 0.u⇀ v⇀

∥ ∥∥ ∥ cosθ = 0.u⇀ v⇀

∥ ∥ ≠ 0u⇀ ∥ ∥ ≠ 0,v⇀ cosθ = 0 θ = 90°

u
⇀

v
⇀ θ = 90°

⋅u
⇀

v
⇀ = ∥ ∥∥ ∥ cosθu

⇀
v
⇀

= ∥ ∥∥ ∥ cos 90°u⇀ v⇀

= ∥ ∥∥ ∥(0)u
⇀

v
⇀

= 0.

 Example : Identifying Orthogonal Vectors1.4.4

= ⟨1, 0, 5⟩p
⇀ = ⟨10, 3, −2⟩q

⇀

⋅ = 1(10) +(0)(3) +(5)(−2) = 10 +0 −10 = 0.p⇀ q⇀

⋅ = 0,p⇀ q⇀ 1.4.4

1.4.4 p⇀ q⇀

 Exercise 1.4.4

x = ⟨2, 8, −1⟩p
⇀ = ⟨x, −1, 2⟩q

⇀

p
⇀

q
⇀ ⋅ = 0p

⇀
q
⇀
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Answer

Let  Find the measures of the angles formed by the following vectors.

a.  and 
b.  and 
c.  and 

Solution

a.Let α be the angle formed by  and :

b. Let β represent the angle formed by  and :

c. Let γ represent the angle formed by  and :

Let  Find the measure of the angles formed by each pair of vectors.

a.  and 
b.  and 
c.  and 

Hint

 and 

Answer

 rad; b.  rad; c.  rad

The angle a vector makes with each of the coordinate axes, called a direction angle, is very important in practical computations,
especially in a field such as engineering. For example, in astronautical engineering, the angle at which a rocket is launched must be
determined very precisely. A very small error in the angle can lead to the rocket going hundreds of miles off course. Direction
angles are often calculated by using the dot product and the cosines of the angles, called the direction cosines. Therefore, we define
both these angles and their cosines.

x = 5

 Example : Measuring the Angle Formed by Two Vectors1.4.5

= ⟨2, 3, 3⟩.v
⇀

v⇀ î

v⇀ ĵ

v
⇀

k̂

v⇀ î

cosα

α

= = =
⋅v⇀ î

∥ ∥ ⋅ ∥ ∥v
⇀

î

⟨2, 3, 3⟩ ⋅ ⟨1, 0, 0⟩

+ +22 32 32− −−−−−−−−−
√ 1

–√

2

22−−√

= arccos ≈ 1.130 rad.
2

22
−−√

v
⇀

ĵ

cosβ

β

= = =
⋅v

⇀
ĵ

∥ ∥ ⋅ ∥ ∥v⇀ ĵ

⟨2, 3, 3⟩ ⋅ ⟨0, 1, 0⟩

+ +22 32 32− −−−−−−−−−
√ 1–√

3

22
−−√

= arccos ≈ 0.877 rad.
3

22
−−√

v
⇀

k̂

cosγ

γ

= = =
⋅v

⇀
k̂

∥ ∥ ⋅ ∥ ∥v
⇀

k̂

⟨2, 3, 3⟩ ⋅ ⟨0, 0, 1⟩

+ +22 32 32− −−−−−−−−−
√ 1

–√

3

22
−−√

= arccos ≈ 0.877 rad.
3

22
−−

√

 Exercise 1.4.5

= ⟨3, −5, 1⟩.v
⇀

v
⇀

î

v⇀ ĵ

v⇀ k̂

= ⟨1, 0, 0⟩, = ⟨0, 1, 0⟩,î ĵ = ⟨0, 0, 1⟩k̂

a.α ≈ 1.04 β ≈ 2.58 γ ≈ 1.40
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The angles formed by a nonzero vector and the coordinate axes are called the direction angles for the vector (Figure ).
The cosines for these angles are called the direction cosines.

Figure : Angle  is formed by vector  and unit vector . Angle β is formed by vector  and unit vector . Angle γ is
formed by vector  and unit vector .

In Example , the direction cosines of  are  and . The direction

angles of  are  rad,  rad, and  rad.

So far, we have focused mainly on vectors related to force, movement, and position in three-dimensional physical space. However,
vectors are often used in more abstract ways. For example, suppose a fruit vendor sells apples, bananas, and oranges. On a given
day, he sells 30 apples, 12 bananas, and 18 oranges. He might use a quantity vector,  to represent the quantity of
fruit he sold that day. Similarly, he might want to use a price vector,  to indicate that he sells his apples for 50¢
each, bananas for 25¢ each, and oranges for $1 apiece. In this example, although we could still graph these vectors, we do not
interpret them as literal representations of position in the physical world. We are simply using vectors to keep track of particular
pieces of information about apples, bananas, and oranges.

This idea might seem a little strange, but if we simply regard vectors as a way to order and store data, we find they can be quite a
powerful tool. Going back to the fruit vendor, let’s think about the dot product, . We compute it by multiplying the number of
apples sold (30) by the price per apple (50¢), the number of bananas sold by the price per banana, and the number of oranges sold
by the price per orange. We then add all these values together. So, in this example, the dot product tells us how much money the
fruit vendor had in sales on that particular day.

When we use vectors in this more general way, there is no reason to limit the number of components to three. What if the fruit
vendor decides to start selling grapefruit? In that case, he would want to use four-dimensional quantity and price vectors to
represent the number of apples, bananas, oranges, and grapefruit sold, and their unit prices. As you might expect, to calculate the
dot product of four-dimensional vectors, we simply add the products of the components as before, but the sum has four terms
instead of three.

AAA Party Supply Store sells invitations, party favors, decorations, and food service items such as paper plates and napkins.
When AAA buys its inventory, it pays 25¢ per package for invitations and party favors. Decorations cost AAA 50¢ each, and
food service items cost 20¢ per package. AAA sells invitations for $2.50 per package and party favors for $1.50 per package.
Decorations sell for $4.50 each and food service items for $1.25 per package.

During the month of May, AAA Party Supply Store sells 1258 invitations, 342 party favors, 2426 decorations, and 1354 food
service items. Use vectors and dot products to calculate how much money AAA made in sales during the month of May. How
much did the store make in profit?

Solution

The cost, price, and quantity vectors are

 Definition: direction angles

1.4.5

1.4.5 α v⇀ î v⇀ ĵ

v⇀ k̂

1.4.5 = ⟨2, 3, 3⟩v
⇀ cosα = , cosβ = ,

2

22
−−√

3

22
−−√

cosγ =
3

22
−−√

v
⇀ α = 1.130 β = 0.877 γ = 0.877

= ⟨30, 12, 18⟩,q
⇀

= ⟨0.50, 0.25, 1⟩,p
⇀

⋅q⇀ p⇀

 Example : Using Vectors in an Economic Context1.4.6
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AAA sales for the month of May can be calculated using the dot product . We have

So, AAA took in $16,267.50 during the month of May. To calculate the profit, we must first calculate how much AAA paid for
the items sold. We use the dot product  to get

So, AAA paid $1,883.80 for the items they sold. Their profit, then, is given by

Therefore, AAA Party Supply Store made $14,383.70 in May.

On June 1, AAA Party Supply Store decided to increase the price they charge for party favors to $2 per package. They also
changed suppliers for their invitations, and are now able to purchase invitations for only 10¢ per package. All their other costs
and prices remain the same. If AAA sells 1408 invitations, 147 party favors, 2112 decorations, and 1894 food service items in
the month of June, use vectors and dot products to calculate their total sales and profit for June.

Hint

Use four-dimensional vectors for cost, price, and quantity sold.

Answer

Sales = $15,685.50; profit = $14,073.15

Projections 
As we have seen, addition combines two vectors to create a resultant vector. But what if we are given a vector and we need to find
its component parts? We use vector projections to perform the opposite process; they can break down a vector into its components.
The magnitude of a vector projection is a scalar projection. For example, if a child is pulling the handle of a wagon at a 55° angle,
we can use projections to determine how much of the force on the handle is actually moving the wagon forward ( ). We return
to this example and learn how to solve it after we see how to calculate projections.

Figure : When a child pulls a wagon, only the horizontal component of the force propels the wagon forward.

c⇀

p
⇀

q
⇀

= ⟨0.25, 0.25, 0.50, 0.20⟩

= ⟨2.50, 1.50, 4.50, 1.25⟩

= ⟨1258, 342, 2426, 1354⟩.

⋅p
⇀

q
⇀

⋅p⇀ q⇀ = ⟨2.50, 1.50, 4.50, 1.25⟩ ⋅ ⟨1258, 342, 2426, 1354⟩

= 3145 +513 +10917 +1692.5

= 16267.5.

⋅c
⇀

q
⇀

⋅c
⇀

q
⇀ = ⟨0.25, 0.25, 0.50, 0.20⟩ ⋅ ⟨1258, 342, 2426, 1354⟩

= 314.5 +85.5 +1213 +270.8

= 1883.8.

⋅ − ⋅ = 16267.5 −1883.8 = 14383.7.p
⇀

q
⇀

c
⇀

q
⇀
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The vector projection of  onto  is the vector labeled  in Figure . It has the same initial point as  and  and
the same direction as , and represents the component of  that acts in the direction of . If  represents the angle between 
and , then, by properties of triangles, we know the length of  is  When expressing  in
terms of the dot product, this becomes

We now multiply by a unit vector in the direction of  to get :

The length of this vector is also known as the scalar projection of  onto  and is denoted by

Figure : The projection of  onto  shows the component of vector  in the direction of .

Find the projection of  onto .

a.  and 
b.  and 

Solution

a. Substitute the components of  and  into the formula for the projection:

b. To find the two-dimensional projection, simply adapt the formula to the two-dimensional case:

 Definition: Vector and Projection

v⇀ u⇀ proj
u⇀ v⇀ 1.4.7 u⇀ v⇀

u⇀ v⇀ u⇀ θ u⇀

v⇀ proj
u⇀ v⇀ ∥ ∥ = ∥ ∥ cosθ.proj

u⇀ v⇀ v⇀ cosθ

∥ ∥ = ∥ ∥ cosθ = ∥ ∥( ) =proj u⇀ v
⇀

v
⇀

v
⇀ ⋅u

⇀
v
⇀

∥ ∥∥ ∥u
⇀

v
⇀

⋅u
⇀

v
⇀

∥ ∥.u
⇀

u
⇀ proj u⇀ v

⇀

= ( ) = .proj u⇀ v
⇀ ⋅u

⇀
v
⇀

∥ ∥u
⇀

1

∥ ∥u
⇀ u

⇀ ⋅u
⇀

v
⇀

∥u
⇀∥2

u
⇀

v⇀ u
⇀

∥ ∥ = =proj u⇀ v
⇀ compu⇀ v

⇀ | ⋅ |u⇀ v⇀

∥ ∥.u
⇀

1.4.7 v⇀ u⇀ v⇀ u⇀

 Example : Finding Projections1.4.7

v⇀ u⇀

= ⟨3, 5, 1⟩v
⇀ = ⟨−1, 4, 3⟩u

⇀

= 3 −2v
⇀

î ĵ = +6u
⇀

î ĵ

v
⇀

u
⇀

proj u⇀ v
⇀ =

⋅u
⇀

v
⇀

∥u
⇀∥2

u
⇀

= ⟨−1, 4, 3⟩
⟨−1, 4, 3⟩ ⋅ ⟨3, 5, 1⟩

∥⟨−1, 4, 3⟩∥2

= ⟨−1, 4, 3⟩
−3 +20 +3

(−1 + +)2 42 32

= ⟨−1, 4, 3⟩
20

26

= ⟨− , , ⟩.
10

13

40

13

30

13
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Sometimes it is useful to decompose vectors—that is, to break a vector apart into a sum. This process is called the resolution of a
vector into components. Projections allow us to identify two orthogonal vectors having a desired sum. For example, let 

 and let  We want to decompose the vector  into orthogonal components such that one of the component
vectors has the same direction as .

We first find the component that has the same direction as  by projecting  onto . Let . Then, we have

Now consider the vector  We have

Clearly, by the way we defined , we have  and

Therefore,  and  are orthogonal.

Express  as a sum of orthogonal vectors such that one of the vectors has the same direction as 

Solution

Let  represent the projection of  onto :

proj u⇀ v⇀ =
⋅u⇀ v⇀

∥u⇀∥2
u⇀

= ( +6 )
( +6 ) ⋅ (3 −2 )î ĵ î ĵ

+6∥∥ î ĵ∥∥
2

î ĵ

= ( +6 )
1(3) +6(−2)

+12 62
î ĵ

= − ( +6 )
9

37
î ĵ

= − − .
9

37
î

54

37
ĵ

= ⟨6, −4⟩v⇀ = ⟨3, 1⟩.u⇀ v⇀

u⇀

u
⇀

v
⇀

u
⇀ =p

⇀ proj u⇀ v
⇀

=p
⇀ ⋅u

⇀
v
⇀

∥u
⇀∥2

u
⇀

=
18 −4

9 +1
u
⇀

= = ⟨3, 1⟩ = ⟨ , ⟩.
7

5
u⇀

7

5

21

5

7

5

= − .q⇀ v⇀ p⇀

= −q
⇀

v
⇀

p
⇀

= ⟨6, −4⟩− ⟨ , ⟩
21

5

7

5

= ⟨ , − ⟩.
9

5

27

5

q⇀ = + ,v⇀ q⇀ p⇀

⋅ = ⟨ , − ⟩ ⋅ ⟨ , ⟩q⇀ p⇀
9

5

27

5

21

5

7

5

= +−
9(21)

25

27(7)

25

= − = 0.
189

25

189

25

q⇀ p⇀

 Example : Resolving Vectors into Components1.4.8

= ⟨8, −3, −3⟩v
⇀ = ⟨2, 3, 2⟩.u

⇀

p
⇀

v
⇀

u
⇀
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Then,

To check our work, we can use the dot product to verify that  and  are orthogonal vectors:

Then,

Express  as a sum of orthogonal vectors such that one of the vectors has the same direction as .

Hint

Start by finding the projection of  onto .

Answer

 where  and 

A container ship leaves port traveling  north of east. Its engine generates a speed of 20 knots along that path (see the
following figure). In addition, the ocean current moves the ship northeast at a speed of 2 knots. Considering both the engine
and the current, how fast is the ship moving in the direction  north of east? Round the answer to two decimal places.

p⇀ = proj u⇀ v⇀

=
⋅u⇀ v⇀

∥u
⇀∥2

u⇀

= ⟨2, 3, 2⟩
⟨2, 3, 2⟩ ⋅ ⟨8, −3, −3⟩

∥⟨2, 3, 2⟩∥2

= ⟨2, 3, 2⟩
16 −9 −6

+ +22 32 22

= ⟨2, 3, 2⟩
1

17

= ⟨ , , ⟩.
2

17

3

17

2

17

q⇀ = − = ⟨8, −3, −3⟩− ⟨ , , ⟩v⇀ p⇀
2

17

3

17

2

17

= ⟨ , − , − ⟩.
134

17

54

17

53

17

p⇀ q⇀

⋅p
⇀

q
⇀ = ⟨ , , ⟩ ⋅ ⟨ , − , − ⟩

2

17

3

17

2

17

134

17

54

17

53

17

= − − = 0.
268

289

162

289

106

289

= + = ⟨ , , ⟩+ ⟨ , − , − ⟩.v⇀ p⇀ q⇀
2

17

3

17

2

17

134

17

54

17

53

17

 Exercise 1.4.7

= 5 −v⇀ î ĵ = 4 +2u⇀ î ĵ

v
⇀

u
⇀

= + ,v
⇀

p
⇀

q
⇀ = +p

⇀ 18

5
î

9

5
ĵ = −q

⇀ 7

5
î

14

5
ĵ

 Example : Scalar Projection of Velocity1.4.9
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Solution

Let  be the velocity vector generated by the engine, and let  be the velocity vector of the current. We already know 
 along the desired route. We just need to add in the scalar projection of  onto . We get

The ship is moving at 21.73 knots in the direction  north of east.

Repeat the previous example, but assume the ocean current is moving southeast instead of northeast, as shown in the following
figure.

Hint

Compute the scalar projection of  onto .

Answer

21 knots

Work 
Now that we understand dot products, we can see how to apply them to real-life situations. The most common application of the
dot product of two vectors is in the calculation of work.

v⇀ w⇀

∥ ∥ = 20v⇀ w⇀ v⇀

=comp v⇀w⇀
⋅v⇀ w⇀

∥ ∥v⇀

= = ∥ ∥ cos(30°) = 2 = ≈ 1.73 knots.
∥ ∥∥ ∥ cos(30°)v⇀ w⇀

∥ ∥v⇀
w⇀

3–√

2
3–√

15°

 Exercise 1.4.8

w
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v
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From physics, we know that work is done when an object is moved by a force. When the force is constant and applied in the same
direction the object moves, then we define the work done as the product of the force and the distance the object travels: .
We saw several examples of this type in earlier chapters. Now imagine the direction of the force is different from the direction of
motion, as with the example of a child pulling a wagon. To find the work done, we need to multiply the component of the force that
acts in the direction of the motion by the magnitude of the displacement. The dot product allows us to do just that. If we represent
an applied force by a vector  and the displacement of an object by a vector , then the work done by the force is the dot product
of  and .

When a constant force is applied to an object so the object moves in a straight line from point  to point , the work  done
by the force , acting at an angle θ from the line of motion, is given by

Let’s revisit the problem of the child’s wagon introduced earlier. Suppose a child is pulling a wagon with a force having a
magnitude of 8 lb on the handle at an angle of 55°. If the child pulls the wagon 50 ft, find the work done by the force (Figure 

).

Figure : The horizontal component of the force is the projection of  onto the positive -axis.

We have

In U.S. standard units, we measure the magnitude of force  in pounds. The magnitude of the displacement vector  tells

us how far the object moved, and it is measured in feet. The customary unit of measure for work, then, is the foot-pound. One foot-
pound is the amount of work required to move an object weighing 1 lb a distance of 1 ft straight up. In the metric system, the unit
of measure for force is the newton (N), and the unit of measure of magnitude for work is a newton-meter (N·m), or a joule (J).

A conveyor belt generates a force  that moves a suitcase from point  to point  along a
straight line. Find the work done by the conveyor belt. The distance is measured in meters and the force is measured in
newtons.

Solution

The displacement vector  has initial point  and terminal point :

Work is the dot product of force and displacement:

W = Fd

F
⇀

s⇀

F
⇀

s
⇀

 Definition: Constant Force

P Q W

F
⇀

W = ⋅ =∥ ∥∥ ∥ cosθ.F
⇀

PQ
−−⇀

F
⇀

PQ
−−⇀

1.4.8

1.4.8 F
⇀

x

W =∥ ∥∥ ∥ cosθ = 8(50)(cos(55°)) ≈ 229 ft⋅lb.F
⇀

PQ
−−⇀

∥∥F
⇀∥∥

∥
∥PQ

−−⇀∥
∥

 Example : Calculating Work1.4.10

= 5 −3 +F
⇀

î ĵ k̂ (1, 1, 1) (9, 4, 7)

PQ
−−⇀

(1, 1, 1) (9, 4, 7)

= ⟨9 −1, 4 −1, 7 −1⟩ = ⟨8, 3, 6⟩ = 8 +3 +6 .PQ
−−⇀

î ĵ k̂
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A constant force of 30 lb is applied at an angle of 60° to pull a handcart 10 ft across the ground. What is the work done by this
force?

Hint

Use the definition of work as the dot product of force and distance.

Answer

150 ft-lb

Key Concepts 
The dot product, or scalar product, of two vectors  and  is .
The dot product satisfies the following properties:

The dot product of two vectors can be expressed, alternatively, as  This form of the dot product is useful
for finding the measure of the angle formed by two vectors.
Vectors  and  are orthogonal if .
The angles formed by a nonzero vector and the coordinate axes are called the direction angles for the vector. The cosines of
these angles are known as the direction cosines.

The vector projection of  onto  is the vector . The magnitude of this vector is known as the scalar

projection of  onto , given by .

Work is done when a force is applied to an object, causing displacement. When the force is represented by the vector  and the
displacement is represented by the vector , then the work done  is given by the formula 

W

= 5(8) +(−3)(3) +1(6)

= ⋅F
⇀

PQ
−−⇀

= (5 −3 + ) ⋅ (8 +3 +6 )î ĵ k̂ î ĵ k̂

= 37 N⋅m

= 37 J

 Exercise 1.4.9

= ⟨ , , ⟩u⇀ u1 u2 u3 = ⟨ , , ⟩v⇀ v1 v2 v3 ⋅ = + +u⇀ v⇀ u1v1 u2v2 u3v3

⋅ = ⋅u⇀ v⇀ v⇀ u⇀

⋅ ( + ) = ⋅ + ⋅u⇀ v⇀ w⇀ u⇀ v⇀ u⇀ w⇀

c( ⋅ ) = (c ) ⋅ = ⋅ (c )u⇀ v⇀ u⇀ v⇀ u⇀ v⇀

⋅ = ∥v
⇀

v
⇀

v
⇀∥2

⋅ = ∥ ∥∥ ∥ cosθ.u
⇀

v
⇀

u
⇀

v
⇀

u
⇀

v
⇀ ⋅ = 0u

⇀
v
⇀

v⇀ u⇀ =proj u⇀ v⇀
⋅u

⇀
v⇀

∥u⇀∥2
u⇀

v
⇀

u
⇀ =compu⇀ v

⇀ ⋅u
⇀

v
⇀

∥ ∥u
⇀

F
⇀

s⇀ W W = ⋅ =∥ ∥ ∥ ∥ cosθ.F
⇀

s⇀ F
⇀
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Key Equations 
Dot product of  and 

Cosine of the angle formed by  and 

Vector projection of  onto 

Scalar projection of  onto 

Work done by a force  to move an object through displacement vector 

Glossary 

direction angles
the angles formed by a nonzero vector and the coordinate axes

direction cosines
the cosines of the angles formed by a nonzero vector and the coordinate axes

dot product or scalar product
 where  and 

scalar projection
the magnitude of the vector projection of a vector

orthogonal vectors
vectors that form a right angle when placed in standard position

vector projection
the component of a vector that follows a given direction

work done by a force

work is generally thought of as the amount of energy it takes to move an object; if we represent an applied force by a vector 
and the displacement of an object by a vector , then the work done by the force is the dot product of  and .
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1.5: The Cross Product

Calculate the cross product of two given vectors.
Use determinants to calculate a cross product.
Find a vector orthogonal to two given vectors.
Determine areas and volumes by using the cross product.
Calculate the torque of a given force and position vector.

Imagine a mechanic turning a wrench to tighten a bolt. The mechanic applies a force at the end of the wrench. This creates rotation,
or torque, which tightens the bolt. We can use vectors to represent the force applied by the mechanic, and the distance (radius) from
the bolt to the end of the wrench. Then, we can represent torque by a vector oriented along the axis of rotation. Note that the torque
vector is orthogonal to both the force vector and the radius vector.

In this section, we develop an operation called the cross product, which allows us to find a vector orthogonal to two given vectors.
Calculating torque is an important application of cross products, and we examine torque in more detail later in the section.

The Cross Product and Its Properties

The dot product is a multiplication of two vectors that results in a scalar. In this section, we introduce a product of two vectors that
generates a third vector orthogonal to the first two. Consider how we might find such a vector. Let  and 

 be nonzero vectors. We want to find a vector  orthogonal to both  and —that is, we want to
find  such that  and . Therefore, ,  and  must satisfy

If we multiply the top equation by  and the bottom equation by  and subtract, we can eliminate the variable , which gives

If we select

we get a possible solution vector. Substituting these values back into the original equations (Equations  and ) gives

That is, vector

is orthogonal to both  and , which leads us to define the following operation, called the cross product.

Let  and  Then, the cross product  is vector

From the way we have developed , it should be clear that the cross product is orthogonal to both  and . However, it never
hurts to check. To show that  is orthogonal to , we calculate the dot product of  and .

 Learning Objectives

= ⟨ , , ⟩u
⇀ u1 u2 u3

= ⟨ , , ⟩v
⇀ v1 v2 v3 = ⟨ , , ⟩w

⇀ w1 w2 w3 u
⇀

v
⇀

w
⇀ ⋅ = 0u

⇀
w
⇀ ⋅ = 0v

⇀
w
⇀ w1 ,w2 w3

+ + = 0u1w1 u2w2 u3w3 (1.5.1)

+ + = 0.v1w1 v2w2 v3w3 (1.5.2)

v3 u3 w3

( − ) +( − ) = 0.u1v3 v1u3 w1 u2v3 v2u3 w2

w1

w2

= −u2v3 u3v2

= −( − ),u1v3 u3v1

1.5.1 1.5.2

= − .w3 u1v2 u2v1

= ⟨ − , −( − ), − ⟩w⇀ u2v3 u3v2 u1v3 u3v1 u1v2 u2v1

u⇀ v⇀

 Definition: Cross Product

= ⟨ , , ⟩u
⇀ u1 u2 u3 = ⟨ , , ⟩.v

⇀ v1 v2 v3 ×u
⇀

v
⇀

×u
⇀

v
⇀ = ( − ) −( − ) +( − )u2v3 u3v2 î u1v3 u3v1 ĵ u1v2 u2v1 k̂

= ⟨ − , −( − ), − ⟩.u2v3 u3v2 u1v3 u3v1 u1v2 u2v1 (1.5.3)

×u
⇀

v
⇀

u
⇀

v
⇀

×u
⇀

v
⇀

u
⇀

u
⇀ ×u

⇀
v
⇀
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In a similar manner, we can show that the cross product is also orthogonal to .

The cross product  (vertical, in pink) changes as the angle between the vectors  (blue) and  (red) changes. The cross
product (purple) is always perpendicular to both vectors, and has magnitude zero when the vectors are parallel and maximum
magnitude  when they are perpendicular. (Public Domain; LucasVB).

Let  and  (Figure ). Find .

Figure : Finding a cross product to two given vectors.

Solution

Substitute the components of the vectors into Equation :

⋅ ( × )u⇀ u⇀ v⇀ = ⟨ , , ⟩ ⋅ ⟨ − , − + , − ⟩u1 u2 u3 u2v3 u3v2 u1v3 u3v1 u1v2 u2v1

= ( − ) + (− + ) + ( − )u1 u2v3 u3v2 u2 u1v3 u3v1 u3 u1v2 u2v1

= − − + + −u1u2v3 u1u3v2 u1u2v3 u2u3v1 u1u3v2 u2u3v1

= ( − ) +(− + ) +( − )u1u2v3 u1u2v3 u1u3v2 u1u3v2 u2u3v1 u2u3v1

= 0

v⇀

×a⇀ b
⇀

a⇀ b
⇀

∥ ∥∥ ∥a
⇀

b
⇀

 Example : Finding a Cross Product1.5.1

= ⟨−1, 2, 5⟩p
⇀ = ⟨4, 0, −3⟩q

⇀ 1.5.1 ×p
⇀

q
⇀

1.5.1

1.5.3

×p⇀ q⇀ = ⟨−1, 2, 5⟩× ⟨4, 0, −3⟩

= ⟨ − , −( − ), − ⟩p2q3 p3q2 p1q3 p3q1 p1q2 p2q1

= ⟨2(−3) −5(0), −(−1)(−3) +5(4), (−1)(0) −2(4)⟩

= ⟨−6, 17, −8⟩.
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Find  for  and  Express the answer using standard unit vectors.

Hint

Use the formula 

Answer

Although it may not be obvious from Equation , the direction of  is given by the right-hand rule. If we hold the right
hand out with the fingers pointing in the direction of , then curl the fingers toward vector , the thumb points in the direction of
the cross product, as shown in Figure .

Figure : The direction of  is determined by the right-hand rule.

Notice what this means for the direction of . If we apply the right-hand rule to , we start with our fingers pointed in
the direction of , then curl our fingers toward the vector . In this case, the thumb points in the opposite direction of . (Try
it!)

Let  and . Calculate  and  and graph them.

Figure : Are the cross products  and  in the same direction?

Solution

We have

 Exercise 1.5.1

×p⇀ q⇀ = ⟨5, 1, 2⟩p⇀ = ⟨−2, 0, 1⟩.q⇀

× = ( − ) −( − ) +( − ) .u
⇀

v
⇀ u2v3 u3v2 î u1v3 u3v1 ĵ u1v2 u2v1 k̂

× = −9 +2p
⇀

q
⇀

î ĵ k̂

1.5.3 ×u
⇀

v
⇀

u
⇀

v
⇀

1.5.2

1.5.2 ×u⇀ v⇀

×v⇀ u⇀ ×v⇀ u⇀

v⇀ u⇀ ×u⇀ v⇀

 Example : Anticommutativity of the Cross Product1.5.2

= ⟨0, 2, 1⟩u
⇀ = ⟨3, −1, 0⟩v⇀ ×u

⇀
v⇀ ×v⇀ u

⇀

1.5.3 ×u
⇀

v
⇀ ×v

⇀
u
⇀

× = ⟨(0 +1), −(0 −3), (0 −6)⟩ = ⟨1, 3, −6⟩u
⇀

v
⇀
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We see that, in this case,  (Figure ). We prove this in general later in this section.

Figure : The cross products  and  are both orthogonal to  and , but in opposite directions.

Suppose vectors  and  lie in the -plane (the -component of each vector is zero). Now suppose the - and -components
of  and the -component of  are all positive, whereas the -component of  is negative. Assuming the coordinate axes are
oriented in the usual positions, in which direction does  point?

Hint

Remember the right-hand rule (Figure ).

Answer

Up (the positive -direction)

The cross products of the standard unit vectors , , and  can be useful for simplifying some calculations, so let’s consider these
cross products. A straightforward application of the definition shows that

(The cross product of two vectors is a vector, so each of these products results in the zero vector, not the scalar .) It’s up to you to
verify the calculations on your own.

Furthermore, because the cross product of two vectors is orthogonal to each of these vectors, we know that the cross product of 
and  is parallel to . Similarly, the vector product of  and  is parallel to , and the vector product of  and  is parallel to .

We can use the right-hand rule to determine the direction of each product. Then we have

× = ⟨(−1 −0), −(3 −0), (6 −0)⟩ = ⟨−1, −3, 6⟩.v
⇀

u
⇀

× = −( × )u⇀ v⇀ v⇀ u⇀ 1.5.4

1.5.4 ×u⇀ v⇀ ×v⇀ u⇀ u⇀ v⇀

 Exercise 1.5.2

u⇀ v⇀ xy z x y

u⇀ y v⇀ x v⇀

×u⇀ v⇀

1.5.2

z

î ĵ k̂

× = × = × = .î î ĵ ĵ k̂ k̂ 0
⇀

0

î

ĵ k̂ î k̂ ĵ ĵ k̂ î
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These formulas come in handy later.

Find .

Solution

We know that . Therefore, 

Find 

Hint

Remember the right-hand rule (Figure ).

Answer

As we have seen, the dot product is often called the scalar product because it results in a scalar. The cross product results in a
vector, so it is sometimes called the vector product. These operations are both versions of vector multiplication, but they have very
different properties and applications. Let’s explore some properties of the cross product. We prove only a few of them. Proofs of
the other properties are left as exercises.

Let  and  be vectors in space, and let  be a scalar.

i. Anticommutative property:

ii. Distributive property:

iii. Multiplication by a constant:

iv. Cross product of the zero vector:

v. Cross product of a vector with itself:

×î ĵ

×ĵ î

×ĵ k̂

×k̂ ĵ

×k̂ î

×î k̂

= k̂

= −k̂

= î

= − î

= ĵ

= − .ĵ

 Example : Cross Product of Standard Unit Vectors1.5.3

×( × )î ĵ k̂

× =ĵ k̂ î ×( × ) = × = .î ĵ k̂ î î 0
⇀

 Exercise 1.5.3

( × ) ×( × ).î ĵ k̂ î

1.5.2

− î

 Properties of the Cross Product

, ,u⇀ v⇀ w⇀ c

× = −( × )u
⇀

v
⇀

v
⇀

u
⇀

×( + ) = × + ×u
⇀

v
⇀

w
⇀

u
⇀

v
⇀

u
⇀

w
⇀

c( × ) = (c ) × = ×(c )u⇀ v⇀ u⇀ v⇀ u⇀ v⇀

× = × =u⇀ 0
⇀

0
⇀

u⇀ 0
⇀

× =v⇀ v⇀ 0
⇀
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vi. Triple scalar product:

vii. Triple cross product:

For property , we want to show  We have

Unlike most operations we’ve seen, the cross product is not commutative. This makes sense if we think about the right-hand
rule.

For property ., this follows directly from the definition of the cross product. We have

Then, by property i.,  as well. Remember that the dot product of a vector and the zero vector is the scalar ,
whereas the cross product of a vector with the zero vector is the vector .

Property . looks like the associative property, but note the change in operations:

Use the cross product properties to calculate 

Solution

⋅ ( × ) = ( × ) ⋅u
⇀

v
⇀

w
⇀

u
⇀

v
⇀

w
⇀

×( × ) = ( ⋅ ) −( ⋅ )u
⇀

v
⇀

w
⇀

u
⇀

w
⇀

v
⇀

u
⇀

v
⇀

w
⇀

 Proof

i × = −( × ).u⇀ v⇀ v⇀ u⇀

×u
⇀

v
⇀ = ⟨ , , ⟩× ⟨ , , ⟩u1 u2 u3 v1 v2 v3

= ⟨ − , − + , − ⟩u2v3 u3v2 u1v3 u3v1 u1v2 u2v1

= −⟨ − , − + , − ⟩u3v2 u2v3 u3v1 u1v3 u2v1 u1v2

= −⟨ , , ⟩× ⟨ , , ⟩v1 v2 v3 u1 u2 u3

= −( × ).v
⇀

u
⇀

iv

× = ⟨ (0) − (0), −( (0) − (0)), (0) − (0)⟩ = ⟨0, 0, 0⟩ = .u⇀ 0
⇀

u2 u3 u1 u3 u1 u2 0
⇀

× =0
⇀

u
⇀

0
⇀

0

0
⇀

vi

⋅ ( × )u
⇀

v
⇀

w
⇀ = u ⋅ ⟨ − , − + , − ⟩v2w3 v3w2 v1w3 v3w1 v1w2 v2w1

= ( − ) + (− + ) + ( − )u1 v2w3 v3w2 u2 v1w3 v3w1 u3 v1w2 v2w1

= − − + + −u1v2w3 u1v3w2 u2v1w3 u2v3w1 u3v1w2 u3v2w1

= ( − ) +( − ) +( − )u2v3 u3v2 w1 u3v1 u1v3 w2 u1v2 u2v1 w3

= ⟨ − , − , − ⟩ ⋅ ⟨ , , ⟩ = ( × ) ⋅ .u2v3 u3v2 u3v1 u1v3 u1v2 u2v1 w1 w2 w3 u⇀ v⇀ w⇀

□

 Example : Using the Properties of the Cross Product1.5.4

(2 ×3 ) × .î ĵ ĵ

(2 ×3 ) ×î ĵ ĵ = 2( ×3 ) ×î ĵ ĵ

= 2(3)( × ) ×î ĵ ĵ

= (6 ) ×k̂ ĵ

= 6( × )k̂ ĵ

= 6(− ) = −6 .î î

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/63986?pdf


Access for free at OpenStax 1.5.7 https://math.libretexts.org/@go/page/63986

Use the properties of the cross product to calculate 

Hint

Answer

So far in this section, we have been concerned with the direction of the vector , but we have not discussed its magnitude. It
turns out there is a simple expression for the magnitude of  involving the magnitudes of  and , and the sine of the angle
between them.

Let  and  be vectors, and let  be the angle between them. Then, 

Let  and  be vectors, and let  denote the angle between them. Then

Taking square roots and noting that  for  we have the desired result:

□

This definition of the cross product allows us to visualize or interpret the product geometrically. It is clear, for example, that the
cross product is defined only for vectors in three dimensions, not for vectors in two dimensions. In two dimensions, it is impossible
to generate a vector simultaneously orthogonal to two nonparallel vectors.

Use "Magnitude of the Cross Product" to find the magnitude of the cross product of  and .

Solution

We have

 Exercise 1.5.4

( × ) ×( × ).î k̂ k̂ ĵ

× = −( × )u
⇀

v
⇀

v
⇀

u
⇀

−k̂

×u⇀ v⇀

×u⇀ v⇀ u⇀ v⇀

 Magnitude of the Cross Product

u
⇀

v
⇀ θ ∥ × ∥ = ∥ ∥ ⋅ ∥ ∥ ⋅ sinθ.u

⇀
v
⇀

u
⇀

v
⇀

 Proof

= ⟨ , , ⟩u
⇀ u1 u2 u3 = ⟨ , , ⟩v

⇀ v1 v2 v3 θ

∥ ×u
⇀

v⇀∥2 = ( − +( − +( −u2v3 u3v2)2 u3v1 u1v3)2 u1v2 u2v1)2

= −2 + + −2 + + −2 +u2
2v

2
3 u2u3v2v3 u2

3v
2
2 u2

3v
2
1 u1u3v1v3 u2

1v
2
3 u2

1v
2
2 u1u2v1v2 u2

2v
2
1

= + + + + + + + +u2
1v

2
1 u2

1v
2
2 u2

1v
2
3 u2

2v
2
1 u2

2v
2
2 u2

2v
2
3 u2

3v
2
1 u2

3v
2
2 u2

3v
2
3

−( + + +2 +2 +2 )u2
1v

2
1 u2

2v
2
2 u2

3v
2
3 u1u2v1v2 u1u3v1v3 u2u3v2v3

= ( + + )( + + ) −( + +u2
1 u2

2 u2
3 v2

1 v2
2 v2

3 u1v1 u2v2 u3v3)2

= ∥ ∥ −( ⋅u⇀∥2
v⇀∥2

u⇀ v⇀)2

= ∥ ∥ −∥ ∥ θu
⇀∥2

v
⇀∥2

u
⇀∥2

v
⇀∥2 cos2

= ∥ ∥ (1 − θ)u
⇀∥2

v
⇀∥2 cos2

= ∥ ∥ ( θ).u⇀∥2
v⇀∥2 sin2

= sinθθsin2− −−−−√ 0 ≤ θ ≤ 180°,

∥ × ∥ = ∥ ∥∥ ∥ sinθ.u
⇀

v
⇀

u
⇀

v
⇀

 Example : Calculating the Cross Product1.5.5

= ⟨0, 4, 0⟩u
⇀ = ⟨0, 0, −3⟩v⇀
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Use "Magnitude of the Cross Product" to find the magnitude of , where  and .

Hint

Vectors  and  are orthogonal.

Answer

16

Determinants and the Cross Product
Using Equation  to find the cross product of two vectors is straightforward, and it presents the cross product in the useful
component form. The formula, however, is complicated and difficult to remember. Fortunately, we have an alternative. We can
calculate the cross product of two vectors using determinant notation.

A  determinant is defined by

For example,

A  determinant is defined in terms of  determinants as follows:

Equation  is referred to as the expansion of the determinant along the first row. Notice that the multipliers of each of the 
determinants on the right side of this expression are the entries in the first row of the  determinant. Furthermore, each of the 

 determinants contains the entries from the  determinant that would remain if you crossed out the row and column
containing the multiplier. Thus, for the first term on the right,  is the multiplier, and the  determinant contains the entries
that remain if you cross out the first row and first column of the  determinant. Similarly, for the second term, the multiplier is 

, and the  determinant contains the entries that remain if you cross out the first row and second column of the 
determinant. Notice, however, that the coefficient of the second term is negative. The third term can be calculated in similar
fashion.

Evaluate the determinant .

Solution

We have

∥ × ∥u⇀ v⇀ = ∥ ∥ ⋅ ∥ ∥ ⋅ sinθu⇀ v⇀

= ⋅ ⋅ sin+ +02 42 02− −−−−−−−−−√ + +(−302 02 )2
− −−−−−−−−−−−−

√
π

2

= 4(3)(1) = 12

 Exercise 1.5.5

×u
⇀

v
⇀ = ⟨−8, 0, 0⟩u

⇀ = ⟨0, 2, 0⟩v
⇀

u
⇀

v
⇀

1.5.3

2 ×2

= − .
∣

∣
∣
a1

a2

b1

b2

∣

∣
∣ a1b2 b1a2

= 3(1) −5(−2) = 3 +10 = 13.
∣

∣
∣
3

5

−2

1

∣

∣
∣

3 ×3 2 ×2

= − + .

∣

∣

∣
∣

a1

b1

c1

a2

b2

c2

a3

b3

c3

∣

∣

∣
∣ a1

∣

∣
∣
b2

c2

b3

c3

∣

∣
∣ a2

∣

∣
∣
b1

c1

b3

c3

∣

∣
∣ a3

∣

∣
∣
b1

c1

b2

c2

∣

∣
∣ (1.5.4)

1.5.4 2 ×2
3 ×3

2 ×2 3 ×3
a1 2 ×2
3 ×3

a2 2 ×2 3 ×3

 Example : Using Expansion Along the First Row to Compute a  Determinant1.5.6 3 × 3

∣

∣

∣
∣

2

−1

−2

5

1

3

−1

3

4

∣

∣

∣
∣
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Evaluate the determinant .

Hint

Expand along the first row. Don’t forget the second term is negative!

Answer

40

Technically, determinants are defined only in terms of arrays of real numbers. However, the determinant notation provides a useful
mnemonic device for the cross product formula.

Let  and  be vectors. Then the cross product  is given by

Let  and . Find .

Solution

We set up our determinant by putting the standard unit vectors across the first row, the components of  in the second row, and
the components of  in the third row. Then, we have

Notice that this answer confirms the calculation of the cross product in Example .

Use determinant notation to find , where  and 

Hint

∣

∣

∣
∣

2

−1

−2

5

1

3

−1

3

4

∣

∣

∣
∣ = 2 −5 −1

∣

∣
∣
1

3

3

4

∣

∣
∣

∣

∣
∣
−1

−2

3

4

∣

∣
∣

∣

∣
∣
−1

−2

1

3

∣

∣
∣

= 2(4 −9) −5(−4 +6) −1(−3 +2)

= 2(−5) −5(2) −1(−1) = −10 −10 +1

= −19

 Exercise 1.5.6

∣

∣

∣
∣

1

3

1

−2

2

5

−1

−3

4

∣

∣

∣
∣

 Rule: Cross Product Calculated by a Determinant

= ⟨ , , ⟩u
⇀ u1 u2 u3 = ⟨ , , ⟩v

⇀ v1 v2 v3 ×u
⇀

v
⇀

× = = − + .u⇀ v⇀

∣

∣

∣
∣
∣

î

u1

v1

ĵ

u2

v2

k̂

u3

v3

∣

∣

∣
∣
∣

∣

∣
∣
u2

v2

u3

v3

∣

∣
∣ î

∣

∣
∣
u1

v1

u3

v3

∣

∣
∣ ĵ

∣

∣
∣
u1

v1

u2

v2

∣

∣
∣ k̂

 Example : Using Determinant Notation to find 1.5.7 ×p⇀ q⇀

= ⟨−1, 2, 5⟩p
⇀ = ⟨4, 0, −3⟩q

⇀ ×p
⇀

q
⇀

u
⇀

v
⇀

×p⇀ q⇀ = = − +

∣

∣

∣
∣
∣

î

−1

4

ĵ

2

0

k̂

5

−3

∣

∣

∣
∣
∣

∣

∣
∣
2

0

5

−3

∣

∣
∣ î

∣

∣
∣
−1

4

5

−3

∣

∣
∣ ĵ

∣

∣
∣
−1

4

2

0

∣

∣
∣ k̂

= (−6 −0) −(3 −20) +(0 −8)î ĵ k̂

= −6 +17 −8 .î ĵ k̂

1.5.1

 Exercise 1.5.7

×a
⇀

b
⇀

= ⟨8, 2, 3⟩a
⇀ = ⟨−1, 0, 4⟩.b

⇀
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Calculate the determinant .

Answer

Using the Cross Product
The cross product is very useful for several types of calculations, including finding a vector orthogonal to two given vectors,
computing areas of triangles and parallelograms, and even determining the volume of the three-dimensional geometric shape made
of parallelograms known as a parallelepiped. The following examples illustrate these calculations.

Let  and . Find a unit vector orthogonal to both  and .

Solution

The cross product  is orthogonal to both vectors  and . We can calculate it with a determinant:

Normalize this vector to find a unit vector in the same direction:

.

Thus,  is a unit vector orthogonal to  and .

Simplified, this vector becomes .

Find a unit vector orthogonal to both  and , where  and 

Hint

Normalize the cross product.

Answer

 or, simplified as 

To use the cross product for calculating areas, we state and prove the following theorem.

If we locate vectors  and  such that they form adjacent sides of a parallelogram, then the area of the parallelogram is given
by  (Figure ).

∣

∣

∣
∣
∣

î

8

−1

ĵ

2

0

k̂

3

4

∣

∣

∣
∣
∣

× = 8 −35 +2a
⇀

b
⇀

î ĵ k̂

 Example : Finding a Unit Vector Orthogonal to Two Given Vectors1.5.8

= ⟨5, 2, −1⟩a
⇀ = ⟨0, −1, 4⟩b

⇀
a
⇀

b
⇀

×a
⇀

b
⇀

a
⇀

b
⇀

×a⇀ b
⇀

= = − +

∣

∣

∣
∣
∣

î

5

0

ĵ

2

−1

k̂

−1

4

∣

∣

∣
∣
∣

∣

∣
∣

2

−1

−1

4

∣

∣
∣ î

∣

∣
∣
5

0

−1

4

∣

∣
∣ ĵ

∣

∣
∣
5

0

2

−1

∣

∣
∣ k̂

= (8 −1) −(20 −0) +(−5 −0)î ĵ k̂

= 7 −20 −5 .î ĵ k̂

∥ × ∥ = =a
⇀

b
⇀

(7 +(−20 +(−5)2 )2 )2− −−−−−−−−−−−−−−−−−√ 474
−−−√

⟨ , , ⟩
7

474−−−√

−20

474−−−√

−5

474−−−√
a⇀ b

⇀

⟨ , , ⟩
7 474−−−√

474

−10 474−−−√

237

−5 474−−−√

474

 Exercise 1.5.8

a⇀ b
⇀

= ⟨4, 0, 3⟩a⇀ = ⟨1, 1, 4⟩.b
⇀

⟨ , , ⟩
−3

194
−−−√

−13

194
−−−√

4

194
−−−√

⟨ , , ⟩
−3 194−−−√

194

−13 194−−−√

194

2 194−−−√

97

 Area of a Parallelogram

u⇀ v⇀

∥ × ∥u⇀ v⇀ 1.5.5
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Figure : The parallelogram with adjacent sides  and  has base  and height .

We show that the magnitude of the cross product is equal to the base times height of the parallelogram.

□

Let  and  be the vertices of a triangle (Figure ). Find its area.

Figure : Finding the area of a triangle by using the cross product.

Solution

We have  and . The area of the

parallelogram with adjacent sides  and  is given by :

1.5.5 u
⇀

v
⇀ ∥ ∥u

⇀ ∥ ∥ sin θv
⇀

 Proof

Area of a parallelogram = base ×height

= ∥ ∥(∥ ∥ sinθ)u
⇀

v
⇀

= ∥ × ∥u
⇀

v
⇀

 Example : Finding the Area of a Triangle1.5.9

P = (1, 0, 0),Q = (0, 1, 0), R = (0, 0, 1) 1.5.6

1.5.6

= ⟨0 −1, 1 −0, 0 −0⟩ = ⟨−1, 1, 0⟩PQ
−−⇀

= ⟨0 −1, 0 −0, 1 −0⟩ = ⟨−1, 0, 1⟩PR
−−⇀

PQ
−−⇀

PR
−−⇀

×∥
∥PQ

−−⇀
PR
−−⇀∥

∥
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The area of  is half the area of the parallelogram or .

Find the area of the parallelogram  with vertices , , , and .

Hint

Sketch the parallelogram and identify two vectors that form adjacent sides of the parallelogram.

Answer

The Triple Scalar Product

Because the cross product of two vectors is a vector, it is possible to combine the dot product and the cross product. The dot
product of a vector with the cross product of two other vectors is called the triple scalar product because the result is a scalar.

The triple scalar product of vectors ,  and  is

The triple scalar product of vectors

and

is the determinant of the  matrix formed by the components of the vectors:

×PQ
−−⇀

PR
−−⇀

×∥
∥PQ

−−⇀
PR
−−⇀∥

∥

=

∣

∣

∣
∣
∣

î

−1

−1

ĵ

1

0

k̂

0

1

∣

∣

∣
∣
∣

= (1 −0) −(−1 −0) +(0 −(−1))î ĵ k̂

= + +î ĵ k̂

=∥ ⟨1, 1, 1⟩∥

= + +12 12 12− −−−−−−−−−
√

= .3–√

ΔPQR /23–√ units2

 Exercise 1.5.9

PQRS P (1, 1, 0) Q(7, 1, 0) R(9, 4, 2) S(3, 4, 2)

6 13−−√ units2

 Definition: Triple Scalar Product

u⇀ ,v⇀ w⇀

⋅ ( × ).u
⇀

v⇀ w⇀

 Calculating a Triple Scalar Product

= + +u
⇀ u1 î u2 ĵ u3k̂

= + +v
⇀ v1 î v2 ĵ v3k̂

= + +w
⇀ w1 î w2 ĵ w3k̂

3 ×3

⋅ ( × ) = .u
⇀

v
⇀

w
⇀

∣

∣

∣
∣

u1

v1

w1

u2

v2

w2

u3

v3

w3

∣

∣

∣
∣ (1.5.5)
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The calculation is straightforward.

□

Let  and . Calculate the triple scalar product 

Solution

Apply Equation  directly:

Calculate the triple scalar product  where , and 

Hint

Place the vectors as the rows of a  matrix, then calculate the determinant.

Answer

When we create a matrix from three vectors, we must be careful about the order in which we list the vectors. If we list them in a
matrix in one order and then rearrange the rows, the absolute value of the determinant remains unchanged. However, each time two
rows switch places, the determinant changes sign:

Verifying this fact is straightforward, but rather messy. Let’s take a look at this with an example:

 Proof

⋅ ( × )u
⇀

v
⇀

w
⇀ = ⟨ , , ⟩ ⋅ ⟨ − , − + , − ⟩u1 u2 u3 v2w3 v3w2 v1w3 v3w1 v1w2 v2w1

= ( − ) + (− + ) + ( − )u1 v2w3 v3w2 u2 v1w3 v3w1 u3 v1w2 v2w1

= ( − ) − ( − ) + ( − )u1 v2w3 v3w2 u2 v1w3 v3w1 u3 v1w2 v2w1

= .

∣

∣

∣
∣

u1

v1

w1

u2

v2

w2

u3

v3

w3

∣

∣

∣
∣

 Example : Calculating the Triple Scalar Product1.5.10

= ⟨1, 3, 5⟩, = ⟨2, −1, 0⟩u⇀ v⇀ = ⟨−3, 0, −1⟩w⇀ ⋅ ( × ).u⇀ v⇀ w⇀

1.5.5

⋅ ( × )u⇀ v⇀ w⇀ =

∣

∣

∣
∣

1

2

−3

3

−1

0

5

0

−1

∣

∣

∣
∣

= 1 −3 +5
∣

∣
∣
−1

0

0

−1

∣

∣
∣

∣

∣
∣

2

−3

0

−1

∣

∣
∣

∣

∣
∣

2

−3

−1

0

∣

∣
∣

= (1 −0) −3(−2 −0) +5(0 −3)

= 1 +6 −15 = −8.

 Exercise 1.5.10

⋅ ( × ),a⇀ b
⇀

c⇀ = ⟨2, −4, 1⟩, = ⟨0, 3, −1⟩a⇀ b
⇀

= ⟨5, −3, 3⟩.c⇀

3 ×3

17

= d = −d = d = −d

∣

∣

∣
∣

a1

b1

c1

a2

b2

c2

a3

b3

c3

∣

∣

∣
∣

∣

∣

∣
∣

b1

a1

c1

b2

a2

c2

b3

a3

c3

∣

∣

∣
∣

∣

∣

∣
∣

b1

c1

a1

b2

c2

a2

b3

c3

a3

∣

∣

∣
∣

∣

∣

∣
∣

c1

b1

a1

c2

b2

a2

c3

b3

a3

∣

∣

∣
∣

∣

∣

∣
∣

1

−2

4

2

0

1

1

3

−1

∣

∣

∣
∣ = −2 +

∣

∣
∣
0

1

3

−1

∣

∣
∣

∣

∣
∣
−2

4

3

−1

∣

∣
∣

∣

∣
∣
−2

4

0

1

∣

∣
∣

= (0 −3) −2(2 −12) +(−2 −0)

= −3 +20 −2 = 15.
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Switching the top two rows we have

Rearranging vectors in the triple products is equivalent to reordering the rows in the matrix of the determinant. Let 
 and  Applying Calculating a Triple Scalar Product, we

have

and

We can obtain the determinant for calculating  by switching the bottom two rows of  Therefore, 

Following this reasoning and exploring the different ways we can interchange variables in the triple scalar product lead to the
following identities:

Let  and  be two vectors in standard position. If  and  are not scalar multiples of each other, then these vectors form adjacent
sides of a parallelogram. We saw in Area of a Parallelogram that the area of this parallelogram is . Now suppose we add a
third vector  that does not lie in the same plane as  and  but still shares the same initial point. Then these vectors form three
edges of a parallelepiped, a three-dimensional prism with six faces that are each parallelograms, as shown in Figure . The
volume of this prism is the product of the figure’s height and the area of its base. The triple scalar product of  and  provides
a simple method for calculating the volume of the parallelepiped defined by these vectors.

The volume of a parallelepiped with adjacent edges given by the vectors , and  is the absolute value of the triple scalar
product (Figure ):

Note that, as the name indicates, the triple scalar product produces a scalar. The volume formula just presented uses the
absolute value of a scalar quantity.

Figure : The height of the parallelepiped is given by 

∣

∣

∣
∣

−2

1

4

0

2

1

3

1

−1

∣

∣

∣
∣ = −2 +3

∣

∣
∣
2

1

1

−1

∣

∣
∣

∣

∣
∣
1

4

2

1

∣

∣
∣

= −2(−2 −1) +3(1 −8)

= 6 −21 = −15.

= + + , = + + ,u
⇀ u1 î u2 ĵ u3k̂ v

⇀ v1 î v2 ĵ v3k̂ = + + .w
⇀ w1 î w2 ĵ w3k̂

⋅ ( × ) =u⇀ v⇀ w⇀
∣

∣

∣
∣

u1

v1

w1

u2

v2

w2

u3

v3

w3

∣

∣

∣
∣

⋅ ( × ) = .u⇀ w⇀ v⇀
∣

∣

∣
∣

u1

w1

v1

u2

w2

v2

u3

w3

v3

∣

∣

∣
∣

⋅ ( × )u
⇀

w
⇀

v
⇀ ⋅ ( × ).u

⇀
v
⇀

w
⇀

⋅ ( × ) = − ⋅ ( × ).u
⇀

v
⇀

w
⇀

u
⇀

w
⇀

v
⇀

⋅ ( × )u
⇀

v
⇀

w
⇀

⋅ ( × )u
⇀

v
⇀

w
⇀

= − ⋅ ( × )u
⇀

w
⇀

v
⇀

= ⋅ ( × ) = ⋅ ( × ).v
⇀

w
⇀

u
⇀

w
⇀

u
⇀

v
⇀

(1.5.6)

(1.5.7)

u⇀ v⇀ u⇀ v⇀

∥ × ∥u⇀ v⇀

w⇀ u⇀ v⇀

1.5.7
, ,u⇀ v⇀ w⇀

 Volume of a Parallelepiped

,u
⇀

v
⇀

w
⇀

1.5.7

V = | ⋅ ( × )|.u
⇀

v
⇀

w
⇀

1.5.7 ∥ ∥.proj ×v
⇀

w
⇀u⇀
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The area of the base of the parallelepiped is given by  The height of the figure is given by  The
volume of the parallelepiped is the product of the height and the area of the base, so we have

□

Let  and . Find the volume of the parallelepiped with adjacent edges ,
and  (Figure ).

Figure 

Solution

We have

Thus, the volume of the parallelepiped is  units

Find the volume of the parallelepiped formed by the vectors  and 

Hint

 Proof

∥ × ∥.v⇀ w⇀ ∥ ∥.proj ×v⇀ w⇀ u⇀

V =∥ ∥ ∥ × ∥proj ×v⇀ w⇀ u
⇀

v
⇀

w
⇀

= ∥ × ∥
∣

∣
∣

⋅ ( × )u
⇀

v
⇀

w
⇀

∥ × ∥v⇀ w⇀

∣

∣
∣ v⇀ w⇀

= | ⋅ ( × )|.u
⇀

v
⇀

w
⇀

 Example : Calculating the Volume of a Parallelepiped1.5.11

= ⟨−1, −2, 1⟩, = ⟨4, 3, 2⟩,u
⇀

v
⇀ = ⟨0, −5, −2⟩w

⇀ ,u
⇀

v
⇀

w
⇀ 1.5.8

1.5.8

⋅ ( × )u
⇀

v
⇀

w
⇀ =

∣

∣

∣
∣

−1

4

0

−2

3

−5

1

2

−2

∣

∣

∣
∣

= (−1) +2 +
∣

∣
∣

3

−5

2

−2

∣

∣
∣

∣

∣
∣
4

0

2

−2

∣

∣
∣

∣

∣
∣
4

0

3

−5

∣

∣
∣

= (−1)(−6 +10) +2(−8 −0) +(−20 −0)

= −4 −16 −20

= −40.

| −40| = 40 3

 Exercise 1.5.11

= 3 +4 − , = 2 − − ,a
⇀

î ĵ k̂ b
⇀

î ĵ k̂ = 3 + .c
⇀

ĵ k̂
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Calculate the triple scalar product by finding a determinant.

Answer

 units

Applications of the Cross Product
The cross product appears in many practical applications in mathematics, physics, and engineering. Let’s examine some of these
applications here, including the idea of torque, with which we began this section. Other applications show up in later chapters,
particularly in our study of vector fields such as gravitational and electromagnetic fields (Introduction to Vector Calculus).

Use the triple scalar product to show that vectors , and  are coplanar—that is, show
that these vectors lie in the same plane.

Solution

Start by calculating the triple scalar product to find the volume of the parallelepiped defined by  and :

The volume of the parallelepiped is  units , so one of the dimensions must be zero. Therefore, the three vectors all lie in the
same plane.

Are the vectors  and  coplanar?

Hint

Calculate the triple scalar product.

Answer

No, the triple scalar product is  so the three vectors form the adjacent edges of a parallelepiped. They are not
coplanar.

Only a single plane can pass through any set of three noncolinear points. Find a vector orthogonal to the plane containing
points  and 

Solution

The plane must contain vectors  and :

The cross product  produces a vector orthogonal to both  and . Therefore, the cross product is orthogonal to
the plane that contains these two vectors:

8 3

 Example : Using the Triple Scalar Product1.5.12

= ⟨2, 0, 5⟩, = ⟨2, 2, 4⟩u
⇀

v
⇀ = ⟨1, −1, 3⟩w

⇀

, ,u⇀ v⇀ w⇀

⋅ ( × )u
⇀

v
⇀

w
⇀ =

∣

∣

∣
∣

2

2

1

0

2

−1

5

4

3

∣

∣

∣
∣

= [2(2)(3) +(0)(4)(1) +5(2)(−1)] −[5(2)(1) +(2)(4)(−1) +(0)(2)(3)]

= 2 −2 = 0.

0 3

 Exercise 1.5.12

= + − , = − + ,a
⇀

î ĵ k̂ b
⇀

î ĵ k̂ = + +c
⇀

î ĵ k̂

−4 ≠ 0,

 Example : Finding an Orthogonal Vector1.5.13

P = (9, −3, −2),Q = (1, 3, 0), R = (−2, 5, 0).

PQ
−−⇀

QR
−−⇀

= ⟨1 −9, 3 −(−3), 0 −(−2)⟩ = ⟨−8, 6, 2⟩PQ
−−⇀

= ⟨−2 −1, 5 −3, 0 −0⟩ = ⟨−3, 2, 0⟩.QR
−−⇀

×PQ
−−⇀

QR
−−⇀

PQ
−−⇀

QR
−−⇀
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We have seen how to use the triple scalar product and how to find a vector orthogonal to a plane. Now we apply the cross product
to real-world situations.

Sometimes a force causes an object to rotate. For example, turning a screwdriver or a wrench creates this kind of rotational effect,
called torque.

Torque,  (the Greek letter tau), measures the tendency of a force to produce rotation about an axis of rotation. Let  be a
vector with an initial point located on the axis of rotation and with a terminal point located at the point where the force is
applied, and let vector  represent the force. Then torque is equal to the cross product of  and :

See Figure .

Figure : Torque measures how a force causes an object to rotate.

Think about using a wrench to tighten a bolt. The torque τ applied to the bolt depends on how hard we push the wrench (force) and
how far up the handle we apply the force (distance). The torque increases with a greater force on the wrench at a greater distance
from the bolt. Common units of torque are the newton-meter or foot-pound. Although torque is dimensionally equivalent to work
(it has the same units), the two concepts are distinct. Torque is used specifically in the context of rotation, whereas work typically
involves motion along a line.

A bolt is tightened by applying a force of  N to a 0.15-m wrench (Figure ). The angle between the wrench and the force
vector is . Find the magnitude of the torque about the center of the bolt. Round the answer to two decimal places.

Figure : Torque describes the twisting action of the wrench.

Solution:

Substitute the given information into the equation defining torque:

×PQ
−−⇀

QR
−−⇀

=

∣

∣

∣
∣
∣

î

−8

−3

ĵ

6

2

k̂

2

0

∣

∣

∣
∣
∣

= 0 −6 −16 −(−18 +4 +0 )î ĵ k̂ k̂ î ĵ

= −4 −6 +2 .î ĵ k̂

 Definition: Torque

τ⇀ r⇀

F
⇀

r
⇀

F
⇀

= × .τ⇀ r
⇀

F
⇀

1.5.9

1.5.9

 Example : Evaluating Torque1.5.14

6 1.5.10
40°

1.5.10
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Calculate the force required to produce  N⋅m torque at an angle of  from a -cm rod.

Hint

 N⋅m and  m

Answer

 N

Key Concepts
The cross product  of two vectors  and  is a vector orthogonal to both  and . Its
length is given by  where  is the angle between  and . Its direction is given by the right-hand
rule.
The algebraic formula for calculating the cross product of two vectors,

 and , is

The cross product satisfies the following properties for vectors  and , and scalar :

The cross product of vectors  and  is the determinant 

If vectors  and  form adjacent sides of a parallelogram, then the area of the parallelogram is given by 
The triple scalar product of vectors  and  is 
The volume of a parallelepiped with adjacent edges given by vectors , and  is 
If the triple scalar product of vectors  and  is zero, then the vectors are coplanar. The converse is also true: If the vectors
are coplanar, then their triple scalar product is zero.
The cross product can be used to identify a vector orthogonal to two given vectors or to a plane.
Torque  measures the tendency of a force to produce rotation about an axis of rotation. If force  is acting at a distance
(displacement)  from the axis, then torque is equal to the cross product of  and 

Key Equations
The cross product of two vectors in terms of the unit vectors

∥ ∥τ
⇀ = ∥ × ∥r⇀ F

⇀

= ∥ ∥ ∥ ∥ sinθr⇀ F
⇀

= (0.15 m)(6 N) sin40°

≈ 0.58 N⋅m.

 Exercise 1.5.14

15 30º 150

∥ ∥ = 15τ
⇀ ∥ ∥ = 1.5r

⇀
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⇀ u1 u2 u3 = ⟨ , , ⟩v

⇀ v1 v2 v3

× = ( − ) −( − ) +( − ) .u⇀ v⇀ u2v3 u3v2 î u1v3 u3v1 ĵ u1v2 u2v1 k̂
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⇀

v
⇀

w
⇀ c
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v
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w
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u
⇀

v
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u
⇀

w
⇀

c( × ) = (c ) × = ×(c )u
⇀

v
⇀

u
⇀

v
⇀

u
⇀

v
⇀

× = × =u⇀ 0
⇀

0
⇀
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⇀
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⇀

v
⇀

0
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⇀

v
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w
⇀

u
⇀

v
⇀

w
⇀
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⇀ u1 u2 u3 = ⟨ , , ⟩v⇀ v1 v2 v3

∣

∣

∣
∣
∣
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∣
∣
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,u⇀ v⇀ w⇀ V = | ⋅ ( × )|.u⇀ v⇀ w⇀

, ,u⇀ v⇀ w⇀

τ
⇀ F

⇀

r
⇀

r
⇀ : = × .F

⇀
τ
⇀

r
⇀

F
⇀

× = ( − ) −( − ) +( − )u
⇀

v
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Glossary
cross product

 where  and 

determinant

a real number associated with a square matrix

parallelepiped

a three-dimensional prism with six faces that are parallelograms

torque

the effect of a force that causes an object to rotate

triple scalar product

the dot product of a vector with the cross product of two other vectors: 

vector product

the cross product of two vectors

This page titled 1.5: The Cross Product is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

12.4: The Cross Product by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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1.6: Equations of Lines and Planes in Space

Write the vector, parametric, and symmetric of a line through a given point in a given direction, and a line through two
given points.
Find the distance from a point to a given line.
Write the vector and scalar equations of a plane through a given point with a given normal.
Find the distance from a point to a given plane.
Find the angle between two planes.

By now, we are familiar with writing equations that describe a line in two dimensions. To write an equation for a line, we must
know two points on the line, or we must know the direction of the line and at least one point through which the line passes. In two
dimensions, we use the concept of slope to describe the orientation, or direction, of a line. In three dimensions, we describe the
direction of a line using a vector parallel to the line. In this section, we examine how to use equations to describe lines and planes
in space.

Equations for a Line in Space 

Let’s first explore what it means for two vectors to be parallel. Recall that parallel vectors must have the same or opposite
directions. If two nonzero vectors,  and , are parallel, we claim there must be a scalar, , such that . If  and  have
the same direction, simply choose

If  and  have opposite directions, choose

Note that the converse holds as well. If  for some scalar , then either  and  have the same direction  or
opposite directions , so  and  are parallel. Therefore, two nonzero vectors  and  are parallel if and only if 
for some scalar . By convention, the zero vector  is considered to be parallel to all vectors.

Learning Objectives

u
⇀

v
⇀ k = ku

⇀
v
⇀

u
⇀

v
⇀

k = .
∥ ∥u

⇀

∥ ∥v
⇀ (1.6.1)

u
⇀

v
⇀

k = − .
∥ ∥u

⇀

∥ ∥v⇀
(1.6.2)

= ku
⇀

v
⇀ k u

⇀
v
⇀ (k > 0)

(k < 0) u
⇀

v
⇀

u
⇀

v
⇀ = ku

⇀
v
⇀

k 0
⇀
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Figure : Vector  is the direction vector for .

As in three dimensions, we can describe a line in space using a point on the line and the direction of the line, or a parallel vector,
which we call the direction vector (Figure ). Let  be a line in space passing through point . Let 

be a vector parallel to . Then, for any point on line , we know that  is parallel to . Thus, as we just discussed, there

is a scalar, , such that , which gives

Using vector operations, we can rewrite Equation 

Setting  and , we now have the vector equation of a line:

Equating components, Equation  shows that the following equations are simultaneously true:  and 
 If we solve each of these equations for the component variables  and , we get a set of equations in which each

1.6.1 v⇀ PQ
−−⇀

1.6.1 L P ( , , )x0 y0 z0 = ⟨a, b, c⟩v
⇀

L Q(x, y, z) PQ
−−⇀

v
⇀

t = tPQ
−−⇀

v
⇀

= tPQ
−−⇀

v
⇀

⟨x− , y− , z− ⟩ = t⟨a, b, c⟩x0 y0 z0

⟨x− , y− , z− ⟩ = ⟨ta, tb, tc⟩.x0 y0 z0 (1.6.3)

1.6.3

⟨x− , y− , z− ⟩ = ⟨ta, tb, tc⟩x0 y0 z0

⟨x, y, z⟩− ⟨ , , ⟩ = t⟨a, b, c⟩x0 y0 z0

= + t .⟨x, y, z⟩
  

r⇀

⟨ , , ⟩x0 y0 z0
  

r⇀o

⟨a, b, c⟩
  

v⇀

= ⟨x, y, z⟩r⇀ = ⟨ , , ⟩r⇀0 x0 y0 z0

= + t .r
⇀

r
⇀

0 v
⇀ (1.6.4)

1.6.4 x− = ta, y− = tb,x0 y0

z− = tc.z0 x, y, z
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variable is defined in terms of the parameter  and that, together, describe the line. This set of three equations forms a set of
parametric equations of a line:

If we solve each of the equations for  assuming , and  are nonzero, we get a different description of the same line:

Because each expression equals , they all have the same value. We can set them equal to each other to create symmetric
equations of a line:

We summarize the results in the following theorem.

A line  parallel to vector  and passing through point  can be described by the following parametric
equations:

and

If the constants  and  are all nonzero, then  can be described by the symmetric equation of the line:

The parametric equations of a line are not unique. Using a different parallel vector or a different point on the line leads to a
different, equivalent representation. Each set of parametric equations leads to a related set of symmetric equations, so it follows that
a symmetric equation of a line is not unique either.

Find parametric and symmetric equations of the line passing through points  and 

Solution

First, identify a vector parallel to the line:

Use either of the given points on the line to complete the parametric equations:

and

t

x = + tax0

y = + tby0

z = + tc.z0

t a, b c

= t
x−x0

a

= t
y−y0

b

= t.
z−z0

c

t

= = .
x−x0

a

y−y0

b

z−z0

c

Theorem: Parametric and Symmetric Equations of a Line

L = ⟨a, b, c⟩v⇀ P ( , , )x0 y0 z0

x = + ta, y = + tb,x0 y0 (1.6.5)

z = + tc.z0 (1.6.6)

a, b, c L

= = .
x−x0

a

y−y0

b

z−z0

c
(1.6.7)

Example : Equations of a Line in Space1.6.1

(1, 4, −2) (−3, 5, 0).

= ⟨−3 −1, 5 −4, 0 −(−2)⟩ = ⟨−4, 1, 2⟩.v⇀

x = 1 −4t

y = 4 + t,

z = −2 +2t.
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Solve each equation for  to create the symmetric equation of the line:

Find parametric and symmetric equations of the line passing through points  and 

Hint:

Start by finding a vector parallel to the line.

Answer

Possible set of parametric equations:  related set of symmetric equations:

Sometimes we don’t want the equation of a whole line, just a line segment. In this case, we limit the values of our parameter . For
example, let  and  be points on a line, and let  and  be the associated
position vectors. In addition, let . We want to find a vector equation for the line segment between  and . Using 

as our known point on the line, and  as the direction vector equation, Equation  gives

Equation  can be expanded using properties of vectors:

Thus, the vector equation of the line passing through  and  is

Remember that we did not want the equation of the whole line, just the line segment between  and . Notice that when , we
have , and when , we have . Therefore, the vector equation of the line segment between  and  is

Going back to Equation , we can also find parametric equations for this line segment. We have

Then, the parametric equations are

t

= y−4 = .
x−1

−4

z+2

2

Exercise 1.6.1

(1, −3, 2) (5, −2, 8).

x = 1 +4t, y = −3 + t, z = 2 +6t;

= y+3 =
x−1

4

z−2

6

t

P ( , , )x0 y0 z0 Q( , , )x1 y1 z1 = ⟨ , , ⟩p
⇀ x0 y0 z0 = ⟨ , , ⟩q

⇀ x1 y1 z1

= ⟨x, y, z⟩r
⇀ P Q P

= ⟨ − , − , − ⟩PQ
−−⇀

x1 x0 y1 y0 z1 z0 1.6.4

= + t( ).r
⇀

p
⇀ PQ

−−⇀
(1.6.8)

1.6.8

= + t( )r
⇀

p
⇀ PQ

−−⇀

= ⟨ , , ⟩+ t⟨ − , − , − ⟩x0 y0 z0 x1 x0 y1 y0 z1 z0

= ⟨ , , ⟩+ t(⟨ , , ⟩− ⟨ , , ⟩)x0 y0 z0 x1 y1 z1 x0 y0 z0

= ⟨ , , ⟩+ t⟨ , , ⟩− t⟨ , , ⟩x0 y0 z0 x1 y1 z1 x0 y0 z0

= (1 − t)⟨ , , ⟩+ t⟨ , , ⟩x0 y0 z0 x1 y1 z1

= (1 − t) + t .p
⇀

q
⇀

P Q

= (1 − t) + t .r⇀ p⇀ q⇀ (1.6.9)

P Q t = 0
r = p t = 1 =r

⇀
q
⇀ P Q

= (1 − t) + t , 0 ≤ t ≤ 1.r⇀ p⇀ q⇀ (1.6.10)

1.6.4

= + t( )r
⇀

p
⇀ PQ

−−⇀

⟨x, y, z⟩ = ⟨ , , ⟩+ t⟨ − , − , − ⟩x0 y0 z0 x1 x0 y1 y0 z1 z0

= ⟨ + t( − ), + t( − ), + t( − )⟩.x0 x1 x0 y0 y1 y0 z0 z1 z0

x = + t( − )x0 x1 x0

y = + t( − )y0 y1 y0

z = + t( − ), 0 ≤ t ≤ 1.z0 z1 z0

(1.6.11)
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Find parametric equations of the line segment between the points  and 

Solution

Start with the parametric equations for a line (Equations ) and work with each component separately:

and

Therefore, the parametric equations for the line segment are

Find parametric equations of the line segment between points  and .

Answer

Distance between a Point and a Line 

We already know how to calculate the distance between two points in space. We now expand this definition to describe the distance
between a point and a line in space. Several real-world contexts exist when it is important to be able to calculate these distances.
When building a home, for example, builders must consider “setback” requirements, when structures or fixtures have to be a
certain distance from the property line. Air travel offers another example. Airlines are concerned about the distances between
populated areas and proposed flight paths.

Let  be a line in the plane and let  be any point not on the line. Then, we define distance  from  to  as the length of line
segment , where  is a point on  such that  is perpendicular to  (Figure ).

Figure : The distance from point  to line  is the length of .

Example : Parametric Equations of a Line Segment1.6.2

P (2, 1, 4) Q(3, −1, 3).

1.6.11

x = + t( − )x0 x1 x0

= 2 + t(3 −2)

= 2 + t,

y = + t( − )y0 y1 y0

= 1 + t(−1 −1)

= 1 −2t,

z = + t( − )z0 z1 z0

= 4 + t(3 −4)

= 4 − t.

x = 2 + t

y = 1 −2t

z = 4 − t, 0 ≤ t ≤ 1.

Exercise 1.6.2

P (−1, 3, 6) Q(−8, 2, 4)

x = −1 −7t, y = 3 − t, z = 6 −2t, 0 ≤ t ≤ 1

L M d M L

MP¯ ¯¯̄¯̄¯̄¯ P L MP¯ ¯¯̄¯̄¯̄¯ L 1.6.2

1.6.2 M L MP
¯ ¯¯̄¯̄¯̄¯

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/63987?pdf


Access for free at OpenStax 1.6.6 https://math.libretexts.org/@go/page/63987

When we’re looking for the distance between a line and a point in space, Figure  still applies. We still define the distance as
the length of the perpendicular line segment connecting the point to the line. In space, however, there is no clear way to know
which point on the line creates such a perpendicular line segment, so we select an arbitrary point on the line and use properties of
vectors to calculate the distance. Therefore, let  be an arbitrary point on line  and let  be a direction vector for  (Figure 

).

Figure : Vectors  and  form two sides of a parallelogram with base  and height , which is the distance between a
line and a point in space.

Vectors  and  form two sides of a parallelogram with area . Using a formula from geometry, the area of this
parallelogram can also be calculated as the product of its base and height:

We can use this formula to find a general formula for the distance between a line in space and any point not on the line.

Let  be a line in space passing through point  with direction vector . If  is any point not on , then the distance from 
to  is

Find the distance between the point  and line 

Solution:

From the symmetric equations of the line, we know that vector  is a direction vector for the line. Setting the
symmetric equations of the line equal to zero, we see that point  lies on the line. Then,

To calculate the distance, we need to find 

Therefore, the distance between the point and the line is (Figure )

1.6.2

P L v
⇀ L

1.6.3

1.6.3 PM
−−⇀

v⇀ ∥ ∥v⇀ d

PM
−−⇀

v
⇀ ∥ × ∥PM

−−⇀
v
⇀

∥ × ∥ = ∥ ∥d.PM
−−⇀

v
⇀

v
⇀ (1.6.12)

Distance from a Point to a Line

L P v
⇀ M L M

L

d = .
∥ × ∥PM

−−⇀
v
⇀

∥ ∥v⇀
(1.6.13)

Example : Calculating the Distance from a Point to a Line1.6.3

M = (1, 1, 3) = = z−3.
x−3

4

y+1

2

= ⟨4, 2, 1⟩v⇀

P (3, −1, 3)

= ⟨1 −3, 1 −(−1), 3 −3⟩PM
−−⇀

= ⟨−2, 2, 0⟩.

× :PM
−−⇀

v
⇀

× =PM
−−⇀

v⇀

∣

∣

∣
∣
∣

î ĵ k̂

−220

421

∣

∣

∣
∣
∣

= (2 −0) −(−2 −0) +(−4 −8)î ĵ k̂

= 2 +2 −12 .î ĵ k̂

1.6.4
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Figure : Point  is approximately  units from the line with symmetric equations 

Find the distance between point  and the line with parametric equations 

Hint

Find a vector with initial point  and a terminal point on the line, and then find a direction vector for the line.

Answer

Relationships between Lines 

Given two lines in the two-dimensional plane, the lines are equal, they are parallel but not equal, or they intersect in a single point.
In three dimensions, a fourth case is possible. If two lines in space are not parallel, but do not intersect, then the lines are said to be
skew lines (Figure ).

d =
∥ × ∥PM

−−⇀
v
⇀

∥ ∥v
⇀

=
+ +22 22 122− −−−−−−−−−−

√

+ +42 22 12− −−−−−−−−−
√

=
2 38−−√

21−−√

= units
2 798

−−−√

21

1.6.4 (1, 1, 3) 2.7 = = z − 3.
x− 3

4

y+ 1

2

Exercise 1.6.3

(0, 3, 6) x = 1 − t, y = 1 +2t, z = 5 +3t.

(0, 3, 6)

= units
10

7

−−−
√

70−−√

7

1.6.5
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Figure : In three dimensions, it is possible that two lines do not cross, even when they have different directions.

To classify lines as parallel but not equal, equal, intersecting, or skew, we need to know two things: whether the direction vectors
are parallel and whether the lines share a point (Figure ).

Figure : Determine the relationship between two lines based on whether their direction vectors are parallel and whether they
share a point.

For each pair of lines, determine whether the lines are equal, parallel but not equal, skew, or intersecting.

a.

1.6.5

1.6.6

1.6.6

Example : Classifying Lines in Space1.6.4

: x = 2s−1, y = s−1, z = s−4L1
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b.

c.

Solution

a. Line  has direction vector ; line  has direction vector . Because the direction vectors are
not parallel vectors, the lines are either intersecting or skew. To determine whether the lines intersect, we see if there is a point, 

, that lies on both lines. To find this point, we use the parametric equations to create a system of equalities:

By the first equation,  Substituting into the second equation yields

Substitution into the third equation, however, yields a contradiction:

There is no single point that satisfies the parametric equations for  and  simultaneously. These lines do not
intersect, so they are skew (see the following figure).

b. Line  has direction vector  and passes through the origin, . Line  has a different direction
vector, , so these lines are not parallel or equal. Let  represent the parameter for line  and let s represent the
parameter for :

: x = t−3, y = 3t+8, z = 5 −2tL2

: x = −y = zL1

: = y = z−2L2
x−3

2

: x = 6s−1, y = −2s, z = 3s+1L1

: = =L2
x−4

6

y+3

−2

z−1

3

L1 = ⟨2, 1, 1⟩v⇀1 L2 = ⟨1, 3, −2⟩v⇀2

(x, y, z)

2s−1 = t−3; (1.6.14)

s−1 = 3t+8; (1.6.15)

s−4 = 5 −2t. (1.6.16)

t = 2s+2.

s−1 = 3(2s+2) +8

s−1 = 6s+6 +8

5s = −15

s = −3.

s−4 = 5 −2(2s+2)

s−4 = 5 −4s−4

5s = 5

s = 1.

L1 L2

L1 = ⟨1, −1, 1⟩v
⇀

1 (0, 0, 0) L2

= ⟨2, 1, 1⟩v
⇀

2 r L1

L2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/63987?pdf


Access for free at OpenStax 1.6.10 https://math.libretexts.org/@go/page/63987

 

 

 

Solve the system of equations to find  and . If we need to find the point of intersection, we can substitute
these parameters into the original equations to get  (see the following figure).

c. Lines  and  have equivalent direction vectors:  These two lines are parallel (see the following
figure).

Describe the relationship between the lines with the following parametric equations:

Hint

Start by identifying direction vectors for each line. Is one a multiple of the other?

Answer

x = r x = 2s+3

y = −r y = s

z = r z = s+2.

r = 1 s = −1
(1, −1, 1)

L1 L2 = ⟨6, −2, 3⟩.v
⇀

Exercise 1.6.4

x = 1 −4t, y = 3 + t, z = 8 −6t

x = 2 +3s, y = 2s, z = −1 −3s.
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These lines are skew because their direction vectors are not parallel and there is no point  that lies on both lines.

Equations for a Plane 
We know that a line is determined by two points. In other words, for any two distinct points, there is exactly one line that passes
through those points, whether in two dimensions or three. Similarly, given any three points that do not all lie on the same line, there
is a unique plane that passes through these points. Just as a line is determined by two points, a plane is determined by three.

This may be the simplest way to characterize a plane, but we can use other descriptions as well. For example, given two distinct,
intersecting lines, there is exactly one plane containing both lines. A plane is also determined by a line and any point that does not
lie on the line. These characterizations arise naturally from the idea that a plane is determined by three points. Perhaps the most
surprising characterization of a plane is actually the most useful.

Imagine a pair of orthogonal vectors that share an initial point. Visualize grabbing one of the vectors and twisting it. As you twist,
the other vector spins around and sweeps out a plane. Here, we describe that concept mathematically. Let  be a vector

and  be a point. Then the set of all points  such that  is orthogonal to  forms a plane (Figure 
). We say that  is a normal vector, or perpendicular to the plane. Remember, the dot product of orthogonal vectors is zero.

This fact generates the vector equation of a plane:

Rewriting this equation provides additional ways to describe the plane:

Figure : Given a point  and vector , the set of all points  with  orthogonal to  forms a plane.

Given a point  and vector , the set of all points  satisfying the equation  forms a plane. The equation

is known as the vector equation of a plane.

The scalar equation of a plane containing point  with normal vector  is

This equation can be expressed as  where  This form of the equation is
sometimes called the general form of the equation of a plane.

As described earlier in this section, any three points that do not all lie on the same line determine a plane. Given three such points,
we can find an equation for the plane containing these points.

(x, y, z)

= ⟨a, b, c⟩n⇀

P = ( , , )x0 y0 z0 Q = (x, y, z) PQ
−−⇀

n⇀

1.6.7 n⇀

⋅ = 0.n⇀ PQ
−−⇀

(1.6.17)

⋅ = 0n⇀ PQ
−−⇀

⟨a, b, c⟩ ⋅ ⟨x− , y− , z− ⟩ = 0x0 y0 z0

a(x− ) +b(y− ) +c(z− ) = 0.x0 y0 z0

1.6.7 P n⇀ Q PQ
−−⇀

n⇀

Definition: scalar equation of a plane

P n⇀ Q ⋅ = 0n⇀ PQ
−−⇀

⋅ = 0n
⇀ PQ

−−⇀

P = ( , , )x0 y0 z0 = ⟨a, b, c⟩n⃗ 

a(x− ) +b(y− ) +c(z− ) = 0.x0 y0 z0

ax+by+cz+d = 0, d = −a −b −c .x0 y0 z0
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Write an equation for the plane containing points  and  in both standard and
general forms.

Solution

To write an equation for a plane, we must find a normal vector for the plane. We start by identifying two vectors in the plane:

The cross product  is orthogonal to both  and , so it is normal to the plane that contains these two vectors:

Thus,  and we can choose any of the three given points to write an equation of the plane:

The scalar equations of a plane vary depending on the normal vector and point chosen.

Find an equation of the plane that passes through point  and contains the line given by 

Solution

Symmetric equations describe the line that passes through point  parallel to vector  (see the following
figure). Use this point and the given point,  to identify a second vector parallel to the plane:

Use the cross product of these vectors to identify a normal vector for the plane:

The scalar equations for the plane are  and 

Example : Writing an Equation of a Plane Given Three Points in the Plane1.6.5

P = (1, 1, −2),Q = (0, 2, 1), R = (−1, −1, 0)

= ⟨0 −1, 2 −1, 1 −(−2)⟩PQ
−−⇀

= ⟨−1, 1, 3⟩

= ⟨−1 −0, −1 −2, 0 −1⟩QR
−−⇀

= ⟨−1, −3, −1⟩.

×PQ
−−⇀

QR
−−⇀

PQ
−−⇀

QR
−−⇀

= ×n
⇀ PQ

−−⇀
QR
−−⇀

=

∣

∣

∣
∣
∣

î ĵ k̂

−113

−1 −3 −1

∣

∣

∣
∣
∣

= (−1 +9) −(1 +3) +(3 +1)î ĵ k̂

= 8 −4 +4 .î ĵ k̂

n = ⟨8, −4, 4⟩,

8(x−1) −4(y−1) +4(z+2) = 0

8x−4y+4z+4 = 0.

Example : Writing an Equation for a Plane Given a Point and a Line1.6.6

(1, 4, 3) x = = z+1.
y−1

2

(0, 1, −1) = ⟨1, 2, 1⟩v⇀1

(1, 4, 3),

= ⟨1 −0, 4 −1, 3 −(−1)⟩ = ⟨1, 3, 4⟩.v⇀2

= ×n
⇀

v
⇀

1 v
⇀

2

=

∣

∣

∣
∣
∣

î ĵ k̂

121

134

∣

∣

∣
∣
∣

= (8 −3) −(4 −1) +(3 −2)î ĵ k̂

= 5 −3 + .î ĵ k̂

5x−3(y−1) +(z+1) = 0 5x−3y+z+4 = 0.
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Find an equation of the plane containing the lines  and :

Hint

Hint: The cross product of the lines’ direction vectors gives a normal vector for the plane.

Answer

or

Now that we can write an equation for a plane, we can use the equation to find the distance  between a point  and the plane. It is
defined as the shortest possible distance from  to a point on the plane.

Figure : We want to find the shortest distance from point P to the plane. Let point  be the point in the plane such that, for
any other point in the plane .

Just as we find the two-dimensional distance between a point and a line by calculating the length of a line segment perpendicular to
the line, we find the three-dimensional distance between a point and a plane by calculating the length of a line segment

Exercise 1.6.6

L1 L2

: x = −y = zL1

: = y = z−2.L2
x−3

2

−2(x−1) +(y+1) +3(z−1) = 0

−2x+y+3z = 0

d P

P

1.6.8 R

Q, ∥ ∥ < ∥ ∥RP
−−⇀

QP
−−⇀
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perpendicular to the plane. Let  bet the point in the plane such that  is orthogonal to the plane, and let  be an arbitrary point

in the plane. Then the projection of vector  onto the normal vector describes vector , as shown in Figure.

Suppose a plane with normal vector  passes through point . The distance  from the plane to a point  not in the plane is
given by

Find the distance between point  and the plane given by  (see the following figure).

Solution

The coefficients of the plane’s equation provide a normal vector for the plane: . To find vector , we need a
point in the plane. Any point will work, so set  to see that point  lies in the plane. Find the component
form of the vector from  to :

Apply the distance formula from Equation:

R RP
−−⇀

Q

QP
−−⇀

RP
−−⇀

The Distance between a Plane and a Point

n
⇀ Q d P

d = ∥ ∥ =∣ ∣= .proj n⇀ QP
−−⇀

compn⇀ QP
−−⇀

⋅∣
∣QP
−−⇀

n
⇀∣

∣

∥ ∥n
⇀ (1.6.18)

Example : Distance between a Point and a Plane1.6.7

P = (3, 1, 2) x−2y+z = 5

= ⟨1, −2, 1⟩n
⇀ QP

−−⇀

y = z = 0 Q = (5, 0, 0)
Q P

= ⟨3 −5, 1 −0, 2 −0⟩ = ⟨−2, 1, 2⟩.QP
−−⇀

d =
⋅ |∣

∣QP
−−⇀

n
⇀

∥ ∥n
⇀

=
|⟨−2, 1, 2⟩ ⋅ ⟨1, −2, 1⟩|

+(−2 +12 )2 12
− −−−−−−−−−−−−

√

=
| −2 −2 +2|

6
–√

= = units.
2

6
–√

6
–√

3
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Find the distance between point  and the plane given by .

Hint

Point  lies on the plane.

Answer

Parallel and Intersecting Planes 
We have discussed the various possible relationships between two lines in two dimensions and three dimensions. When we
describe the relationship between two planes in space, we have only two possibilities: the two distinct planes are parallel or they
intersect. When two planes are parallel, their normal vectors are parallel. When two planes intersect, the intersection is a line
(Figure ).

Figure : The intersection of two nonparallel planes is always a line.

We can use the equations of the two planes to find parametric equations for the line of intersection.

Find parametric and symmetric equations for the line formed by the intersection of the planes given by  and 
 (see the following figure).

Exercise 1.6.7

P = (5, −1, 0) 4x+2y−z = 3

(0, 0, −3)

= units
15

21−−√

5 21
−−

√

7
(1.6.19)

1.6.9

1.6.9

Example : Finding the Line of Intersection for Two Planes1.6.8

x+y+z = 0
2x−y+z = 0
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Solution

Note that the two planes have nonparallel normals, so the planes intersect. Further, the origin satisfies each equation, so we
know the line of intersection passes through the origin. Add the plane equations so we can eliminate one of the variables, in
this case, :

________________

.

This gives us We substitute this value into the first equation to express  in terms of :

We now have the first two variables,  and , in terms of the third variable, . Now we define  in terms of . To eliminate the

need for fractions, we choose to define the parameter  as . Then, . Substituting the parametric

y

x+y+z = 0

2x−y+z = 0

3x+2z = 0

x = − z.
2

3
y z

.

x+y+z = 0

− z+y+z = 0
2

3

y+ z = 0
1

3

y = − z
1

3

x y z z t

t t = − z
1

3
z = −3t
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representation of z back into the other two equations, we see that the parametric equations for the line of intersection are 

 The symmetric equations for the line are .

Find parametric equations for the line formed by the intersection of planes  and 

Hint

Add the two equations, then express  in terms of . Then, express  in terms of .

Answer

In addition to finding the equation of the line of intersection between two planes, we may need to find the angle formed by the
intersection of two planes. For example, builders constructing a house need to know the angle where different sections of the roof
meet to know whether the roof will look good and drain properly. We can use normal vectors to calculate the angle between the two
planes. We can do this because the angle between the normal vectors is the same as the angle between the planes. Figure 
shows why this is true.

Figure : The angle between two planes has the same measure as the angle between the normal vectors for the planes.

We can find the measure of the angle  between two intersecting planes by first finding the cosine of the angle, using the following
equation:

We can then use the angle to determine whether two planes are parallel or orthogonal or if they intersect at some other angle.

Determine whether each pair of planes is parallel, orthogonal, or neither. If the planes are intersecting, but not orthogonal, find
the measure of the angle between them. Give the answer in radians and round to two decimal places.

a.  and 
b.  and 
c.  and 

Solution:

a. The normal vectors for these planes are  and  These two vectors are scalar multiples of
each other. The normal vectors are parallel, so the planes are parallel.

b. The normal vectors for these planes are  and . Taking the dot product of these vectors, we
have

x = 2t, y = t, z = −3t. = y =
x

2

z

−3

Exercise 1.6.8

x+y−z = 3 3x−y+3z = 5.

z x y x

x = t, y = 7 −3t, z = 4 −2t

1.6.10

1.6.10

θ

cosθ = .
| ⋅ |n
⇀

1 n
⇀

2

∥ ∥∥ ∥n
⇀

1 n
⇀

2
(1.6.20)

Example : Finding the Angle between Two Planes1.6.9

x+2y−z = 8 2x+4y−2z = 10
2x−3y+2z = 3 6x+2y−3z = 1
x+y+z = 4 x−3y+5z = 1

= ⟨1, 2, −1⟩n
⇀

1 = ⟨2, 4, −2⟩.n
⇀

2

= ⟨2, −3, 2⟩n
⇀

1 = ⟨6, 2, −3⟩n
⇀

2
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The normal vectors are orthogonal, so the corresponding planes are orthogonal as well.
c. The normal vectors for these planes are  and :

 
Then  rad. 

Thus the angle between the two planes is about  rad, or approximately .

Find the measure of the angle between planes  and  Give the answer in radians and round to
two decimal places.

Hint

Use the coefficients of the variables in each equation to find a normal vector for each plane.

Answer

When we find that two planes are parallel, we may need to find the distance between them. To find this distance, we simply select a
point in one of the planes. The distance from this point to the other plane is the distance between the planes.

Previously, we introduced the formula for calculating this distance in Equation :

where  is a point on the plane,  is a point not on the plane, and  is the normal vector that passes through point .

Find the distance between parallel planes  and .

Hint

Set  to find a point on the first plane.

Answer

⋅ = ⟨2, −3, 2⟩ ⋅ ⟨6, 2, −3⟩n⇀1 n⇀2

= 2(6) −3(2) +2(−3) = 0.

= ⟨1, 1, 1⟩n
⇀

1 = ⟨1, −3, 5⟩n
⇀

2

cosθ =
| ⋅ |n
⇀

1 n
⇀

2

∥ ∥∥ ∥n
⇀

1 n
⇀

2

=
|⟨1, 1, 1⟩ ⋅ ⟨1, −3, 5⟩|

+ +12 12 12− −−−−−−−−−
√ +(−3 +12 )2 52

− −−−−−−−−−−−−
√

=
3

105−−−√

θ = arccos ≈ 1.273

105√

1.27 73°

Exercise 1.6.9

x+y−z = 3 3x−y+3z = 5.

1.44 rad

1.6.18

d = ,
⋅QP

−−⇀
n
⇀

∥ ∥n
⇀ (1.6.21)

Q P n⃗  Q

Exercise :1.6.10

5x−2y+z = 6 5x−2y+z = −3

x = y = 0

= units
9

30−−√

3 30
−−√

10
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Finding the distance from a point to a line or from a line to a plane seems like a pretty abstract procedure. But, if the lines
represent pipes in a chemical plant or tubes in an oil refinery or roads at an intersection of highways, confirming that the
distance between them meets specifications can be both important and awkward to measure. One way is to model the two pipes
as lines, using the techniques in this chapter, and then calculate the distance between them. The calculation involves forming
vectors along the directions of the lines and using both the cross product and the dot product.

Figure : Industrial pipe installations often feature pipes running in different directions. How can we find the distance
between two skew pipes?

The symmetric forms of two lines,  and , are

You are to develop a formula for the distance  between these two lines, in terms of the values 
and  The distance between two lines is usually taken to mean the minimum distance, so this is the length of a line
segment or the length of a vector that is perpendicular to both lines and intersects both lines.

1. First, write down two vectors,  and , that lie along  and , respectively.

2. Find the cross product of these two vectors and call it . This vector is perpendicular to  and , and hence is
perpendicular to both lines.

3. From vector , form a unit vector  in the same direction.

4. Use symmetric equations to find a convenient vector  that lies between any two points, one on each line. Again,
this can be done directly from the symmetric equations.

5. The dot product of two vectors is the magnitude of the projection of one vector onto the other—that is, 
 where  is the angle between the vectors. Using the dot product, find the projection of vector 

 found in step  onto unit vector  found in step . This projection is perpendicular to both lines, and hence its
length must be the perpendicular distance d between them. Note that the value of  may be negative, depending on your
choice of vector  or the order of the cross product, so use absolute value signs around the numerator.

6. Check that your formula gives the correct distance of  between the following two lines:

Distance between Two Skew Lines

1.6.11

L1 L2

: = =L1
x−x1

a1

y−y1

b1

z−z1

c1
(1.6.22)

: = = .L2
x−x2

a2

y−y2

b2

z−z2

c2
(1.6.23)

d , , ; , , ; , , ;a1 b1 c1 a2 b2 c2 x1 y1 z1

, , .x2 y2 z2

v⇀1 v⇀2 L1 L2

N
⇀

v⇀1 v⇀2

N
⇀

n
⇀

v⇀12

⋅ = ∥ ∥∥ ∥ cosθ,A
⇀

B
⇀

A
⇀

B
⇀

θ

v⇀12 4 n⇀ 3
d

v⇀12

| −25|/ ≈ 1.78198
−−−√
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7. Is your general expression valid when the lines are parallel? If not, why not? (Hint: What do you know about the value
of the cross product of two parallel vectors? Where would that result show up in your expression for ?)

8. Demonstrate that your expression for the distance is zero when the lines intersect. Recall that two lines intersect if
they are not parallel and they are in the same plane. Hence, consider the direction of  and . What is the result of
their dot product?

9. Consider the following application. Engineers at a refinery have determined they need to install support struts between
many of the gas pipes to reduce damaging vibrations. To minimize cost, they plan to install these struts at the closest
points between adjacent skewed pipes. Because they have detailed schematics of the structure, they are able to determine
the correct lengths of the struts needed, and hence manufacture and distribute them to the installation crews without
spending valuable time making measurements.

The rectangular frame structure has the dimensions  (height, width, and depth). One sector
has a pipe entering the lower corner of the standard frame unit and exiting at the diametrically opposed corner (the
one farthest away at the top); call this . A second pipe enters and exits at the two different opposite lower
corners; call this  (Figure ).

Figure : Two pipes cross through a standard frame unit.

Write down the vectors along the lines representing those pipes, find the cross product between them from which to
create the unit vector , define a vector that spans two points on each line, and finally determine the minimum distance
between the lines. (Take the origin to be at the lower corner of the first pipe.) Similarly, you may also develop the
symmetric equations for each line and substitute directly into your formula.

Key Concepts 
In three dimensions, the direction of a line is described by a direction vector. The vector equation of a line with direction vector 

 passing through point  is , where  is the position vector of point 
. This equation can be rewritten to form the parametric equations of the line: , and .

The line can also be described with the symmetric equations .

Let  be a line in space passing through point  with direction vector . If  is any point not on , then the distance from 

to  is 

In three dimensions, two lines may be parallel but not equal, equal, intersecting, or skew.

: = =L1
x−5

2

y−3

4

z−1

3
(1.6.24)

: = = .L2
x−6

3

y−1

5

z

7
(1.6.25)

d

n⇀ v⇀12

4.0 ×15.0 ×10.0 m

L1

L2 1.6.12

1.6.12

n
⇀

= ⟨a, b, c⟩v⇀ P = ( , , )x0 y0 z0 = + tr⇀ r⇀0 v⇀ = ⟨ , , ⟩r⇀0 x0 y0 z0

P x = + ta, y = + tbx0 y0 z = + tcz0

= =
x−x0

a

y−y0

b

z−z0

c
L P v

⇀ Q L Q

L d = .
∥ × ∥PQ

−−⇀
v
⇀

∥ ∥v
⇀
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Given a point  and vector , the set of all points  satisfying equation  forms a plane. Equation  is
known as the vector equation of a plane.
The scalar equation of a plane containing point  with normal vector  is 

. This equation can be expressed as  where 
 This form of the equation is sometimes called the general form of the equation of a plane.

Suppose a plane with normal vector  passes through point . The distance  from the plane to point  not in the plane is
given by

The normal vectors of parallel planes are parallel. When two planes intersect, they form a line.

The measure of the angle  between two intersecting planes can be found using the equation: , where 

and  are normal vectors to the planes.

Key Equations 
Vector Equation of a Line

Parametric Equations of a Line

 and 

Symmetric Equations of a Line

Vector Equation of a Plane

Scalar Equation of a Plane

Distance between a Plane and a Point

Glossary 

direction vector
a vector parallel to a line that is used to describe the direction, or orientation, of the line in space

general form of the equation of a plane
an equation in the form  where  is a normal vector of the plane,  is a point
on the plane, and 

normal vector
a vector perpendicular to a plane

parametric equations of a line
the set of equations  and  describing the line with direction vector  passing
through point 

scalar equation of a plane

P n
⇀ Q ⋅ = 0n

⇀ PQ
−−⇀

⋅ = 0n
⇀ PQ

−−⇀

P = ( , , )x0 y0 z0 = ⟨a, b, c⟩n
⇀

a(x− ) +b(y− ) +c(z− ) = 0x0 y0 z0 ax+by+cz+d = 0,
d = −a −b −c .x0 y0 z0

n Q D P

D = ∥ ∥ =∣ ∣=proj n⇀QP
−−⇀

compn⇀QP
→ ⋅

∣
∣
∣QP

→
n
⇀∣

∣
∣

∥ ∥.n
⇀ (1.6.26)

θ cosθ =
| ⋅ |n⇀1 n⇀2

∥ ∥∥ ∥n
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the equation  used to describe a plane containing point  with normal
vector  or its alternate form , where 

skew lines
two lines that are not parallel but do not intersect

symmetric equations of a line

the equations  describing the line with direction vector  passing through point 

vector equation of a line
the equation  used to describe a line with direction vector  passing through point ,
where , is the position vector of point 

vector equation of a plane

the equation  where  is a given point in the plane,  is any point in the plane, and  is a normal vector of the
plane
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1.7: Cylindrical and Quadric Surfaces

Identify a cylinder as a type of three-dimensional surface.
Recognize the main features of ellipsoids, paraboloids, and hyperboloids.
Use traces to draw the intersections of quadric surfaces with the coordinate planes.

We have been exploring vectors and vector operations in three-dimensional space, and we have developed equations to describe
lines, planes, and spheres. In this section, we use our knowledge of planes and spheres, which are examples of three-dimensional
figures called surfaces, to explore a variety of other surfaces that can be graphed in a three-dimensional coordinate system.

Identifying Cylinders
The first surface we’ll examine is the cylinder. Although most people immediately think of a hollow pipe or a soda straw when they
hear the word cylinder, here we use the broad mathematical meaning of the term. As we have seen, cylindrical surfaces don’t have
to be circular. A rectangular heating duct is a cylinder, as is a rolled-up yoga mat, the cross-section of which is a spiral shape.

In the two-dimensional coordinate plane, the equation  describes a circle centered at the origin with radius . In three-
dimensional space, this same equation represents a surface. Imagine copies of a circle stacked on top of each other centered on the 

-axis (Figure ), forming a hollow tube. We can then construct a cylinder from the set of lines parallel to the -axis passing
through the circle  in the -plane, as shown in the figure. In this way, any curve in one of the coordinate planes can
be extended to become a surface.

Figure : In three-dimensional space, the graph of equation  is a cylinder with radius  centered on the -axis. It
continues indefinitely in the positive and negative directions.

A set of lines parallel to a given line passing through a given curve is known as a cylindrical surface, or cylinder. The parallel
lines are called rulings.

From this definition, we can see that we still have a cylinder in three-dimensional space, even if the curve is not a circle. Any curve
can form a cylinder, and the rulings that compose the cylinder may be parallel to any given line (Figure ).

 Learning Objectives
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Figure : In three-dimensional space, the graph of equation  is a cylinder, or a cylindrical surface with rulings parallel to
the -axis.

Sketch the graphs of the following cylindrical surfaces.

a. 
b. 
c. 

Solution

a. The variable  can take on any value without limit. Therefore, the lines ruling this surface are parallel to the -axis. The
intersection of this surface with the -plane forms a circle centered at the origin with radius  (see Figure ).

Figure : The graph of equation  is a cylinder with radius  centered on the -axis.

b. In this case, the equation contains all three variables —  and — so none of the variables can vary arbitrarily. The easiest
way to visualize this surface is to use a computer graphing utility (Figure ).

1.7.2 z = x3

y

 Example : Graphing Cylindrical Surfaces1.7.1
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Figure 

c. In this equation, the variable  can take on any value without limit. Therefore, the lines composing this surface are parallel to
the -axis. The intersection of this surface with the xy-plane outlines curve  (Figure ).

Figure : The graph of equation  is formed by a set of lines parallel to the -axis passing through curve 
 in the -plane.

Sketch or use a graphing tool to view the graph of the cylindrical surface defined by equation .

Hint

The variable  can take on any value without limit.

Answer

1.7.4

z

z y = sinx 1.7.5

1.7.5 y = sin x z
y = sin x xy
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When sketching surfaces, we have seen that it is useful to sketch the intersection of the surface with a plane parallel to one of the
coordinate planes. These curves are called traces. We can see them in the plot of the cylinder in Figure .

The traces of a surface are the cross-sections created when the surface intersects a plane parallel to one of the coordinate
planes.

Traces are useful in sketching cylindrical surfaces. For a cylinder in three dimensions, though, only one set of traces is useful.
Notice, in Figure , that the trace of the graph of  in the xz-plane is useful in constructing the graph. The trace in the
xy-plane, though, is just a series of parallel lines, and the trace in the yz-plane is simply one line.

Figure : (a) This is one view of the graph of equation . (b) To find the trace of the graph in the -plane, set .
The trace is simply a two-dimensional sine wave.

Cylindrical surfaces are formed by a set of parallel lines. Not all surfaces in three dimensions are constructed so simply, however.
We now explore more complex surfaces, and traces are an important tool in this investigation.

Quadric Surfaces

We have learned about surfaces in three dimensions described by first-order equations; these are planes. Some other common types
of surfaces can be described by second-order equations. We can view these surfaces as three-dimensional extensions of the conic
sections we discussed earlier: the ellipse, the parabola, and the hyperbola. We call these graphs quadric surfaces

1.7.6

 Definition: traces

1.7.6 z = sinx

1.7.6 z = sin x xz y = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/63988?pdf


Access for free at OpenStax 1.7.5 https://math.libretexts.org/@go/page/63988

Quadric surfaces are the graphs of equations that can be expressed in the form

When a quadric surface intersects a coordinate plane, the trace is a conic section.

An ellipsoid is a surface described by an equation of the form  Set  to see the trace of the ellipsoid in

the yz-plane. To see the traces in the - and -planes, set  and , respectively. Notice that, if , the trace in the -
plane is a circle. Similarly, if , the trace in the -plane is a circle and, if , then the trace in the -plane is a circle. A
sphere, then, is an ellipsoid with 

Sketch the ellipsoid

Solution

Start by sketching the traces. To find the trace in the xy-plane, set  (Figure ). To find the other

traces, first set  and then set 

Figure : (a) This graph represents the trace of equation  in the -plane, when we set . (b)

When we set , we get the trace of the ellipsoid in the -plane, which is an ellipse. (c) When we set , we get the
trace of the ellipsoid in the -plane, which is also an ellipse.

Now that we know what traces of this solid look like, we can sketch the surface in three dimensions (Figure ).

 Definition: Quadric surfaces and conic sections
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 Example : Sketching an Ellipsoid1.7.2
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Figure : (a) The traces provide a framework for the surface. (b) The center of this ellipsoid is the origin.

The trace of an ellipsoid is an ellipse in each of the coordinate planes. However, this does not have to be the case for all quadric
surfaces. Many quadric surfaces have traces that are different kinds of conic sections, and this is usually indicated by the name of
the surface. For example, if a surface can be described by an equation of the form

then we call that surface an elliptic paraboloid. The trace in the xy-plane is an ellipse, but the traces in the xz-plane and yz-plane
are parabolas (Figure ). Other elliptic paraboloids can have other orientations simply by interchanging the variables to give us

a different variable in the linear term of the equation  or .

Figure : This quadric surface is called an elliptic paraboloid.

Describe the traces of the elliptic paraboloid .

Solution

To find the trace in the -plane, set  The trace in the plane  is simply one point, the origin. Since

a single point does not tell us what the shape is, we can move up the -axis to an arbitrary plane to find the shape of other
traces of the figure.

1.7.8
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 Example : Identifying Traces of Quadric Surfaces1.7.3
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The trace in plane  is the graph of equation , which is an ellipse. In the -plane, the equation becomes 

. The trace is a parabola in this plane and in any plane with the equation .

In planes parallel to the -plane, the traces are also parabolas, as we can see in Figure .

Figure : (a) The paraboloid . (b) The trace in plane . (c) The trace in the -plane. (d) The trace in

the -plane.

A hyperboloid of one sheet is any surface that can be described with an equation of the form . Describe

the traces of the hyperboloid of one sheet given by equation 

Hint

To find the traces in the coordinate planes, set each variable to zero individually.

Answer

The traces parallel to the -plane are ellipses and the traces parallel to the - and -planes are hyperbolas. Specifically,

the trace in the -plane is ellipse  the trace in the -plane is hyperbola  and the trace in

the -plane is hyperbola  (see the following figure).
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Hyperboloids of one sheet have some fascinating properties. For example, they can be constructed using straight lines, such as in
the sculpture in Figure . In fact, cooling towers for nuclear power plants are often constructed in the shape of a hyperboloid.
The builders are able to use straight steel beams in the construction, which makes the towers very strong while using relatively little
material (Figure ).

Figure : (a) A sculpture in the shape of a hyperboloid can be constructed of straight lines. (b) Cooling towers for nuclear
power plants are often built in the shape of a hyperboloid.

Energy hitting the surface of a parabolic reflector is concentrated at the focal point of the reflector (Figure ). If the

surface of a parabolic reflector is described by equation  where is the focal point of the reflector?

1.7.11a

1.7.11b

1.7.11

 Example : Chapter Opener: Finding the Focus of a Parabolic Reflector1.7.4
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Figure : Energy reflects off of the parabolic reflector and is collected at the focal point. (credit: modification of CGP
Grey, Wikimedia Commons)

Solution

Since z is the first-power variable, the axis of the reflector corresponds to the -axis. The coefficients of  and  are equal,
so the cross-section of the paraboloid perpendicular to the -axis is a circle. We can consider a trace in the xz-plane or the yz-
plane; the result is the same. Setting , the trace is a parabola opening up along the -axis, with standard equation 

, where  is the focal length of the parabola. In this case, this equation becomes  or . So

p is  m, which tells us that the focus of the paraboloid is  m up the axis from the vertex. Because the vertex of this
surface is the origin, the focal point is 

Seventeen standard quadric surfaces can be derived from the general equation

The following figures summarize the most important ones.
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Figure : Characteristics of Common Quadric Surfaces: Ellipsoid, Hyperboloid of One Sheet, Hyperboloid of Two Sheets.1.7.13
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Figure : Characteristics of Common Quadric Surfaces: Elliptic Cone, Elliptic Paraboloid, Hyperbolic Paraboloid.

Identify the surfaces represented by the given equations.

a. 
b. 

Solution

a. The  and  terms are all squared, and are all positive, so this is probably an ellipsoid. However, let’s put the equation
into the standard form for an ellipsoid just to be sure. We have

1.7.14

 Example : Identifying Equations of Quadric Surfaces1.7.5
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Dividing through by 144 gives

So, this is, in fact, an ellipsoid, centered at the origin.

b. We first notice that the  term is raised only to the first power, so this is either an elliptic paraboloid or a hyperbolic
paraboloid. We also note there are  terms and  terms that are not squared, so this quadric surface is not centered at the origin.
We need to complete the square to put this equation in one of the standard forms. We have

This is an elliptic paraboloid centered at 

Identify the surface represented by equation 

Hint

Look at the signs and powers of the , and  terms

Answer

Hyperboloid of one sheet, centered at .

Key Concepts
A set of lines parallel to a given line passing through a given curve is called a cylinder, or a cylindrical surface. The parallel
lines are called rulings.
The intersection of a three-dimensional surface and a plane is called a trace. To find the trace in the -, -, or -planes, set 

 or  respectively.
Quadric surfaces are three-dimensional surfaces with traces composed of conic sections. Every quadric surface can be
expressed with an equation of the form

To sketch the graph of a quadric surface, start by sketching the traces to understand the framework of the surface.
Important quadric surfaces are summarized in Figures  and .

Glossary

cylinder
a set of lines parallel to a given line passing through a given curve

ellipsoid
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a three-dimensional surface described by an equation of the form ; all traces of this surface are ellipses

elliptic cone

a three-dimensional surface described by an equation of the form ; traces of this surface include ellipses

and intersecting lines

elliptic paraboloid

a three-dimensional surface described by an equation of the form ; traces of this surface include ellipses and

parabolas

hyperboloid of one sheet

a three-dimensional surface described by an equation of the form  traces of this surface include ellipses

and hyperbolas

hyperboloid of two sheets

a three-dimensional surface described by an equation of the form ; traces of this surface include ellipses

and hyperbolas

quadric surfaces
surfaces in three dimensions having the property that the traces of the surface are conic sections (ellipses, hyperbolas, and
parabolas)

rulings
parallel lines that make up a cylindrical surface

trace
the intersection of a three-dimensional surface with a coordinate plane

This page titled 1.7: Cylindrical and Quadric Surfaces is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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1.8: Cylindrical and Spherical Coordinates

Convert from cylindrical to rectangular coordinates.
Convert from rectangular to cylindrical coordinates.
Convert from spherical to rectangular coordinates.
Convert from rectangular to spherical coordinates.

The Cartesian coordinate system provides a straightforward way to describe the location of points in space. Some surfaces,
however, can be difficult to model with equations based on the Cartesian system. This is a familiar problem; recall that in two
dimensions, polar coordinates often provide a useful alternative system for describing the location of a point in the plane,
particularly in cases involving circles. In this section, we look at two different ways of describing the location of points in space,
both of them based on extensions of polar coordinates. As the name suggests, cylindrical coordinates are useful for dealing with
problems involving cylinders, such as calculating the volume of a round water tank or the amount of oil flowing through a pipe.
Similarly, spherical coordinates are useful for dealing with problems involving spheres, such as finding the volume of domed
structures.

Cylindrical Coordinates 

When we expanded the traditional Cartesian coordinate system from two dimensions to three, we simply added a new axis to
model the third dimension. Starting with polar coordinates, we can follow this same process to create a new three-dimensional
coordinate system, called the cylindrical coordinate system. In this way, cylindrical coordinates provide a natural extension of polar
coordinates to three dimensions.

In the cylindrical coordinate system, a point in space (Figure ) is represented by the ordered triple , where

 are the polar coordinates of the point’s projection in the -plane
 is the usual -coordinate in the Cartesian coordinate system

Figure : The right triangle lies in the -plane. The length of the hypotenuse is  and  is the measure of the angle formed
by the positive -axis and the hypotenuse. The -coordinate describes the location of the point above or below the -plane.

In the -plane, the right triangle shown in Figure  provides the key to transformation between cylindrical and Cartesian, or
rectangular, coordinates.

The rectangular coordinates  and the cylindrical coordinates  of a point are related as follows:

These equations are used to convert from cylindrical coordinates to rectangular coordinates.

 Learning Objectives

 Definition: The Cylindrical Coordinate System

1.8.1 (r, θ, z)

(r, θ) xy

z z

1.8.1 xy r θ

x z xy

xy 1.8.1

 Conversion between Cylindrical and Cartesian Coordinates

(x, y, z) (r, θ, z)

x = r cos θ
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These equations are used to convert from rectangular coordinates to cylindrical coordinates

1. 
2. 

3. 

As when we discussed conversion from rectangular coordinates to polar coordinates in two dimensions, it should be noted that the

equation  has an infinite number of solutions. However, if we restrict  to values between  and , then we can find a

unique solution based on the quadrant of the -plane in which original point  is located. Note that if , then the value

of  is either  or , depending on the value of .

Notice that these equations are derived from properties of right triangles. To make this easy to see, consider point  in the -plane
with rectangular coordinates  and with cylindrical coordinates , as shown in Figure .

Figure : The Pythagorean theorem provides equation . Right-triangle relationships tell us that 
 and 

Let’s consider the differences between rectangular and cylindrical coordinates by looking at the surfaces generated when each of
the coordinates is held constant. If  is a constant, then in rectangular coordinates, surfaces of the form  or  are
all planes. Planes of these forms are parallel to the -plane, the -plane, and the -plane, respectively. When we convert to
cylindrical coordinates, the -coordinate does not change. Therefore, in cylindrical coordinates, surfaces of the form  are
planes parallel to the -plane. Now, let’s think about surfaces of the form . The points on these surfaces are at a fixed
distance from the -axis. In other words, these surfaces are vertical circular cylinders. Last, what about ? The points on a
surface of the form  are at a fixed angle from the -axis, which gives us a half-plane that starts at the -axis (Figures 
and ).

Figure : In rectangular coordinates, (a) surfaces of the form  are planes parallel to the -plane, (b) surfaces of the form 
 are planes parallel to the -plane, and (c) surfaces of the form  are planes parallel to the -plane.

y = r sinθ

z = z

= +r2 x2 y2
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y

x
z = z
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y

x
θ 0 2π

xy (x, y, z) x = 0

θ , ,
π

2

3π

2
0 y

P xy

(x, y, 0) (r, θ, 0) 1.8.2

1.8.2 = +r2 x2 y2

x = r cos θ, y = r sin θ, tan θ = y/x.

c x = c, y = c, z = c

yz xz xy

z z = c
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Figure : In cylindrical coordinates, (a) surfaces of the form  are vertical cylinders of radius , (b) surfaces of the form 
 are half-planes at angle  from the -axis, and (c) surfaces of the form  are planes parallel to the -plane.

Plot the point with cylindrical coordinates  and express its location in rectangular coordinates.

Solution

Conversion from cylindrical to rectangular coordinates requires a simple application of the equations listed in Conversion
between Cylindrical and Cartesian Coordinates:

The point with cylindrical coordinates  has rectangular coordinates  (Figure ).

Figure : The projection of the point in the -plane is 4 units from the origin. The line from the origin to the point’s

projection forms an angle of  with the positive -axis. The point lies  units below the -plane.

Point  has cylindrical coordinates . Plot  and describe its location in space using rectangular, or Cartesian,
coordinates.

Hint

The first two components match the polar coordinates of the point in the -plane.

Answer

The rectangular coordinates of the point are 

1.8.4 r = c r
θ = c θ x z = c xy

 Example : Converting from Cylindrical to Rectangular Coordinates1.8.1

(4, , −2)
2π

3

.

x

y

z

= r cos θ = 4 cos = −2
2π

3

= r sinθ = 4 sin = 2
2π

3
3
–

√

= −2

(4, , −2)
2π

3
(−2, 2 , −2)3

–
√ 1.8.5

1.8.5 xy
2π

3
x 2 xy
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If this process seems familiar, it is with good reason. This is exactly the same process that we followed in Introduction to
Parametric Equations and Polar Coordinates to convert from polar coordinates to two-dimensional rectangular coordinates.

Convert the rectangular coordinates  to cylindrical coordinates.

Solution

Use the second set of equations from Conversion between Cylindrical and Cartesian Coordinates to translate from rectangular
to cylindrical coordinates:

We choose the positive square root, so .Now, we apply the formula to find . In this case,  is negative and  is

positive, which means we must select the value of  between  and :

In this case, the z-coordinates are the same in both rectangular and cylindrical coordinates:

The point with rectangular coordinates  has cylindrical coordinates approximately equal to 

Convert point  from Cartesian coordinates to cylindrical coordinates.

Hint

 and 

Answer

 Example : Converting from Rectangular to Cylindrical Coordinates1.8.2

(1, −3, 5)

r2

r

= +x2 y2

= ± +(−312 )2
− −−−−−−−−

√

= ± .10
−−

√

r = 10
−−

√ θ y x

θ
3π

2
2π

tanθ

θ

=
y

x

≈ 5.03 rad.

=
−3

1

z = 5.

(1, −3, 5) ( , 5.03, 5).10
−−

√

 Exercise 1.8.2

(−8, 8, −7)

= +r2 x2 y2 tanθ =
y

x
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–
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The use of cylindrical coordinates is common in fields such as physics. Physicists studying electrical charges and the capacitors
used to store these charges have discovered that these systems sometimes have a cylindrical symmetry. These systems have
complicated modeling equations in the Cartesian coordinate system, which make them difficult to describe and analyze. The
equations can often be expressed in more simple terms using cylindrical coordinates. For example, the cylinder described by
equation  in the Cartesian system can be represented by cylindrical equation .

Describe the surfaces with the given cylindrical equations.

a. 

b. 
c. 

Solution

a. When the angle  is held constant while  and  are allowed to vary, the result is a half-plane (Figure ).

Figure : In polar coordinates, the equation  describes the ray extending diagonally through the first quadrant. In
three dimensions, this same equation describes a half-plane.

b. Substitute  into equation  to express the rectangular form of the equation: . This
equation describes a sphere centered at the origin with radius 3 (Figure ).

Figure : The sphere centered at the origin with radius 3 can be described by the cylindrical equation .

+ = 25x2 y2 r = 5

 Example : Identifying Surfaces in the Cylindrical Coordinate System1.8.3

θ =
π

4
+ = 9r2 z2

z = r

θ r z 1.8.6

1.8.6 θ = π/4

= +r2 x2 y2 + = 9r2 z2 + + = 9x2 y2 z2
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c. To describe the surface defined by equation , is it useful to examine traces parallel to the -plane. For example, the
trace in plane  is circle , the trace in plane  is circle , and so on. Each trace is a circle. As the value of 
increases, the radius of the circle also increases. The resulting surface is a cone (Figure ).

Figure : The traces in planes parallel to the -plane are circles. The radius of the circles increases as  increases.

Describe the surface with cylindrical equation .

Hint

The  and  components of points on the surface can take any value.

Answer

This surface is a cylinder with radius .

Spherical Coordinates 

In the Cartesian coordinate system, the location of a point in space is described using an ordered triple in which each coordinate
represents a distance. In the cylindrical coordinate system, the location of a point in space is described using two distances  and 

 and an angle measure . In the spherical coordinate system, we again use an ordered triple to describe the location of a point in
space. In this case, the triple describes one distance and two angles. Spherical coordinates make it simple to describe a sphere, just
as cylindrical coordinates make it easy to describe a cylinder. Grid lines for spherical coordinates are based on angle measures, like
those for polar coordinates.

z = r xy

z = 1 r = 1 z = 3 r = 3 z

1.8.8

1.8.8 xy z

 Exercise 1.8.3

r = 6
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In the spherical coordinate system, a point  in space (Figure ) is represented by the ordered triple  where

 (the Greek letter rho) is the distance between  and the origin 
 is the same angle used to describe the location in cylindrical coordinates;
 (the Greek letter phi) is the angle formed by the positive -axis and line segment , where  is the origin and 

Figure : The relationship among spherical, rectangular, and cylindrical coordinates.

By convention, the origin is represented as  in spherical coordinates.

Rectangular coordinates , cylindrical coordinates  and spherical coordinates  of a point are related as
follows:

Convert from spherical coordinates to rectangular coordinates

These equations are used to convert from spherical coordinates to rectangular coordinates.

Convert from rectangular coordinates to spherical coordinates

These equations are used to convert from rectangular coordinates to spherical coordinates.

Convert from spherical coordinates to cylindrical coordinates

These equations are used to convert from spherical coordinates to cylindrical coordinates.

Convert from cylindrical coordinates to spherical coordinates

These equations are used to convert from cylindrical coordinates to spherical coordinates.

 Definition: spherical coordinate system

P 1.8.9 (ρ, θ, φ)

ρ P (ρ ≠ 0);
θ

φ z OP
¯ ¯¯̄¯̄¯̄

O

0 ≤ φ ≤ π.

1.8.9

(0, 0, 0)

 HOWTO: Converting among Spherical, Cylindrical, and Rectangular Coordinates

(x, y, z) (r, θ, z), (ρ, θ, φ)

x = ρ sinφ cos θ

y = ρ sinφ sinθ

z = ρ cos φ

= + +ρ2 x2 y2 z2

tanθ =
y

x

φ = arccos( ).
z

+ +x2 y2 z2
− −−−−−−−−−

√

r = ρ sinφ

θ = θ

z = ρ cos φ

ρ = +r2 z2
− −−−−−

√
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The formulas to convert from spherical coordinates to rectangular coordinates may seem complex, but they are straightforward
applications of trigonometry. Looking at Figure , it is easy to see that . Then, looking at the triangle in the -
plane with r as its hypotenuse, we have . The derivation of the formula for  is similar. Figure 

 also shows that  and . Solving this last equation for  and then substituting 

 (from the first equation) yields . Also, note that, as before, we must be careful when using

the formula  to choose the correct value of .

Figure : The equations that convert from one system to another are derived from right-triangle relationships.

As we did with cylindrical coordinates, let’s consider the surfaces that are generated when each of the coordinates is held constant.
Let  be a constant, and consider surfaces of the form . Points on these surfaces are at a fixed distance from the origin and
form a sphere. The coordinate  in the spherical coordinate system is the same as in the cylindrical coordinate system, so surfaces
of the form  are half-planes, as before. Last, consider surfaces of the form . The points on these surfaces are at a fixed
angle from the -axis and form a half-cone (Figure ).

Figure : In spherical coordinates, surfaces of the form  are spheres of radius  (a), surfaces of the form  are half-
planes at an angle  from the -axis (b), and surfaces of the form  are half-cones at an angle  from the -axis (c).

Plot the point with spherical coordinates  and express its location in both rectangular and cylindrical coordinates.

Solution

Use the equations in Converting among Spherical, Cylindrical, and Rectangular Coordinates to translate between spherical and
cylindrical coordinates (Figure ):

θ = θ

φ = arccos( )
z

+r2 z2
− −−−−−

√

1.8.10 r = ρ sinφ xy

x = r cos θ = ρ sinφ cos θ y

1.8.10 = + = + +ρ2 r2 z2 x2 y2 z2 z = ρ cos φ φ

ρ = +r2 z2
− −−−−−

√ φ = arccos( )
z

+r2 z2
− −−−−−

√

tanθ =
y

x
θ

1.8.10

c ρ = c

θ

θ = c φ = c

z 1.8.11

1.8.11 ρ = c ρ θ = c
θ x ϕ = c ϕ z

 Example : Converting from Spherical Coordinates1.8.4
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Figure : The projection of the point in the -plane is  units from the origin. The line from the origin to the point’s
projection forms an angle of  with the positive -axis. The point lies  units above the -plane.

The point with spherical coordinates  has rectangular coordinates 

Finding the values in cylindrical coordinates is equally straightforward:

x

y

z

= ρ sinφ cos θ

= 8 sin( ) cos( )
π

6

π

3

= 8( )
1

2

1

2

= 2

= ρ sinφ sinθ

= 8 sin( ) sin( )
π

6

π

3

= 8( )
1

2

3
–

√

2

= 2 3
–

√

= ρ cos φ

= 8 cos( )
π
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3
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√
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= 4 3
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√
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Thus, cylindrical coordinates for the point are .

Plot the point with spherical coordinates  and describe its location in both rectangular and cylindrical coordinates.

Hint

Converting the coordinates first may help to find the location of the point in space more easily.

Answer

Cartesian:  cylindrical: 

Convert the rectangular coordinates  to both spherical and cylindrical coordinates.

Solution

Start by converting from rectangular to spherical coordinates:

Because , then the correct choice for  is .

r

θ

z

= ρ sinφ

= 8 sin
π

6

= 4

= θ

= ρ cos φ

= 8 cos
π

6

= 4 .3
–

√
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π

3
3
–

√

 Exercise 1.8.4
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 Example : Converting from Rectangular Coordinates1.8.5
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There are actually two ways to identify . We can use the equation . A more simple approach,

however, is to use equation  We know that  and , so

 so 

and therefore . The spherical coordinates of the point are 

To find the cylindrical coordinates for the point, we need only find :

The cylindrical coordinates for the point are .

Describe the surfaces with the given spherical equations.

a. 

b. 

c. 
d. 

Solution

a. The variable  represents the measure of the same angle in both the cylindrical and spherical coordinate systems. Points with

coordinates  lie on the plane that forms angle  with the positive -axis. Because , the surface described by

equation  is the half-plane shown in Figure .

Figure : The surface described by equation  is a half-plane.

b. Equation  describes all points in the spherical coordinate system that lie on a line from the origin forming an angle

measuring  rad with the positive -axis. These points form a half-cone (Figure ). Because there is only one value for 

 that is measured from the positive -axis, we do not get the full cone (with two pieces).

φ φ = arccos( )
z
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√
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–

√ ρ = 2 2
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–

√ 2
–
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6
–
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2 2
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–
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π

6
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3π
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π

6
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–

√
π

6
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–

√
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–

√
3π

4
6
–

√

 Example : Identifying Surfaces in the Spherical Coordinate System1.8.6

θ =
π

3

φ =
5π

6
ρ = 6
ρ = sinθ sinφ

θ

(ρ, , φ)
π

3
θ =

π

3
x ρ > 0

θ =
π

3
1.8.13

1.8.13 θ =
π

3

φ =
5π

6
5π

6
z 1.8.14

φ z

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/63989?pdf


Access for free at OpenStax 1.8.12 https://math.libretexts.org/@go/page/63989

Figure : The equation  describes a cone.

To find the equation in rectangular coordinates, use equation 

This is the equation of a cone centered on the -axis.

c. Equation  describes the set of all points  units away from the origin—a sphere with radius  (Figure ).

Figure : Equation  describes a sphere with radius .

d. To identify this surface, convert the equation from spherical to rectangular coordinates, using equations 
and 
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6
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z
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√
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√

=
z

+ +x2 y2 z2− −−−−−−−−−
√

=
z

+ +x2 y2 z2
− −−−−−−−−−
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 Multiply both sides of the equation by .

 Substitute rectangular variables using the equations above.

 Subtract  from both sides of the equation.

 Complete the square.

. Rewrite the middle terms as a perfect square.

The equation describes a sphere centered at point  with radius .

Describe the surfaces defined by the following equations.

a. 

b. 

c. 

Hint

Think about what each component represents and what it means to hold that component constant.

Answer a

This is the set of all points  units from the origin. This set forms a sphere with radius .

Answer b

This set of points forms a half plane. The angle between the half plane and the positive -axis is 

Answer c

Let  be a point on this surface. The position vector of this point forms an angle of  with the positive -axis, which

means that points closer to the origin are closer to the axis. These points form a half-cone.

Spherical coordinates are useful in analyzing systems that have some degree of symmetry about a point, such as the volume of the
space inside a domed stadium or wind speeds in a planet’s atmosphere. A sphere that has Cartesian equation 
has the simple equation  in spherical coordinates.

In geography, latitude and longitude are used to describe locations on Earth’s surface, as shown in Figure . Although the
shape of Earth is not a perfect sphere, we use spherical coordinates to communicate the locations of points on Earth. Let’s assume
Earth has the shape of a sphere with radius  mi. We express angle measures in degrees rather than radians because latitude and
longitude are measured in degrees.

= ρ sinθ sinφρ2 ρ

+ + = yx2 y2 z2

+ −y + = 0x2 y2 z2 y

+ −y + + =x2 y2 1

4
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4
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4
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Figure : In the latitude–longitude system, angles describe the location of a point on Earth relative to the equator and the
prime meridian.

Let the center of Earth be the center of the sphere, with the ray from the center through the North Pole representing the positive -
axis. The prime meridian represents the trace of the surface as it intersects the -plane. The equator is the trace of the sphere
intersecting the -plane.

The latitude of Columbus, Ohio, is  N and the longitude is  W, which means that Columbus is  north of the equator.
Imagine a ray from the center of Earth through Columbus and a ray from the center of Earth through the equator directly south
of Columbus. The measure of the angle formed by the rays is . In the same way, measuring from the prime meridian,
Columbus lies  to the west. Express the location of Columbus in spherical coordinates.

Solution

The radius of Earth is mi, so . The intersection of the prime meridian and the equator lies on the positive -axis.
Movement to the west is then described with negative angle measures, which shows that , Because Columbus lies 

 north of the equator, it lies  south of the North Pole, so . In spherical coordinates, Columbus lies at point 

1.8.16

z

xz

xy

 Example : Converting Latitude and Longitude to Spherical Coordinates1.8.7
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Sydney, Australia is at  and  Express Sydney’s location in spherical coordinates.

Hint

Because Sydney lies south of the equator, we need to add  to find the angle measured from the positive -axis.

Answer

Cylindrical and spherical coordinates give us the flexibility to select a coordinate system appropriate to the problem at hand. A
thoughtful choice of coordinate system can make a problem much easier to solve, whereas a poor choice can lead to unnecessarily
complex calculations. In the following example, we examine several different problems and discuss how to select the best
coordinate system for each one.

In each of the following situations, we determine which coordinate system is most appropriate and describe how we would
orient the coordinate axes. There could be more than one right answer for how the axes should be oriented, but we select an
orientation that makes sense in the context of the problem. Note: There is not enough information to set up or solve these
problems; we simply select the coordinate system (Figure ).

a. Find the center of gravity of a bowling ball.
b. Determine the velocity of a submarine subjected to an ocean current.
c. Calculate the pressure in a conical water tank.
d. Find the volume of oil flowing through a pipeline.
e. Determine the amount of leather required to make a football.

Figure : (credit: (a) modification of work by scl hua, Wikimedia, (b) modification of work by DVIDSHUB, Flickr, (c)
modification of work by Michael Malak, Wikimedia, (d) modification of work by Sean Mack, Wikimedia, (e) modification of
work by Elvert Barnes, Flickr)

Solution

a. Clearly, a bowling ball is a sphere, so spherical coordinates would probably work best here. The origin should be located at
the physical center of the ball. There is no obvious choice for how the -, - and -axes should be oriented. Bowling balls
normally have a weight block in the center. One possible choice is to align the -axis with the axis of symmetry of the

 Exercise 1.8.6

34°S 151°E.

90° z

(4000, 151°, 124°)
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weight block.
b. A submarine generally moves in a straight line. There is no rotational or spherical symmetry that applies in this situation, so

rectangular coordinates are a good choice. The -axis should probably point upward. The - and -axes could be aligned to
point east and north, respectively. The origin should be some convenient physical location, such as the starting position of
the submarine or the location of a particular port.

c. A cone has several kinds of symmetry. In cylindrical coordinates, a cone can be represented by equation  where  is
a constant. In spherical coordinates, we have seen that surfaces of the form  are half-cones. Last, in rectangular

coordinates, elliptic cones are quadric surfaces and can be represented by equations of the form  In this

case, we could choose any of the three. However, the equation for the surface is more complicated in rectangular
coordinates than in the other two systems, so we might want to avoid that choice. In addition, we are talking about a water
tank, and the depth of the water might come into play at some point in our calculations, so it might be nice to have a
component that represents height and depth directly. Based on this reasoning, cylindrical coordinates might be the best
choice. Choose the -axis to align with the axis of the cone. The orientation of the other two axes is arbitrary. The origin
should be the bottom point of the cone.

d. A pipeline is a cylinder, so cylindrical coordinates would be best the best choice. In this case, however, we would likely
choose to orient our -axis with the center axis of the pipeline. The -axis could be chosen to point straight downward or to
some other logical direction. The origin should be chosen based on the problem statement. Note that this puts the -axis in
a horizontal orientation, which is a little different from what we usually do. It may make sense to choose an unusual
orientation for the axes if it makes sense for the problem.

e. A football has rotational symmetry about a central axis, so cylindrical coordinates would work best. The -axis should align
with the axis of the ball. The origin could be the center of the ball or perhaps one of the ends. The position of the -axis is
arbitrary.

Which coordinate system is most appropriate for creating a star map, as viewed from Earth (see the following figure)?

How should we orient the coordinate axes?

Hint

What kinds of symmetry are present in this situation?

Answer

z x y

z = kr, k

φ = c

= + .z2 x2

a2

y2

b2

z

z x

z

z

x

 Exercise 1.8.7

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/63989?pdf


Access for free at OpenStax 1.8.17 https://math.libretexts.org/@go/page/63989

Spherical coordinates with the origin located at the center of the earth, the -axis aligned with the North Pole, and the -
axis aligned with the prime meridian

Key Concepts 
In the cylindrical coordinate system, a point in space is represented by the ordered triple  where  represents the
polar coordinates of the point’s projection in the -plane and z represents the point’s projection onto the -axis.
To convert a point from cylindrical coordinates to Cartesian coordinates, use equations  and 

To convert a point from Cartesian coordinates to cylindrical coordinates, use equations  and 

In the spherical coordinate system, a point  in space is represented by the ordered triple , where  is the distance
between  and the origin  is the same angle used to describe the location in cylindrical coordinates, and  is the
angle formed by the positive -axis and line segment , where  is the origin and 
To convert a point from spherical coordinates to Cartesian coordinates, use equations  and 

To convert a point from Cartesian coordinates to spherical coordinates, use equations  and 

.

To convert a point from spherical coordinates to cylindrical coordinates, use equations  and 
To convert a point from cylindrical coordinates to spherical coordinates, use equations  and 

Glossary 

cylindrical coordinate system
a way to describe a location in space with an ordered triple  where  represents the polar coordinates of the point’s
projection in the -plane, and z represents the point’s projection onto the -axis

spherical coordinate system
a way to describe a location in space with an ordered triple  where  is the distance between  and the origin 

 is the same angle used to describe the location in cylindrical coordinates, and  is the angle formed by the positive 
-axis and line segment , where  is the origin and 
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1.E: Vectors in Space (Exercises)

1.2: Vectors in the Plane 

For the following exercises, consider points  and . Determine the requested vectors and express each
of them a. in component form and b. by using the standard unit vectors.

1) 

Solution: 

2) 

3) 

Solution: 

4) 

5) 

Solution: 

6) 

7) 

Solution: 

8) 

9) The unit vector in the direction of 

Solution: 

10) The unit vector in the direction of 

11) A vector  has initial point  and terminal point . Find the unit vector in the direction of . Express the answer in
component form.

Solution: 

12) A vector  has initial point  and terminal point . Find the unit vector in the direction of . Express the answer in
component form.

13) The vector  has initial point  and terminal point  that is on the y-axis and above the initial point. Find the coordinates
of terminal point  such that the magnitude of the vector  is .

Solution: 

14) The vector  has initial point  and terminal point  that is on the x-axis and left of the initial point. Find the coordinates
of terminal point  such that the magnitude of the vector  is .

For the following exercises, use the given vectors  and .

a. Determine the vector sum  and express it in both the component form and by using the standard unit vectors.

b. Find the vector difference  and express it in both the component form and by using the standard unit vectors.

c. Verify that the vectors  and , and, respectively, , and  satisfy the triangle inequality.

d. Determine the vectors  and  Express the vectors in both the component form and by using standard unit
vectors.

P (−1, 3),Q(1, 5), R(−3, 7)

PQ
→

a. = ⟨2, 2⟩; b. = 2i+2jPQ
→

PQ
→

PR
→

QP
→

a. = ⟨−2, −2⟩; b. = −2i−2jQP
→

QP
→

RP
→

+PQ
→

PR
→

a. + = ⟨0, 6⟩; b. + = 6jPQ
→

PR
→

PQ
→

PR
→

−PQ
→

PR
→

2 −2PQ
→

PR
→

a. 2 → −2 = ⟨8, −4⟩; b. 2 −2 = 8i−4jPQ
→

PR
→

PQ
→

PR
→

2 +PQ
→

1
2 PR

→

PQ
→

a. ⟨ , ⟩; b. i+ j1
2√

1
2√

1
2√

1
2√

PR
→

v (−1, −3) (2, 1) v

⟨ , ⟩3
5

4
5

v (−2, 5) (3, −1) v

v P (1, 0) Q

Q v 5
–√

Q(0, 2)

v P (1, 1) Q

Q v 10−−√

a b

a+b

a−b

a, b, a+b a, b a−b

2a, −b, 2a−b.
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15) 

Solution:  b.  c. Answers will vary; d. 

16) 

17) Let  be a standard-position vector with terminal point . Let  be a vector with initial point  and terminal point 
. Find the magnitude of vector 

Solution: 

18) Let  be a standard-position vector with terminal point at . Let  be a vector with initial point  and terminal point 
. Find the magnitude of vector 

19) Let  and  be two nonzero vectors that are nonequivalent. Consider the vectors  and  defined in terms
of  and . Find the scalar  such that vectors  and  are equivalent.

Solution: 

20) Let  and  be two nonzero vectors that are nonequivalent. Consider the vectors  and  defined in
terms of  and . Find the scalars  and  such that vectors  and  are equivalent.

21) Consider the vector  with components that depend on a real number . As the number  varies, the
components of  change as well, depending on the functions that define them.

a. Write the vectors  and  in component form.

b. Show that the magnitude  of vector  remains constant for any real number .

c. As  varies, show that the terminal point of vector  describes a circle centered at the origin of radius .

Solution:  b. Answers may vary; c. Answers may vary

22) Consider vector  with components that depend on a real number . As the number  varies, the
components of  change as well, depending on the functions that define them.

a. Write the vectors  and  in component form.

b. Show that the magnitude  of vector  remains constant for any real number 

c. As  varies, show that the terminal point of vector  describes a circle centered at the origin of radius .

23) Show that vectors  and  are equivalent for  and , where  is an integer.

Solution: Answers may vary

24) Show that vectors  and  are opposite for  and , where  is an
integer.

For the following exercises, find vector  with the given magnitude and in the same direction as vector .

25) 

Solution: 

26) 

27) 

Solution: 

28) 

For the following exercises, find the component form of vector , given its magnitude and the angle the vector makes with the
positive x-axis. Give exact answers when possible.

29) 

Solution: 

a = 2i+j, b = i+3j

a. a+b = 3i+4j, a+b = ⟨3, 4⟩; a−b = i−2j, a−b = ⟨1, −2⟩;
2a = 4i+2j, 2a = ⟨4, 2⟩, −b = −i−3j, −b = ⟨−1, −3⟩, 2a−b = 3i−j, 2a−b = ⟨3, −1⟩

a = 2i, b = −2i+2j

a (−2, −4) b (1, 2)
(−1, 4) −3a+b−4i+j.

15

a (2, 5) b (−1, 3)
(1, 0) a−3b+14i−14j.

u v a = 4u+5v b = u+2v
u v λ a+λb u−v

λ = −3

u v a = 2u−4v b = 3u−7v
u v α β αa+βb u−v

a(t) = ⟨cost, sint⟩ t t

a(t)

a(0) a(π)

∥a(t)∥ a(t) t

t a(t) 1

a. a(0) = ⟨1, 0⟩, a(π) = ⟨−1, 0⟩;

a(x) = ⟨x, ⟩1 −x2− −−−−√ x ∈ [−1, 1] x

a(x)

a(0) a(1)

∥a(x)∥ a(x) x

x a(x) 1

a(t) = ⟨cost, sint⟩ a(x) = ⟨x, ⟩1 −x2− −−−−√ x = r t = 2kπ k

a(t) = ⟨cost, sint⟩ a(x) = ⟨x, ⟩1 −x2− −−−−
√ x = r t = π+2kπ k

v u

∥v∥ = 7, u = ⟨3, 4⟩

v= ⟨ , ⟩21
5

28
5

∥v∥ = 3, u = ⟨−2, 5⟩

∥v∥ = 7, u = ⟨3, −5⟩

v= ⟨ , − ⟩
21 34√

34
35 34√

34

∥v∥ = 10, u = ⟨2, −1⟩

u

∥u∥ = 2, θ = 30°

u = ⟨ , 1⟩3
–√
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30) 

31) 

Solution: 

32) 

33) 

Solution: 

34) 

For the following exercises, vector  is given. Find the angle  that vector  makes with the positive direction of the x-
axis, in a counter-clockwise direction.

35) 

Solution: 

36) 

37) Let , and  be three nonzero vectors. If , then show there are two scalars, 
 and , such that 

Solution: Answers may vary

38) Consider vectors  and  Determine the scalars  and  such that .

39) Let  be a fixed point on the graph of the differential function  with a domain that is the set of real numbers.

a. Determine the real number  such that point  is situated on the line tangent to the graph of  at point .

b. Determine the unit vector  with initial point  and terminal point .

Solution: 

40) Consider the function  where .

a. Determine the real number  such that point  s situated on the line tangent to the graph of  at point .

b. Determine the unit vector  with initial point  and terminal point .

41) Consider  and  two functions defined on the same set of real numbers . Let  and  be two
vectors that describe the graphs of the functions, where . Show that if the graphs of the functions  and  do not intersect,
then the vectors  and  are not equivalent.

42) Find  such that vectors  and  are equivalent.

43) Calculate the coordinates of point  such that  is a parallelogram, with , and .

Solution: 

44) Consider the points  Determine the component form of vector .

45) The speed of an object is the magnitude of its related velocity vector. A football thrown by a quarterback has an initial speed of
 mph and an angle of elevation of . Determine the velocity vector in mph and express it in component form. (Round to two

decimal places.)

Solution: 

∥u∥ = 6, θ = 60°

∥u∥ = 5, θ = π
2

u = ⟨0, 5⟩

∥u∥ = 8, θ = π

∥u∥ = 10, θ = 5π
6

u = ⟨−5 , 5⟩3
–√

∥u∥ = 50, θ = 3π
4

u θ ∈ [0, 2π) u

u = 5 i−5 j2–√ 2–√

θ = 7π
4

u = − i−j3
–√

a = ⟨ , ⟩, b = ⟨ , ⟩a1 a2 b1 b2 c = ⟨ , ⟩c1 c2 − ≠ 0a1b2 a2b1

α β c = αa+βb.

a = ⟨2, −4⟩, b = ⟨−1, 2⟩, 0 α β c = αa+βb

P ( , f( ))x0 x0 f

z0 Q( +1, )x0 z0 f P

u P Q

a. = f( ) +f '( ); b. u = ⟨1, f '( )⟩z0 x0 x0
1

1+[f'( )x0 ]2√
x0

f(x) = ,x4 x ∈ R

z0 Q(2, )z0 f P (1, 1)

u P Q

f g D a = ⟨x, f(x)⟩ b = ⟨x, g(x)⟩
x ∈ D f g

a b

x ∈ R a = ⟨x, sinx⟩ b = ⟨x, cosx⟩

D ABCD A(1, 1),B(2, 4) C(7, 4)

D(6, 1)

A(2, 1),B(10, 6),C(13, 4), andD(16, −2). AD
→

70 30°

⟨60.62, 35⟩
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46) A baseball player throws a baseball at an angle of  with the horizontal. If the initial speed of the ball is  mph, find the
horizontal and vertical components of the initial velocity vector of the baseball. (Round to two decimal places.)

47) A bullet is fired with an initial velocity of  ft/sec at an angle of  with the horizontal. Find the horizontal and vertical
components of the velocity vector of the bullet. (Round to two decimal places.)

Solution: The horizontal and vertical components are  ft/sec and  ft/sec, respectively.

48) [T] A 65-kg sprinter exerts a force of  N at a  angle with respect to the ground on the starting block at the instant a race
begins. Find the horizontal component of the force. (Round to two decimal places.)

49) [T] Two forces, a horizontal force of  lb and another of  lb, act on the same object. The angle between these forces is .
Find the magnitude and direction angle from the positive x-axis of the resultant force that acts on the object. (Round to two decimal
places.)

Solution: The magnitude of resultant force is  lb; the direction angle is .

50) [T] Two forces, a vertical force of  lb and another of  lb, act on the same object. The angle between these forces is .
Find the magnitude and direction angle from the positive x-axis of the resultant force that acts on the object. (Round to two decimal
places.)

51) [T] Three forces act on object. Two of the forces have the magnitudes  N and  N, and make angles  and ,
respectively, with the positive x-axis. Find the magnitude and the direction angle from the positive x-axis of the third force such
that the resultant force acting on the object is zero. (Round to two decimal places.)

Solution: The magnitude of the third vector is N; the direction angle is .

52) Three forces with magnitudes 80 lb, 120 lb, and 60 lb act on an object at angles of  and , respectively, with the
positive x-axis. Find the magnitude and direction angle from the positive x-axis of the resultant force. (Round to two decimal
places.)

53) [T] An airplane is flying in the direction of  east of north (also abbreviated as ) at a speed of  mph. A wind with
speed  mph comes from the southwest at a bearing of . What are the ground speed and new direction of the airplane?

30° 100

1500 60°

750 1299.04

798 19°

45 52 25°

94.71 13.42°

26 45 55°

58 27 53° 152°

60.03 259.38°

45°, 60° 30°

43° N43E 550
25 N15E
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Solution: The new ground speed of the airplane is  mph; the new direction is 

54) [T] A boat is traveling in the water at  mph in a direction of  (that is,  east of north). A strong current is moving at 
 mph in a direction of . What are the new speed and direction of the boat?

55) [T] A 50-lb weight is hung by a cable so that the two portions of the cable make angles of  and , respectively, with the
horizontal. Find the magnitudes of the forces of tension  and  in the cables if the resultant force acting on the object is zero.
(Round to two decimal places.)

Solution: 

56) [T] A 62-lb weight hangs from a rope that makes the angles of  and , respectively, with the horizontal. Find the
magnitudes of the forces of tension  and  in the cables if the resultant force acting on the object is zero. (Round to two decimal
places.)

57) [T] A 1500-lb boat is parked on a ramp that makes an angle of  with the horizontal. The boat’s weight vector points
downward and is a sum of two vectors: a horizontal vector  that is parallel to the ramp and a vertical vector  that is
perpendicular to the inclined surface. The magnitudes of vectors  and  are the horizontal and vertical component, respectively,
of the boat’s weight vector. Find the magnitudes of  and . (Round to the nearest integer.)

Solution: \(∥v1∥=750 lb, ∥v2∥=1299 lb\)

572.19 N41.82E.

30 N20E 20°
15 N45E

40° 53°
T1 T2

∥ ∥= 30.13lb, ∥ ∥= 38.35lbT1 T2

29° 61°
T1 T2

30°
v1 v2

v1 v2

v1 v2
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58) [T] An 85-lb box is at rest on a  incline. Determine the magnitude of the force parallel to the incline necessary to keep the
box from sliding. (Round to the nearest integer.)

59) A guy-wire supports a pole that is  ft high. One end of the wire is attached to the top of the pole and the other end is
anchored to the ground  ft from the base of the pole. Determine the horizontal and vertical components of the force of tension in
the wire if its magnitude is  lb. (Round to the nearest integer.)

Solution: The two horizontal and vertical components of the force of tension are  lb and  lb, respectively.

60) A telephone pole guy-wire has an angle of elevation of  with respect to the ground. The force of tension in the guy-wire is 
 lb. Find the horizontal and vertical components of the force of tension. (Round to the nearest integer.)

1.3: Vectors in Three Dimensions 

1) Consider a rectangular box with one of the vertices at the origin, as shown in the following figure. If point  is the
opposite vertex to the origin, then find

a. the coordinates of the other six vertices of the box and

b. the length of the diagonal of the box determined by the vertices  and .

Solution: 

2) Find the coordinates of point  and determine its distance to the origin.

26°

75
50

50

28 42

35°
120

A(2, 3, 5)

O A

a. (2, 0, 5), (2, 0, 0), (2, 3, 0), (0, 3, 0), (0, 3, 5), (0, 0, 5); b. 38−−√

P
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For the following exercises, describe and graph the set of points that satisfies the given equation.

3) 

Solution: A union of two planes:  (a plane parallel to the xz-plane) and  (a plane parallel to the xy-plane)

4) 

5) 

Solution: A cylinder of radius  centered on the line 

6) 

7) Write the equation of the plane passing through point  that is parallel to the xy-plane.

Solution: 

8) Write the equation of the plane passing through point  that is parallel to the xz-plane.

9) Find an equation of the plane passing through points  and 

Solution: 

(y−5)(z−6) = 0

y = 5 z = 6

(z−2)(z−5) = 0

(y−1 +(z−1 = 1)2 )2

1 y = 1, z = 1

(x−2 +(z−5 = 4)2 )2

(1, 1, 1)

z = 1

(1, −3, 2)

(1, −3, −2), (0, 3, −2), (1, 0, −2).

z = −2
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10) Find an equation of the plane passing through points  and 

For the following exercises, find the equation of the sphere in standard form that satisfies the given conditions.

11) Center  and radius 

Solution: 

12) Center  and radius 

13) Diameter  where  and 

Solution: 

14) Diameter  where  and 

For the following exercises, find the center and radius of the sphere with an equation in general form that is given.

15) 

Solution: Center  and radius 

16) 

For the following exercises, express vector  with the initial point at  and the terminal point at 

a. in component form and

b. by using standard unit vectors.

17)  and 

Solution: 

18)  and 

19)  and , where  is the midpoint of the line segment 

Solution: 

20)  and , where  is the midpoint of the line segment 

21) Find terminal point  of vector  with the initial point at 

Solution: 

22) Find initial point  of vector  with the terminal point at 

For the following exercises, use the given vectors  and  to find and express the vectors , and  in component
form.

23) 

Solution: 

24) 

25) 

Solution: 

26) 

For the following exercises, vectors  and  are given. Find the magnitudes of vectors  and .

27) 

Solution: 

28) 

(1, 9, 2), (1, 3, 6), (1, −7, 8).

C(−1, 7, 4) 4

(x+1 +(y−7 +(z−4 = 16)2 )2 )2

C(−4, 7, 2) 6

PQ, P (−1, 5, 7) Q(−5, 2, 9)

(x+3 +(y−3.5 +(z−8 =)2 )2 )2 29

4

PQ, P (−16, −3, 9) Q(−2, 3, 5)

4 +4 +4 +8x−16z+4 = 0x2 y2 z2

C(−1, 0, 2) 2

+ + −6x+8y−10z+25 = 0x2 y2 z2

PQ
→

P Q

P (3, 0, 2) Q(−1, −1, 4)

a. = ⟨−4, −1, 2⟩; b. = −4i−j+2kPQ
→

PQ
→

P (0, 10, 5) Q(1, 1, −3)

P (−2, 5, −8) M(1, −7, 4) M PQ

a. = ⟨6, −24, 24⟩; . = 6i−24j+24kPQ
→

PQ
→

Q(0, 7, −6) M(−1, 3, 2) M PQ

Q = ⟨7, −1, 3⟩PQ
→

P (−2, 3, 5).

Q(5, 2, 8)

P = ⟨−9, 1, 2⟩PQ
→

Q(10, 0, −1).

a b a+b, 4a −5a+3b

a = ⟨−1, −2, 4⟩, b = ⟨−5, 6, −7⟩

a+b = ⟨−6, 4, −3⟩, 4a = ⟨−4, −8, 16⟩, −5a+3b = ⟨−10, 28, −41⟩

a = ⟨3, −2, 4⟩, b = ⟨−5, 6, −9⟩

a = −k, b = −i

a+b = ⟨−1, 0, −1⟩, 4a = ⟨0, 0, −4⟩, −5a+3b = ⟨−3, 0, 5⟩

a = i+j+k, b = 2i−3j+2k

u v u−v −2u

u = 2i+3j+4k, v= −i+5j−k

∥u−v∥ = , ∥ −2u∥ = 238−−√ 29−−√

u = i+j, v= j−k
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29)  where  is a real number.

Solution: 

30)  where  is a real number.

For the following exercises, find the unit vector in the direction of the given vector .

31) 

Solution: 

32) 

33) , where  and 

Solution: 

34)  where 

35)  where  and 

Solution: 

36)  where , and 

37) Determine whether  and  are equivalent vectors, where  and 

Solution: Equivalent vectors

38) Determine whether the vectors  and  are equivalent, where  and .

For the following exercises, find vector  with a magnitude that is given and satisfies the given conditions.

39)  and  have the same direction

Solution: 

40)  and  have the same direction

41)  and  have opposite directions for any , where  is a real number

Solution: 

42)  and  have opposite directions for any , where  is a real number

43) Determine a vector of magnitude  in the direction of vector , where  and 

Solution: 

44) Find a vector of magnitude  that points in the opposite direction than vector , where  and  Express
the answer in component form.

45) Consider the points  and , where  and  are negative real numbers. Find  and  such that 

Solution: 

46) Consider points  and  where  and  are positive real numbers. Find  and  such that 
 and .

u = ⟨2cost, −2sint, 3⟩, v= ⟨0, 0, 3⟩, t

∥u−v∥ = 2, ∥ −2u∥ = 2 13−−√

u = ⟨0, 1, sinht⟩, v= ⟨1, 1, 0⟩, t

a

a = 3i−4j

a = i− j
3

5

4

5

a = ⟨4, −3, 6⟩

a = PQ
→

P (−2, 3, 1) Q(0, −4, 4)

⟨ , − , ⟩
2

62−−√

7

62−−√

3

62−−√

a = ,OP
→

P (−1, −1, 1)

a = u−v+w, u = i−j−k, v= 2i−j+k, w = −i+j+3k

⟨− , , ⟩
2

6–√

1

6–√

1

6–√

a = 2u+v−w, u = i−k, v= 2j w = i−j

AB
→

PQ
→

A(1, 1, 1),B(3, 3, 3),P (1, 4, 5), Q(3, 6, 7).

AB
→

PQ
→

A(1, 4, 1),B(−2, 2, 0),P (2, 5, 7), Q(−3, 2, 1)

u

v= ⟨7, −1, 3⟩, ∥u∥ = 10, u v

u = ⟨ , − , ⟩
70

59−−√

10

59−−√

30

59−−√

v= ⟨2, 4, 1⟩, ∥u∥ = 15, u v

v= ⟨2sint, 2cost, 1⟩, ∥u∥ = 2, u v t t

u = ⟨− sint, − cost, − ⟩
4

5–√

4

5–√

2

5–√

v= ⟨3sinht, 0, 3⟩, ∥u∥ = 5, u v t t

5 AB
→

A(2, 1, 5) B(3, 4, −7).

⟨ , , − ⟩
5

154
−−−√

15

154
−−−√

60

154
−−−√

2 AB
→

A(−1, −1, 1) B(0, 1, 1).

A(2,α, 0),B(0, 1, β), C(1, 1, β) α β α β

− + ∥=∥ ∥= 4.
∥
∥
∥OA

→
OB
→

OC
→

OB
→

α = − , β = −7–√ 15−−√

A(α, 0, 0),B(0, β, 0), C(α, β, β), α β α β

+ ∥=∥∥OĀ OB̄ 2–√ ∥=∥∥OC̄ 3–√
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47) Let  be a point situated at an equal distance from points  and . Show that point  lies on the
plane of equation 

48) Let  be a point situated at an equal distance from the origin and point . Show that the coordinates of point P
satisfy the equation 

49) The points  and  are collinear (in this order) if the relation  is satisfied. Show that 

 and  are collinear points.

50) Show that points  and  are not collinear.

51) [T] A force  of  acts on a particle in the direction of the vector , where 

a. Express the force as a vector in component form.

b. Find the angle between force  and the positive direction of the x-axis. Express the answer in degrees rounded to the
nearest integer.

Solution: 

52) [T] A force  of  acts on a box in the direction of the vector , where 

a. Express the force as a vector by using standard unit vectors.

b. Find the angle between force  and the positive direction of the x-axis.

53) If  is a force that moves an object from point  to another point , then the displacement vector is
defined as . A metal container is lifted  m vertically by a constant force . Express
the displacement vector  by using standard unit vectors.

Solution: 

54) A box is pulled  yd horizontally in the x-direction by a constant force . Find the displacement vector in component form.

55) The sum of the forces acting on an object is called the resultant or net force. An object is said to be in static equilibrium if the
resultant force of the forces that act on it is zero. Let , and  be three forces acting
on a box. Find the force  acting on the box such that the box is in static equilibrium. Express the answer in component form.

Solution: 

56) [T] Let  be n forces acting on a particle, with 

a. Find the net force  Express the answer using standard unit vectors.

b. Use a computer algebra system (CAS) to find n such that 

57) The force of gravity  acting on an object is given by , where m is the mass of the object (expressed in kilograms) and
 is acceleration resulting from gravity, with  A 2-kg disco ball hangs by a chain from the ceiling of a room.

a. Find the force of gravity  acting on the disco ball and find its magnitude.

b. Find the force of tension  in the chain and its magnitude.

Express the answers using standard unit vectors.

P (x, y, z) A(1, −1, 0) B(−1, 2, 1) P

−2x+3y+z = 2.

P (x, y, z) A(4, 1, 2)
8x+2y+4z = 21.

A,B, C ∥ + ∥ ∥=∥
∥
∥
∥AB

→
BC
→

AC
→ ∥

∥
∥

A(5, 3, −1),B(−5, −3, 1), C(−15, −9, 3)

A(1, 0, 1),B(0, 1, 1), C(1, 1, 1)

F 50N OP
→

P (3, 4, 0).

F

a.F = ⟨30, 40, 0⟩; b. 53°

F 40N OP
→

P (1, 0, 2).

F

F ( , , )P1 x1 y1 z1 ( , , )P2 x2 y2 z2

D = ( − )i+( − )j+( − )kx2 x1 y2 y1 z2 z1 10 F

D

D = 10k

4 F

= ⟨10, 6, 3⟩, = ⟨0, 4, 9⟩F1 F2 = ⟨10, −3, −9⟩F3

F4

= ⟨−20, −7, −3⟩F4

= ⟨1, k, ⟩, k = 1, . . . ,nFk k2 n ≥ 2.

F = .∑
k=1

n

Fk

∥F ∥< 100.

F F = mg

g ∥g ∥= 9.8N/kg.

F

T
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Figure 18: (credit: modification of work by Kenneth Lu, Flickr)

Solution: 

58) A 5-kg pendant chandelier is designed such that the alabaster bowl is held by four chains of equal length, as shown in the
following figure.

a. Find the magnitude of the force of gravity acting on the chandelier.

b. Find the magnitudes of the forces of tension for each of the four chains (assume chains are essentially vertical).

59) [T] A 30-kg block of cement is suspended by three cables of equal length that are anchored at points 
and . The load is located at , as shown in the following figure. Let , and  be the forces of
tension resulting from the load in cables  and  respectively.

a. Find the gravitational force  acting on the block of cement that counterbalances the sum  of the forces of
tension in the cables.

b. Find forces  and . Express the answer in component form.

a.F = −19.6k, ∥ F ∥= 19.6N ; b.T = 19.6k, ∥T∥ = 19.6N

P (−2, 0, 0),Q(1, , 0),3–√
R(1, − , 0)3–√ S(0, 0, −2 )3–√ ,F1 F2 F3

RS,QS, PS,

F + +F1 F2 F3

, ,F1 F2 F3
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Solution: a.  N; b. , and  (each

component is expressed in newtons)

60) Two soccer players are practicing for an upcoming game. One of them runs 10 m from point A to point B. She then turns left at
 and runs 10 m until she reaches point C. Then she kicks the ball with a speed of 10 m/sec at an upward angle of  to her

teammate, who is located at point A. Write the velocity of the ball in component form.

61) Let  be the position vector of a particle at the time , where  and  are smooth functions
on . The instantaneous velocity of the particle at time  is defined by vector , with components that
are the derivatives with respect to , of the functions , and , respectively. The magnitude  of the instantaneous velocity
vector is called the speed of the particle at time . Vector , with components that are the second
derivatives with respect to , of the functions  and , respectively, gives the acceleration of the particle at time . Consider 

 the position vector of a particle at time  where the components of  are expressed in centimeters
and time is expressed in seconds.

a. Find the instantaneous velocity, speed, and acceleration of the particle after the first second. Round your answer to two
decimal places.

b. Use a CAS to visualize the path of the particle—that is, the set of all points of coordinates  where 

Solution:

 (each component is expressed in centimeters per second);  (expressed in
centimeters per second);  (each component expressed in centimeters per second squared);

b.

F = −294k = ⟨− , 49, −98⟩, = ⟨− , −49, −98⟩F1
49 3

–√

3
F2

49 3
–√

3
= ⟨ 3, 0, −98⟩F3

98

3
–√

90° 45°

r(t) = ⟨x(t), y(t), z(t)⟩ t ∈ [0,T ] x, y, z

[0,T ] t v(t) = ⟨ (t), (t), (t)⟩x′ y′ z′

t x, y z ∥v(t)∥
t a(t) = ⟨ (t), (t), (t)⟩x′′ y′′ z′′

t x, y, z t

r(t) = ⟨cost, sint, 2t⟩ t ∈ [0, 30], r

(cost, sint, 2t),
t ∈ [0, 30].

a. v(1) = ⟨−0.84, 0.54, 2⟩ ∥v(1) ∥= 2.24
a(1) = ⟨−0.54, −0.84, 0⟩
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62) [T] Let  be the position vector of a particle at time  (in seconds), where  (here the components of
 are expressed in centimeters).

a. Find the instantaneous velocity, speed, and acceleration of the particle after the first two seconds. Round your answer to
two decimal places.

b. Use a CAS to visualize the path of the particle defined by the points  where 

1.4: The Dot Product 
For the following exercises, the vectors  and  are given. Calculate the dot product .

1) 

Solution: 6

2) 

3) 

Solution: 0

4) 

For the following exercises, the vectors , and  are given. Determine the vectors  and  Express the vectors in
component form.

5) 

Solution: 

6) 

7) 

Solution: 

8) 

For the following exercises, the two-dimensional vectors  and  are given.

a. Find the measure of the angle  between a and b. Express the answer in radians rounded to two decimal places, if it is not
possible to express it exactly.

b. Is  an acute angle?

9) [T] 

Solution: rad;  is not acute.

10) [T] 

11) 

Solution: rad;  is acute.

12) 

r(t) = ⟨t, 2 , 4 ⟩t2 t2 t t ∈ [0, 10]
r

(t, 2 , 4 ),t2 t2 t ∈ [0, 60].

u v u ⋅ v

u = ⟨3, 0⟩, v= ⟨2, 2⟩

u = ⟨3, −4⟩, v= ⟨4, 3⟩

u = ⟨2, 2, −1⟩, v= ⟨−1, 2, 2⟩

u = ⟨4, 5, −6⟩, v= ⟨0, −2, −3⟩

a, b c (a ⋅ b)c (a ⋅ c)b.

a = ⟨2, 0, −3⟩, b = ⟨−4, −7, 1⟩, c = ⟨1, 1, −1⟩

(a ⋅ b)c = ⟨−11, −11, 11⟩; (a ⋅ c)b = ⟨−20, −35, 5⟩

a = ⟨0, 1, 2⟩, b = ⟨−1, 0, 1⟩, c = ⟨1, 0, −1⟩

a = i+j, b = i−k, c = i−2k

(a ⋅ b)c = ⟨1, 0, −2⟩; (a ⋅ c)b = ⟨1, 0, −1⟩

a = i−j+k, b = j+3k, c = −i+2j−4k

a b

θ

θ

a = ⟨3, −1⟩, b = ⟨−4, 0⟩

a. θ = 2.82 b. θ

a = ⟨2, 1⟩, b = ⟨−1, 3⟩

u = 3i, v= 4i+4j

a. θ =
π

4
b. θ

u = 5i, v= −6i+6j
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For the following exercises, find the measure of the angle between the three-dimensional vectors  and . Express the answer in
radians rounded to two decimal places, if it is not possible to express it exactly.

13) 

Solution: 

14) 

15) 

Solution: 

16) 

17) [T]  where  and 

Solution: rad

18) [T]  where  and 

For the following exercises determine whether the given vectors are orthogonal.

19)  where x and y are nonzero real numbers

Solution: Orthogonal

20)  where x and y are nonzero real numbers

21) 

Solution: Not orthogonal

22) 

23) Find all two-dimensional vectors a orthogonal to vector  Express the answer in component form.

Solution:  where  is a real number

24) Find all two-dimensional vectors  orthogonal to vector  Express the answer by using standard unit vectors.

25) Determine all three-dimensional vectors  orthogonal to vector  Express the answer by using standard unit
vectors.

Solution:  where  and  are real numbers such that 

26) Determine all three-dimensional vectors  orthogonal to vector  Express the answer in component form.

27) Determine the real number  such that vectors  and  are orthogonal.

Solution: 

28) Determine the real number  such that vectors  and  are orthogonal.

29) [T] Consider the points  and .

a. Determine vectors  and . Express the answer by using standard unit vectors.

b. Determine the measure of angle O in triangle OPQ. Express the answer in degrees rounded to two decimal places.

Solution: 

30) [T] Consider points  and .

a. Determine vectors  and . Express the answer in component form.

b. Determine the measure of angle B in triangle ABC. Express the answer in degrees rounded to two decimal places.

31) Determine the measure of angle A in triangle ABC, where  and  Express your answer in
degrees rounded to two decimal places.

a b

a = ⟨3, −1, 2⟩, b = ⟨1, −1, −2⟩

θ =
π

2

a = ⟨0, −1, −3⟩, b = ⟨2, 3, −1⟩

a = i+j, b = j−k

θ =
π

3

a = i−2j+k, b = i+j−2k

a = 3i−j−2k, b = v+w, v= −2i−3j+2k w = i+2k

θ = 2

a = 3i−j+2k, b = v−w, v= 2i+j+4k w = 6i+j+2k

a = ⟨x, y⟩, b = ⟨−y, x⟩,

a = ⟨x, x⟩, b = ⟨−y, y⟩,

a = 3i−j−2k, b = −2i−3j+k

a = i−j, b = 7i+2j−k

b = ⟨3, 4⟩.

a = ⟨− ,α⟩,
4α

3
α ≠ 0

a b = ⟨5, −6⟩.

u v= ⟨1, 1, 0⟩.

u = −αi+αj+βk, α β + ≠ 0α2 β2

u v= i−j−k.

α a = 2i+3j b = 9i+αj

α = −6

α a = −3i+2j b = 2i+αj

P (4, 5) Q(5, −7)

OP
→

OQ
→

a. →= 4i+5j, = 5i−7j; b. 105.8°OP
→

OQ
→

A(1, 1),B(2, −7), C(6, 3)

BA
→

BC
→

A(1, 1, 8),B(4, −3, −4), C(−3, 1, 5).
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Solution: 

32) Consider points  and  Determine the angle between vectors  and . Express the answer in
degrees rounded to two decimal places.

For the following exercises, determine which (if any) pairs of the following vectors are orthogonal.

33) 

Solution:  and  are orthogonal;  and  are orthogonal.

34) 

35) Use vectors to show that a parallelogram with equal diagonals is a rectangle.

36) Use vectors to show that the diagonals of a rhombus are perpendicular.

37) Show that  is true for any vectors , and .

38) Verify the identity  for vectors  and 

For the following problems, the vector  is given.

a. Find the direction cosines for the vector u.

b. Find the direction angles for the vector u expressed in degrees. (Round the answer to the nearest integer.)

39) 

Solution:  and  and 

40) 

41) 

Solution:  and  and 

42) 

43) Consider  a nonzero three-dimensional vector. Let  and  be the directions of the cosines of .
Show that 

44) Determine the direction cosines of vector  and show they satisfy 

of vector v into the orthogonal components w and q, where w is the projection of v onto u and q is a vector orthogonal to the
direction of u.

For the following exercises, the vectors  and  are given.

a. Find the vector projection  of vector  onto vector . Express your answer in component form.

b. Find the scalar projection  of vector  onto vector .

45) 

Solution: 

46) 

47) 

Solution: 

48) 

49) Consider the vectors  and 

a. Find the component form of vector  that represents the projection of  onto .

68.33°

P (3, 7, −2) Q(1, 1, −3). OP
→

OQ
→

u = ⟨3, 7, −2⟩, v= ⟨5, −3, −3⟩,w = ⟨0, 1, −1⟩

u v v w

u = i−k, v= 5j−5k,w = 10j

u ⋅ (v+w) = u ⋅ v+u ⋅w u, v w

u ⋅ (v+w) = u ⋅ v+u ⋅w u = ⟨1, 0, 4⟩, v= ⟨−2, 3, 5⟩, w = ⟨4, −2, 6⟩.

u

u = ⟨2, 2, 1⟩

a. cosα = , cosβ = ,
2

3

2

3
cosγ = ; b.α = 48°, β = 48°,

1

3
γ = 71°

u = i−2j+2k

u = ⟨−1, 5, 2⟩

a. cosα = − , cosβ = ,
1

30
−−√

5

30
−−√

cosγ = ; b.α = 101°, β = 24°,
2

30
−−√

γ = 69°

u = ⟨2, 3, 4⟩

u = ⟨a, b, c⟩ cosα, cosβ, cosγ u

co α+co β+co γ = 1.s2 s2 s2

u = i+2j+2k co α+co β+co γ = 1.s2 s2 s2

u v

w = pro vju v u

com vpu v u

u = 5i+2j, v= 2i+3j

a.w = ⟨ , ⟩; b. com v=
80

29

32

29
pu

16

29
−−√

u = ⟨−4, 7⟩, v= ⟨3, 5⟩

u = 3i+2k, v= 2j+4k

a.w = ⟨ , 0, ⟩; b. com v=
24

13

16

13
pu

8

13−−√

u = ⟨4, 4, 0⟩, v= ⟨0, 4, 1⟩

u = 4i−3j v= 3i+2j.

w = pro vju v u
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b. Write the decomposition  of vector  into the orthogonal components  and , where  is the projection of 
onto  and  is a vector orthogonal to the direction of .

Solution: 

50) Consider vectors  and 

a. Find the component form of vector  0that represents the projection of  onto .

b. Write the decomposition  of vector  into the orthogonal components  and , where  is the projection of 
onto  and  is a vector orthogonal to the direction of .

51) A methane molecule has a carbon atom situated at the origin and four hydrogen atoms located at points 
 and  (see figure).

a. Find the distance between the hydrogen atoms located at P and R.

b. Find the angle between vectors  and  that connect the carbon atom with the hydrogen atoms located at S and R,
which is also called the bond angle. Express the answer in degrees rounded to two decimal places.

Solution: 

52) [T] Find the vectors that join the center of a clock to the hours 1:00, 2:00, and 3:00. Assume the clock is circular with a radius
of 1 unit.

53) Find the work done by force  (measured in Newtons) that moves a particle from point  to point 
 along a straight line (the distance is measured in meters).

Solution: 

54) [T] A sled is pulled by exerting a force of 100 N on a rope that makes an angle of  with the horizontal. Find the work done
in pulling the sled 40 m. (Round the answer to one decimal place.)

55) [T] A father is pulling his son on a sled at an angle of with the horizontal with a force of 25 lb (see the following image).
He pulls the sled in a straight path of 50 ft. How much work was done by the man pulling the sled? (Round the answer to the
nearest integer.)

Solution: 1175 ft⋅lb

56) [T] A car is towed using a force of 1600 N. The rope used to pull the car makes an angle of 25° with the horizontal. Find the
work done in towing the car 2 km. Express the answer in joules  rounded to the nearest integer.

57) [T] A boat sails north aided by a wind blowing in a direction of  with a magnitude of 500 lb. How much work is
performed by the wind as the boat moves 100 ft? (Round the answer to two decimal places.)

v= w+q v w q w v

u q u

a.w = ⟨ , − ⟩; b. q = ⟨ , ⟩, v= w+q = ⟨ , − ⟩+ ⟨ , ⟩
24

25

18

25

51

25

68

25

24

25

18

25

51

25

68

25

u = 2i+4j v= 4j+2k.

w = pro vju v u

v= w+q v w q w v

u q u

P (1, 1, −1),Q(1, −1, 1),R(−1, 1, 1), S(−1, −1, −1)

OS
→

OR
→

a. 2 ; b. 109.47°2–√

F = ⟨5, 6, −2⟩ P (3, −1, 0)
Q(2, 3, 1)

17N ⋅m

25°

20°

(1J = 1N ⋅m)

N30°E
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Answer
 ft-lbs  ft-lbs

Solution:

Vector representing the wind:  
Vector representing the displacement to the north:  
Work done by the wind:  ft-lbs  ft-lbs

58) Vector  represents the price of certain models of bicycles sold by a bicycle shop. Vector 
represents the number of bicycles sold of each model, respectively. Compute the dot product  and state its meaning.

59) [T] The directions of two forces  and  are represented by vectors with initial points that are at the origin. The first force
has a magnitude of 20 lb and the terminal point of the direction vector is point . The second force has a magnitude of 40
lb and the terminal point of its direction vector is point . Let F be the resultant force of forces  and .

a. Find the magnitude of . (Round the answer to one decimal place.)

b. Find the direction angles of . (Express the answer in degrees rounded to one decimal place.)

Solution:  lb; b. The direction angles are  and 

60) [T] Consider  the position vector of a particle at time , where the components of  are

expressed in centimeters and time in seconds. Let  be the position vector of the particle after 1 sec.

a. Show that all vectors , where  is an arbitrary point, orthogonal to the instantaneous velocity vector v(1) of

the particle after 1 sec, can be expressed as , where  The
set of point Q describes a plane called the normal plane to the path of the particle at point P.

b. Use a CAS to visualize the instantaneous velocity vector and the normal plane at point P along with the path of the
particle.

1.5: The Cross Product 

For the following exercises, the vectors  and  are given.

a. Find the cross product  of the vectors  and . Express the answer in component form.

b. Sketch the vectors  and 

1) 

Solution:

b.

2) 

25000 3–√ ≈ 43, 301.27

= 500 cos +500 sinw
⇀ 60∘ î 60∘ ĵ

= 100d
⇀

ĵ

W = ⋅ = 25000w
⇀

d
⇀

3–√ ≈ 43, 301.27

p = ⟨150, 225, 375⟩ n = ⟨10, 7, 9⟩

p ⋅n

F1 F2

P (1, 1, 0)
Q(0, 1, 1) F1 F2

F

F

a. ∥ + ∥= 52.9F1 F2 α = 74.5°, β = 36.7°, γ = 57.7°.

r(t) = ⟨cost, sint, 2t⟩ t ∈ [0, 30] r

OP
→

PQ
→

Q(x, y, z)

= ⟨x−cos1, y−sin1, z−2⟩PQ
→

xsin1 −ycos1 −2z+4 = 0.

u v

u×v u v

u, v, u×v.

u = ⟨2, 0, 0⟩, v= ⟨2, 2, 0⟩

a. u×v= ⟨0, 0, 4⟩;

u = ⟨3, 2, −1⟩, v= ⟨1, 1, 0⟩
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3) 

Solution:

a. 

b.

4) 

5) Simplify 

Solution: 

6) Simplify 

In the following exercises, vectors  and  are given. Find unit vector  in the direction of the cross product vector  Express
your answer using standard unit vectors.

7) 

Solution: 

8) 

9)  where , and 

Solution: 

10)  where  and 

11) Determine the real number  such that  and  are orthogonal, where  and 

Solution: 

12) Show that  and  cannot be orthogonal for any α real number, where  and .

13) Show that  is orthogonal to  and , where  and  are nonzero vectors.

14) Show that  is orthogonal to , where  and  are nonzero vectors.

15) Calculate the determinant .

Solution: 

u = 2i+3j, v= j+2k

a. u×v= ⟨6, −4, 2⟩;

u = 2j+3k, v= 3i+k

(i× i−2i×j−4i×k+3j×k) × i.

−2j−4k

j×(k×j+2j× i−3j×j+5i×k).

u v w u×v.

u = ⟨3, −1, 2⟩, v= ⟨−2, 0, 1⟩

w = − i− j− k
1

3 6
–√

7

3 6
–√

2

3 6
–√

u = ⟨2, 6, 1⟩, v= ⟨3, 0, 1⟩

u = , v= ,AB
→

AC
→

A(1, 0, 1),B(1, −1, 3) C(0, 0, 5)

w = − i− j− k
4

21
−−√

2

21
−−√

1

21
−−√

u = , v= ,OP
→

PQ
→

P (−1, 1, 0) Q(0, 2, 1)

α u×v i u = 3i+j−5k v= 4i−2j+αk.

α = 10

u×v 2i−14j+2k u = i+7j−k v= αi+5j+k

u×v u+v u−v u v

v×u (u ⋅ v)(u+v) +u u v

⎡

⎣
⎢

i

1

2

j

0

K

−1

3

7
⎤

⎦
⎥

−3i+11j+2k
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16) Calculate the determinant .

For the following exercises, the vectors  and  are given. Use determinant notation to find vector  orthogonal to vectors  and .

17)  where  is a real number

Solution: 

18)  where  is a nonzero real number

19) Find vector  where  and 

Solution: 

20) Find vector  where  and 

21) [T] Use the cross product  to find the acute angle between vectors  and , where  and  Express the
answer in degrees rounded to the nearest integer.

Solutuion: 

22) [T] Use the cross product  to find the obtuse angle between vectors  and , where  and 
Express the answer in degrees rounded to the nearest integer.

23) Use the sine and cosine of the angle between two nonzero vectors  and  to prove Lagrange’s identity: 
.

24) Verify Lagrange’s identity  for vectors  and 

25) Nonzero vectors  and  are called collinear if there exists a nonzero scalar  such that . Show that  and  are
collinear if and only if 

26) Nonzero vectors  and  are called collinear if there exists a nonzero scalar  such that . Show that vectors  and 

 are collinear, where  and 

27) Find the area of the parallelogram with adjacent sides  and .

Solution: 

28) Find the area of the parallelogram with adjacent sides  and 

29) Consider points  and 

a. Find the area of parallelogram ABCD with adjacent sides  and .

b. Find the area of triangle ABC.

c. Find the distance from point A to line BC.

Solution: 

30) Consider points  and 

a. Find the area of parallelogram ABCD with adjacent sides  and .

b. Find the area of triangle ABC.

c. Find the distance from point B to line AC.

⎡

⎣
⎢

i

0

1

j

3

6

K

−4

−1

⎤

⎦
⎥

u v w u v

u = ⟨−1, 0, ⟩, v= ⟨1, , 0⟩,et e−t t

w = ⟨−1, , − ⟩et e−t

u = ⟨1, 0, x⟩, v= ⟨ , 1, 0⟩,
2

x
x

(a−2b) ×c, a = , b = ,
⎡

⎣
⎢

i

2

0

j

−1

1

k

5

8

⎤

⎦
⎥

⎡

⎣
⎢

i

0

2

j

1

−1

K

1

−2

⎤

⎦
⎥ c = i+j+k.

−26i+17j+9k

c×(a+3b), a = , b = ,
⎡

⎣
⎢

i

5

0

j

0

1

K

9

0

⎤

⎦
⎥

⎡

⎣
⎢

i

0

7

j

−1

1

k

1

−1

⎤

⎦
⎥ c = i−k.

u×v u v u = i+2j v= i+k.

72°

u×v u v u = −i+3j+k v= i−2j.

u v

∥u×v = ∥u ∥v −(u ⋅ v∥2 ∥2 ∥2 )2

∥u×v = ∥u ∥v −(u ⋅ v∥2 ∥2 ∥2 )2 u = −i+j−2k v= 2i−j.

u v α v= αu u v

u×v= 0.

u v α v= αu AB
→

AC
→

A(4, 1, 0),B(6, 5, −2), C(5, 3, −1).

u = ⟨3, 2, 0⟩ v= ⟨0, 2, 1⟩

7

u = i+j v= i+k.

A(3, −1, 2),B(2, 1, 5), C(1, −2, −2).

AB
→

AC
→

a. 5 ; b. ; c.6–√
5 6–√

2

5 6–√

59−−√

A(2, −3, 4),B(0, 1, 2), C(−1, 2, 0).

AB
→

AC
→
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In the following exercises, vectors , and  are given.

a. Find the triple scalar product 

b. Find the volume of the parallelepiped with the adjacent edges , and .

31)  and 

Solution: 

32)  and 

33) Calculate the triple scalar products  and  where  and 

Solution: 

34) Calculate the triple scalar products  and  where  and 

35) Find vectors , and  with a triple scalar product given by the determinant . Determine their triple scalar

product.

Solution: 

36) The triple scalar product of vectors  and  is given by the determinant . Find vector 

37) Consider the parallelepiped with edges  and , where  and 

a. Find the real number  such that the volume of the parallelepiped is  units

b. For  find the height  from vertex  of the parallelepiped. Sketch the parallelepiped.

Solution: 

38) Consider points  and , with , and  positive real numbers.

a. Determine the volume of the parallelepiped with adjacent sides  and .

b. Find the volume of the tetrahedron with vertices  and . (Hint: The volume of the tetrahedron is  of the
volume of the parallelepiped.)

c. Find the distance from the origin to the plane determined by  and . Sketch the parallelepiped and tetrahedron.

39) Let  and  be three-dimensional vectors and c be a real number. Prove the following properties of the cross product.

a. 

b. 

c. 

d. 

u, v w

u ⋅ (v×w).

u, v w

u = i+j, v= j+k, w = i+k

a. 2; b. 2

u = ⟨−3, 5, −1⟩, v= ⟨0, 2, −2⟩, w = ⟨3, 1, 1⟩

v ⋅ (u×w) w ⋅ (u×v), u = ⟨1, 1, 1⟩, v= ⟨7, 6, 9⟩, w = ⟨4, 2, 7⟩.

v ⋅ (u×w) = −1,w ⋅ (u×v) = 1

w ⋅ (v×u) u ⋅ (w×v), u = ⟨4, 2, −1⟩, v= ⟨2, 5, −3⟩, w = ⟨9, 5, −10⟩.

a, b c
⎡

⎣
⎢

1

0

8

2

2

9

3

5

2

⎤

⎦
⎥

a = ⟨1, 2, 3⟩, b = ⟨0, 2, 5⟩, c = ⟨8, 9, 2⟩; a ⋅ (b×c) = −9

a, b, c
⎡

⎣
⎢

0

0

1

−2

1

−3

1

4

7

⎤

⎦
⎥ a−b+c.

OA,OB, OC A(2, 1, 0),B(1, 2, 0), C(0, 1,α).

α > 0 3 3.

α = 1, h C

a.α = 1; b.h = 1,

A(α, 0, 0),B(0, β, 0), C(0, 0, γ) α, β γ

, ,OA
→

OB
→

OC
→

O,A,B, C 1/6

A,B, C

u, v, w

u×u = 0

u×(v+w) = (u×v) +(u×w)

c(u×v) = (cu) ×v= u×(cv)

u ⋅ (u×v) = 0
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40) Show that vectors  and  satisfy the following properties of the cross product.

a. 

b. 

c. 

d. 

41) Nonzero vectors  and  are said to be linearly dependent if one of the vectors is a linear combination of the other two. For
instance, there exist two nonzero real numbers  and  such that . Otherwise, the vectors are called linearly
independent. Show that  and  are coplanar if and only if they are linear dependent.

42) Consider vectors  and 

a. Show that  and  are coplanar by using their triple scalar product

b. Show that  and  are coplanar, using the definition that there exist two nonzero real numbers  and  such that 

c. Show that  and  are linearly independent—that is, none of the vectors is a linear combination of the other two.

43) Consider points  and  Are vectors  and  linearly dependent (that is,
one of the vectors is a linear combination of the other two)?

Solution: Yes,  where  and 

44) Show that vectors  and  are linearly independent—that is, there exist two nonzero real numbers  and 
such that 

45) Let  and  be two-dimensional vectors. The cross product of vectors  and  is not defined. However,
if the vectors are regarded as the three-dimensional vectors  and , respectively, then, in this case, we
can define the cross product of  and . In particular, in determinant notation, the cross product of  and  is given by

.

Use this result to compute  where  is a real number.

Solution: 

46) Consider points  and 

a. Find the area of triangle  and 

b. Determine the distance from point  to the line passing through  and .

47) Determine a vector of magnitude  perpendicular to the plane that contains the x-axis and point 

Solution: 

48) Determine a unit vector perpendicular to the plane that contains the z-axis and point 

49) Consider  and  two three-dimensional vectors. If the magnitude of the cross product vector  is  times larger than the
magnitude of vector , show that the magnitude of  is greater than or equal to , where  is a natural number.

50) [T] Assume that the magnitudes of two nonzero vectors  and  are known. The function  defines the
magnitude of the cross product vector  where  is the angle between  and .

a. Graph the function .

b. Find the absolute minimum and maximum of function . Interpret the results.

c. If  and , find the angle between  and  if the magnitude of their cross product vector is equal to .

51) Find all vectors  that satisfy the equation 

Solution:  where  is any real number

u = ⟨1, 0, −8⟩, v= ⟨0, 1, 6⟩, w = ⟨−1, 9, 3⟩

u×u = 0

u×(v+w) = (u×v) +(u×w)

c(u×v) = (cu) ×v= u×(cv)

u ⋅ (u×v) = 0

u, v, w

α β w = αu+βv

u, v, w

u = ⟨1, 4, −7⟩, v= ⟨2, −1, 4⟩,w = ⟨0, −9, 18⟩, p = ⟨0, −9, 17⟩.

u, v, w

u, v, w α β

w = αu+βv.

u, v, p

A(0, 0, 2),B(1, 0, 2),C(1, 1, 2), D(0, 1, 2). , ,AB
→

AC
→

AD
→

= α +β ,AD
→

AB
→

AC
→

α = −1 β = 1.

i+j, i−j, i+j+k α β

i+j+k = α(i+j) +β(i−j).

u = ⟨ , ⟩u1 u2 v= ⟨ , ⟩v1 v2 u v

= ⟨ , , 0⟩u~ u1 u2 = ⟨ , , 0⟩v~ v1 v2

u~ v~ u~ v~

× =u~ v~
⎡

⎣
⎢

i

u1

v1

j

u2

v2

k

0

0

⎤

⎦
⎥

(icosθ+jsinθ) ×(isinθ−jcosθ), θ

−k

P (2, 1),Q(4, 2), R(1, 2).

P ,Q, R.

R P Q

10 P (1, 2, 4).

±⟨0, −4 , 2 ⟩5–√ 5–√

A(3, 1, −2).

u v u×v k

u v k k

u v f(θ) = ∥u∥∥v∥sinθ
u×v, θ ∈ [0, π] u v

f

f

∥u∥ = 5 ∥v∥ = 2 u v 9

w = ⟨ , , ⟩w1 w2 w3 ⟨1, 1, 1⟩×w = ⟨−1, −1, 2⟩.

w = ⟨ −1, +1, ⟩,w3 w3 w3 w3
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52) Solve the equation  where  is a nonzero vector with a magnitude of .

53) [T] A mechanic uses a 12-in. wrench to turn a bolt. The wrench makes a  angle with the horizontal. If the mechanic applies
a vertical force of  lb on the wrench handle, what is the magnitude of the torque at point  (see the following figure)? Express
the answer in foot-pounds rounded to two decimal places.

Solution: 8.66 ft-lb

54) [T] A boy applies the brakes on a bicycle by applying a downward force of 20 lb on the pedal when the 6-in. crank makes a 
 angle with the horizontal (see the following figure). Find the torque at point . Express your answer in foot-pounds rounded to

two decimal places.

55) [T] Find the magnitude of the force that needs to be applied to the end of a 20-cm wrench located on the positive direction of
the y-axis if the force is applied in the direction  and it produces a  N·m torque to the bolt located at the origin.

Solution: 250 N

56) [T] What is the magnitude of the force required to be applied to the end of a 1-ft wrench at an angle of  to produce a torque
of  N·m?

57) [T] The force vector  acting on a proton with an electric charge of  (in coulombs) moving in a magnetic field 
where the velocity vector  is given by  (here,  is expressed in meters per second,  is in tesla [T], and 

 is in newtons [N]). Find the force that acts on a proton that moves in the xy-plane at velocity  (in meters per
second) in a magnetic field given by .

Solution: 

58) [T] The force vector  acting on a proton with an electric charge of  moving in a magnetic field  where the
velocity vector  is given by  (here,  is expressed in meters per second,  in , and  in ). If the
magnitude of force  acting on a proton is  and the proton is moving at the speed of 300 m/sec in magnetic field 
of magnitude 2.4 T, find the angle between velocity vector  of the proton and magnetic field . Express the answer in degrees
rounded to the nearest integer.

60) [T] Consider  the position vector of a particle at time , where the components of  are

expressed in centimeters and time in seconds. Let  be the position vector of the particle after  sec.

a. Determine unit vector  (called the binormal unit vector) that has the direction of cross product vector 
where  and  are the instantaneous velocity vector and, respectively, the acceleration vector of the particle after 
seconds.

b. Use a CAS to visualize vectors  and  as vectors starting at point  along with the path of the particle.

Solution:

w× ⟨1, 0, −1⟩ = ⟨3, 0, 3⟩, w = ⟨ , , ⟩w1 w2 w3 3

30°
10 P

40° P

⟨0, 1, −2⟩ 100

35°
20

F 1.6 × C10−19 B

v F = 1.6 × (v×B)10−19 v B

F v= i+ j105 105

B = 0.3j

F = 4.8 × kN10−15

F 1.6 × C10−19 B

v F = 1.6 × (v×B)10−19 v B T F N

F 5.9 × N10−17 B

v B

r(t) = ⟨cost, sint, 2t⟩ t ∈ [0, 30] r

OP
→

1

B(t) v(t) ×a(t),
v(t) a(t) t

v(1), a(1), B(1) P

a.B(t) = ⟨ , − , ⟩;
2sint

5
–√

2cost

5
–√

1

5
–√
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b.

61) A solar panel is mounted on the roof of a house. The panel may be regarded as positioned at the points of coordinates (in
meters)  and  (see the following figure).

a. Find vector  perpendicular to the surface of the solar panels. Express the answer using standard unit
vectors.

b. Assume unit vector  points toward the Sun at a particular time of the day and the flow of solar

energy is  (in watts per square meter [ ]). Find the predicted amount of electrical power the panel can
produce, which is given by the dot product of vectors  and  (expressed in watts).

c. Determine the angle of elevation of the Sun above the solar panel. Express the answer in degrees rounded to the nearest
whole number. (Hint: The angle between vectors  and  and the angle of elevation are complementary.)

1.6: Equations of Lines and Planes in Space 

In the following exercises, points  and  are given. Let  be the line passing through points  and .

a. Find the vector equation of line .

b. Find parametric equations of line .

c. Find symmetric equations of line .

d. Find parametric equations of the line segment determined by  and .

1) 

Solution: 

2) 

3) 

A(8, 0, 0),B(8, 18, 0),C(0, 18, 8), D(0, 0, 8)

n = ×AB
→

AD
→

s = i+ j+ k
1

3–√

1

3–√

1

3–√
F = 900s W/m2

F n

n s

P Q L P Q

L

L

L

P Q

P (−3, 5, 9),Q(4, −7, 2)

a. r = ⟨−3, 5, 9⟩+ t⟨7, −12, −7⟩, t ∈ R; b. x = −3 +7t, y = 5 −12t, z = 9 −7t, t ∈ R; c. =
x+3

7

y−5

−12

= ; d. x = −3 +7t, y = 5 −12t, z = 9 −7t, t ∈ [0, 1]
z−9

−7

P (4, 0, 5),Q(2, 3, 1)

P (−1, 0, 5),Q(4, 0, 3)
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Solution: 

4) 

For the following exercises, point  and vector  are given. Let  be the line passing through point  with direction .

a. Find parametric equations of line .

b. Find symmetric equations of line .

c. Find the intersection of the line with the xy-plane.

5) 

Solution: 

6) 

7)  where  and 

Solution:  c. The line does not intersect the xy-plane.

8)  where  and 

For the following exercises, line  is given.

a. Find point  that belongs to the line and direction vector  of the line. Express  in component form.

b. Find the distance from the origin to line .

9) 

Solution: 

10) 

Find the distance between point  and the line of symmetric equations

11) 

Solution: 

Find the distance between point  and the line of parametric equations

12) 

For the following exercises, lines  and  are given.

a. Verify whether lines  and  are parallel.

b. If the lines  and  are parallel, then find the distance between them.

13) 

Solution: a. Parallel; b. 

14) 

15) Show that the line passing through points  and  is perpendicular to the line with equation 

16) Are the lines of equations  and  perpendicular to each
other?

17) Find the point of intersection of the lines of equations  and 

a. r = ⟨−1, 0, 5⟩+ t⟨5, 0, −2⟩, t ∈ R; b. x = −1 +5t, y = 0, z = 5 −2t, t ∈ R; c. = , y = 0; d. x = −1
x+1

5

z−5

−2
+5t, y = 0, z = 5 −2t, t ∈ [0, 1]

P (7, −2, 6),Q(−3, 0, 6)

P v L P v

L

L

P (1, −2, 3), v= ⟨1, 2, 3⟩

a. x = 1 + t, y = −2 +2t, z = 3 +3t, t ∈ R; b. = = ; c. (0, −4, 0)
x−1

1

y+2

2

z−3

3

P (3, 1, 5), v= ⟨1, 1, 1⟩

P (3, 1, 5), v= ,QR
→

Q(2, 2, 3) R(3, 2, 3)

a. x = 3 + t, y = 1, z = 5, t ∈ R; b. y = 1, z = 5;

P (2, 3, 0), v= ,QR
→

Q(0, 4, 5) R(0, 4, 6)

L

P v v

L

x = 1 + t, y = 3 + t, z = 5 +4t, t ∈ R

a.P (1, 3, 5), v= ⟨1, 1, 4⟩; b. 3–√

−x = y+1, z = 2

A(−3, 1, 1)

x = −y = −z.

2 2
–√

3
–√

A(4, 2, 5)

x = −1 − t, y = −t, z = 2, t ∈ R.

L1 L2

L1 L2

L1 L2

: x = 1 + t, y = t, z = 2 + t, t ∈ R, : x−3 = y−1 = z−3L1 L2

2
–√

3–√

: x = 2, y = 1, z = t, : x = 1, y = 1, z = 2 −3t, t ∈ RL1 L2

P (3, 1, 0) Q(1, 4, −3)
x = 3t, y = 3 +8t, z = −7 +6t, t ∈ R.

x = −2 +2t, y = −6, z = 2 +6t x = −1 + t, y = 1 + t, z = t, t ∈ R,

x = −2y = 3z x = −5 − t, y = −1 + t, z = t−11, t ∈ R.
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Solution: 

18) Find the intersection point of the x-axis with the line of parametric equations \(\displaystyle x=10+t,y=2−2t,z=−3+3t,

t∈R.\)

For the following exercises, lines  and  are given. Determine whether the lines are equal, parallel but not equal, skew, or
intersecting.

19)  and 

Solution: The lines are skew.

20)  and 

21)  and 

Solution: The lines are equal.

22)  and 

23) Consider line  of symmetric equations  and point 

a. Find parametric equations for a line parallel to  that passes through point .

b. Find symmetric equations of a line skew to  and that passes through point .

c. Find symmetric equations of a line that intersects  and passes through point .

Solution:  b. For instance, the line passing through  with direction vector 
 c. For instance, the line passing through  and point  that belongs to  is a line that intersects; 

24) Consider line  of parametric equations 

a. Find parametric equations for a line parallel to  that passes through the origin.

b. Find parametric equations of a line skew to  that passes through the origin.

c. Find symmetric equations of a line that intersects  and passes through the origin.

For the following exercises, point  and vector  are given.

a. Find the scalar equation of the plane that passes through  and has normal vector .

b. Find the general form of the equation of the plane that passes through  and has normal vector .

25) 

Solution: 

26) 

27) 

Solution: 

28) 

For the following exercises, the equation of a plane is given.

a. Find normal vector  to the plane. Express  using standard unit vectors.

b. Find the intersections of the plane with the axes of coordinates.

c. Sketch the plane.

29) [T] 

Solution:

(−12, 6, −4)

L1 L2

: x = y−1 = −zL1 : x−2 = −y =L2
z

2

: x = 2t, y = 0, z = 3, t ∈ RL1 : x = 0, y = 8 +s, z = 7 +s, s ∈ RL2

: x = −1 +2t, y = 1 +3t, z = 7t, t ∈ RL1 : x−1 = (y−4) = z−2L2
2

3

2

7

: 3x = y+1 = 2zL1 : x = 6 +2t, y = 17 +6t, z = 9 +3t, t ∈ RL2

L x−2 = −y =
z

2
A(1, 1, 1).

L A

L A

L A

a. x = 1 + t, y = 1 − t, z = 1 +2t, t ∈ R; A

j : x = 1, z = 1; A (2, 0, 0) L

L : = y−1 = z−1
x−1

−1

L x = t, y = 2t, z = 3, t ∈ R.

L

L

L

P n

P n

P n

P (0, 0, 0),n = 3i−2j+4k

a. 3x−2y+4z = 0; b. 3x−2y+4z = 0

P (3, 2, 2),n = 2i+3j−k

P (1, 2, 3),n = ⟨1, 2, 3⟩

a. (x−1) +2(y−2) +3(z−3) = 0; b. x+2y+3z−14 = 0

P (0, 0, 0),n = ⟨−3, 2, −1⟩

n n

4x+5y+10z−20 = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/63990?pdf


Access for free at OpenStax 1.E.26 https://math.libretexts.org/@go/page/63990

 and 

c.

30) 

31) 

Solution:

c.

32) 

33) Given point  and vector , find point  on the x-axis such that  and  are orthogonal.

Solution: 

34) Show there is no plane perpendicular to  that passes through points  and .

35) Find parametric equations of the line passing through point  that is perpendicular to the plane of equation 

Solution: 

36) Find symmetric equations of the line passing through point  that is perpendicular to the plane of equation 

a.n = 4i+5j+10k; b. (5, 0, 0), (0, 4, 0), (0, 0, 2);

3x+4y−12 = 0

3x−2y+4z = 0

a.n = 3i−2j+4k; b. (0, 0, 0);

x+z = 0

P (1, 2, 3) n = i+j Q PQ
→

n

(3, 0, 0)

n = i+j P (1, 2, 3) Q(2, 3, 4)

P (−2, 1, 3)
2x−3y+z = 7.

x = −2 +2t, y = 1 −3t, z = 3 + t, t ∈ R

P (2, 5, 4)
2x+3y−5z = 0.
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37) Show that line  is parallel to plane .

38) Find the real number  such that the line of parametric equations  is parallel to the plane of
equation 

For the following exercises, the equations of two planes are given.

a. Determine whether the planes are parallel, orthogonal, or neither.

b. If the planes are neither parallel nor orthogonal, then find the measure of the angle between the planes. Express the answer
in degrees rounded to the nearest integer.

39) [T] 

Solution: a. The planes are neither parallel nor orthogonal; b. 

40) 

41) 

Solution: a. The planes are parallel.

42) [T] 

43) Show that the lines of equations  and  are skew, and find the distance

between them.

Solution: 

44) Show that the lines of equations  and  are
skew, and find the distance between them.

45) Consider point  and the plane of equation .

a. Find the radius of the sphere with center  tangent to the given plane.

b. Find point P of tangency.

Solution: 

46) Consider the plane of equation 

a. Find the equation of the sphere with center  at the origin that is tangent to the given plane.

b. Find parametric equations of the line passing through the origin and the point of tangency.

47) Two children are playing with a ball. The girl throws the ball to the boy. The ball travels in the air, curves  ft to the right, and
falls  ft away from the girl (see the following figure). If the plane that contains the trajectory of the ball is perpendicular to the
ground, find its equation.

Solution: 

48) [T] John allocates  dollars to consume monthly three goods of prices , and . In this context, the budget equation is
defined as  where , and  represent the number of items bought from each of the goods. The
budget set is given by  and the budget plane is the part of the plane of equation 

 for which , and . Consider  and 

= =
x−1

2

y+1

3

z−2

4
x−2y+z = 6

α x = t, y = 2 − t, z = 3 + t, t ∈ R

αx+5y+z−10 = 0.

x+y+z = 0, 2x−y+z−7 = 0

62°

5x−3y+z = 4, x+4y+7z = 1

x−5y−z = 1, 5x−25y−5z = −3

x−3y+6z = 4, 5x+y−z = 4

x = t, y = 1 + t, z = 2 + t, t ∈ R, = = z−3
x

2

y−1

3

1

6
–√

x = −1 + t, y = −2 + t, z = 3t, t ∈ R, x = 5 +s, y = −8 +2s, z = 7s, s ∈ R

C(−3, 2, 4) 2x+4y−3z = 8

C

a. ; b.P (− , , )
18

29−−√

51

29

130

29

62

29

x−y−z−8 = 0.

C

3
5

4x−3y = 0

d a, b c

ax+by+cz = d, x ≥ 0, y ≥ 0 z ≥ 0
(x, y, z)|ax+by+cz ≤ d, x ≥ 0, y ≥ 0, z ≥ 0,

ax+by+cz = d x ≥ 0, y ≥ 0 z ≥ 0 a = $8, b = $5, c = $10, d = $500.
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a. Use a CAS to graph the budget set and budget plane.

b. For  find the new budget equation and graph the budget set in the same system of coordinates.

49) [T] Consider  the position vector of a particle at time , where the components of  are

expressed in centimeters and time is measured in seconds. Let  be the position vector of the particle after  sec.

a. Determine the velocity vector  of the particle after  sec.

b. Find the scalar equation of the plane that is perpendicular to  and passes through point . This plane is called the
normal plane to the path of the particle at point .

c. Use a CAS to visualize the path of the particle along with the velocity vector and normal plane at point .

Solution: 

c.

50) [T] A solar panel is mounted on the roof of a house. The panel may be regarded as positioned at the points of coordinates (in
meters)  and  (see the following figure).

a. Find the general form of the equation of the plane that contains the solar panel by using points  and , and show that

its normal vector is equivalent to 

b. Find parametric equations of line  that passes through the center of the solar panel and has direction vector 

 which points toward the position of the Sun at a particular time of day.

c. Find symmetric equations of line  that passes through the center of the solar panel and is perpendicular to it.

d. Determine the angle of elevation of the Sun above the solar panel by using the angle between lines  and .

1.7: Cylindrical and Quadric Surfaces 
For the following exercises, sketch and describe the cylindrical surface of the given equation.

1) [T] 

Solution: The surface is a cylinder with the rulings parallel to the y-axis.

z = 25,

r(t) = ⟨sint, cost, 2t⟩ t ∈ [0, 3] r

OP
→

1

v(1) 1

v(1) P

P

P

a. v(1) = ⟨cos1, −sin1, 2⟩; b. (cos1)(x−sin1) −(sin1)(y−cos1) +2(z−2) = 0;

A(8, 0, 0),B(8, 18, 0),C(0, 18, 8), D(0, 0, 8)

A,B, C

× .AB
→

AD
→

L1

s = i+ j+ k,
1

3–√

1

3–√

1

3–√

L2

L1 L2

+ = 1x2 z2
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2) [T] 

3) [T] 

Solution: The surface is a cylinder with rulings parallel to the y-axis.

4) [T] 

5) [T] 

Solution: The surface is a cylinder with rulings parallel to the x-axis.

6) [T] 

For the following exercises, the graph of a quadric surface is given.

a. Specify the name of the quadric surface.

b. Determine the axis of symmetry of the quadric surface.

7)

+ = 9x2 y2

z = cos(x)

z = ex

z = 9 −y2

z = ln(x)
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Solution: a. Cylinder; b. The x-axis

8)

9)

Solution: a. Hyperboloid of two sheets; b. The x-axis

10)
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For the following exercises, match the given quadric surface with its corresponding equation in standard form.

a. 

b. 

c. 

d. 

e. 

f. 

11) Hyperboloid of two sheets

Solution: b.

12) Ellipsoid

13) Elliptic paraboloid

Solution: d.

14) Hyperbolic paraboloid

15) Hyperboloid of one sheet

Solution: a.

16) Elliptic cone

For the following exercises, rewrite the given equation of the quadric surface in standard form. Identify the surface. Graph the
surfaces in #17, 19, 23, 25, 27.

17) 

Solution:  hyperboloid of one sheet with the x-axis as its axis of symmetry

18) 

19) 

Solution:  hyperboloid of two sheets with the y-axis as its axis of symmetry

20) 

21) 

Solution:  hyperbolic paraboloid with the y-axis as its axis of symmetry

22) 

+ − = 1
x2

4

y2

9

z2

12

− − = 1
x2

4

y2

9

z2

12

+ + = 1
x2

4

y2

9

z2

12

z = 4 +3x2 y2

z = 4 −x2 y2

4 + − = 0x2 y2 z2

− +36 +36 = 9x2 y2 z2

− + + = 1,
x2

9

y2

1
4

z2

1
4

−4 +25 + = 100x2 y2 z2

−3 +5 − = 10x2 y2 z2

− + − = 1,
x2

10
3

y2

2

z2

10

3 − −6 = 18x2 y2 z2

5y = −x2 z2

y = − + ,
z2

5

x2

5

8 −5 −10z = 0x2 y2
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23) 

Solurion:  ellipsoid

24) 

25) 

Solution:  elliptic cone with the z-axis as its axis of symmetry

26) 

27) 

Solution:  elliptic paraboloid with the x-axis as its axis of symmetry

28) 

For the following exercises, find the trace of the given quadric surface in the specified plane of coordinates and sketch it.

29) [T] 

Solution: Parabola 

30) [T] 

31) [T] 

Solution: Ellipse 

32) [T] 

33) [T] 

Solution: Ellipse 

+5 +3 −15 = 0x2 y2 z2

+ + = 1,
x2

15

y2

3

z2

5

63 +7 +9 −63 = 0x2 y2 z2

+5 −8 = 0x2 y2 z2

+ − = 0,
x2

40

y2

8

z2

5

5 −4 +20 = 0x2 y2 z2

6x = 3 +2y2 z2

x = + ,
y2

2

z2

3

49y = +7x2 z2

+ +4y = 0, z = 0x2 z2

y = − ,
x2

4

+ +4y = 0, x = 0x2 z2

−4 +25 + = 100, x = 0x2 y2 z2

+ = 1,
y2

4

z2

100

−4 +25 + = 100, y = 0x2 y2 z2

+ + = 1, x = 0x2 y2

4

z2

100

+ = 1,
y2

4

z2

100
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34) [T] 

35) Use the graph of the given quadric surface to answer the questions.

a. Specify the name of the quadric surface.

b. Which of the equations—  or  —
corresponds to the graph?

c. Use b. to write the equation of the quadric surface in standard form.

Solution: a. Ellipsoid; b. The third equation; c. 

36) Use the graph of the given quadric surface to answer the questions.

a. Specify the name of the quadric surface.

b. Which of the equations— , or  —corresponds to the graph
above?

c. Use b. to write the equation of the quadric surface in standard form.

For the following exercises, the equation of a quadric surface is given.

a. Use the method of completing the square to write the equation in standard form.

b. Identify the surface.

−y− = 1, y = 0x2 z2

16 +9 +36 = 3600, 9 +36 +16 = 3600,x2 y2 z2 x2 y2 z2 36 +9 +16 = 3600x2 y2 z2

+ + = 1
x2

100

y2

400

z2

225

36z = 9 + , 9 +4 = 36zx2 y2 x2 y2 −36z = −81 +4x2 y2
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37) 

Solution:  b. Cylinder centered at  with rulings parallel to the y-axis

38) 

39) 

Solution:  b. Hyperboloid of one sheet centered at  with the z-axis as its axis of

symmetry

40) 

41) 

Solution:  b. Elliptic cone centered at  with the z-axis as its axis of symmetry

42) 

43) Write the standard form of the equation of the ellipsoid centered at the origin that passes through points 

and 

Solution: 

44) Write the standard form of the equation of the ellipsoid centered at point  that passes through points 
 and .

45) Determine the intersection points of elliptic cone  with the line of symmetric equations 

Solution:  and 

46) Determine the intersection points of parabolic hyperboloid  with the line of parametric equations 
, where 

47) Find the equation of the quadric surface with points  that are equidistant from point  and plane of
equation  Identify the surface.

Solution:  elliptic paraboloid

48) Find the equation of the quadric surface with points  that are equidistant from point  and plane of equation 
 Identify the surface.

49) If the surface of a parabolic reflector is described by equation  find the focal point of the reflector.

Solution: 

50) Consider the parabolic reflector described by equation  Find its focal point.

51) Show that quadric surface  reduces to two parallel planes.

52) Show that quadric surface  reduces to two parallel planes passing.

53) [T] The intersection between cylinder  and sphere  is called a Viviani curve.

+2 +6x−8z+1 = 0x2 z2

a. + = 1;
(x+3)2

16

(z−2)2

8
(−3, 2)

4 − + −8x+2y+2z+3 = 0x2 y2 z2

+4 −4 −6x−16y−16z+5 = 0x2 y2 z2

a. +(y−2 −(z+2 = 1;
(x−3)2

4
)2 )2 (3, 2, −2),

+ −4y+4 = 0x2 z2

+ − +6x+9 = 0x2 y2

4

z2

3

a. (x+3 + − = 0;)2 y2

4

z2

3
(−3, 0, 0),

− + −12z+2x+37 = 0x2 y2 z2

A(2, 0, 0),B(0, 0, 1),

C(12, , ).11
−−

√
1

2

+ + = 1
x2

4

y2

16
z2

P (1, 1, 0)
A(6, 1, 0),B(4, 2, 0) C(1, 2, 1)

− − = 0x2 y2 z2

= = z.
x−1

2

y+1

3

(1, −1, 0) ( , 4, )
13

3

5

3

z = 3 −2x2 y2

x = 3t, y = 2t, z = 19t t ∈ R.

P (x, y, z) Q(0, −1, 0)
y = 1.

+ +4y = 0,x2 z2

P (x, y, z) Q(0, 2, 0)
y = −2.

400z = + ,x2 y2

(0, 0, 100)

z = 20 +20 .x2 y2

+ + +2xy+2xz+2yz+x+y+z = 0x2 y2 z2

+ + −2xy−2xz+2yz−1 = 0x2 y2 z2

(x−1 + = 1)2 y2 + + = 4x2 y2 z2
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a. Solve the system consisting of the equations of the surfaces to find the equation of the intersection curve. (Hint: Find  and
 in terms of .)

b. Use a computer algebra system (CAS) to visualize the intersection curve on sphere .

Solution:  where 

b.

54) Hyperboloid of one sheet  and elliptic cone  are represented in the following
figure along with their intersection curves. Identify the intersection curves and find their equations (Hint: Find y from the system
consisting of the equations of the surfaces.)

55) [T] Use a CAS to create the intersection between cylinder  and ellipsoid , and find
the equations of the intersection curves.

x

y z

+ + = 4x2 y2 z2

a. x = 2 − , y = ± ,
z2

2

z

2
4 −z2− −−−−

√ z ∈ [−2, 2];

25 +25 − = 25x2 y2 z2 −25 +75 + = 0x2 y2 z2

9 +4 = 18x2 y2 36 +16 +9 = 144x2 y2 z2
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Solution: two ellipses of equations  in planes 

56) [T] A spheroid is an ellipsoid with two equal semiaxes. For instance, the equation of a spheroid with the z-axis as its axis of

symmetry is given by , where  and  are positive real numbers. The spheroid is called oblate if , and

prolate for .

a. The eye cornea is approximated as a prolate spheroid with an axis that is the eye, where  and 
.Write the equation of the spheroid that models the cornea and sketch the surface.

b. Give two examples of objects with prolate spheroid shapes.

57) [T] In cartography, Earth is approximated by an oblate spheroid rather than a sphere. The radii at the equator and poles are
approximately mi and mi, respectively.

a. Write the equation in standard form of the ellipsoid that represents the shape of Earth. Assume the center of Earth is at the
origin and that the trace formed by plane  corresponds to the equator.

b. Sketch the graph.

c. Find the equation of the intersection curve of the surface with plane  that is parallel to the xy-plane. The
intersection curve is called a parallel.

d. Find the equation of the intersection curve of the surface with plane  that passes through the z-axis. The
intersection curve is called a meridian.

Solution:

b.

+ = 1
x2

2

y2

9
2

z = ±2 2–√

+ + = 1
x2

a2

y2

a2

z2

c2
a c c < a

c > a

a = 8.7mm

c = 9.6mm

3963 3950

z = 0

z = 1000

x+y = 0

a. + + = 1;
x2

39632

y2

39632

z2

39502
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c. The intersection curve is the ellipse of equation , and the intersection is an ellipse.; d.

The intersection curve is the ellipse of equation 

58) [T] A set of buzzing stunt magnets (or “rattlesnake eggs”) includes two sparkling, polished, superstrong spheroid-shaped
magnets well-known for children’s entertainment. Each magnet is  in. long and  in. wide at the middle. While tossing them
into the air, they create a buzzing sound as they attract each other.

a. Write the equation of the prolate spheroid centered at the origin that describes the shape of one of the magnets.

b. Write the equations of the prolate spheroids that model the shape of the buzzing stunt magnets. Use a CAS to create the
graphs.

59) [T] A heart-shaped surface is given by equation 

a. Use a CAS to graph the surface that models this shape.

b. Determine and sketch the trace of the heart-shaped surface on the xz-plane.

Solution:

a.

b. The intersection curve is 

+ =
x2

39632

y2

39632

(2950)(4950)

39502

+ = 1.
2y2

39632

z2

39502

1.625 0.5

( + + −1 − − = 0.x2 9

4
y2 z2 )3 x2z3 9

80
y2z3

( + −1 − = 0.x2 z2 )3 x2z3
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60) [T] The ring torus symmetric about the z-axis is a special type of surface in topology and its equation is given by 
, where . The numbers  and  are called are the major and minor radii,

respectively, of the surface. The following figure shows a ring torus for which  and .

a. Write the equation of the ring torus with  and , and use a CAS to graph the surface. Compare the graph with
the figure given.

b. Determine the equation and sketch the trace of the ring torus from a. on the xy-plane.

c. Give two examples of objects with ring torus shapes.

1.8: Cylindrical and Spherical Coordinates 
Use the following figure as an aid in identifying the relationship between the rectangular, cylindrical, and spherical coordinate
systems.

For the following exercises, the cylindrical coordinates  of a point are given. Find the rectangular coordinates  of
the point.

1) 

( + + + − = 4 ( + )x2 y2 z2 R2 r2)2 R2 x2 y2 R > r > 0 R r

R = 2 r = 1

R = 2 r = 1

(r, θ, z) (x, y, z)

(4, , 3)
π

6
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Solution: 

2) 

3) 

Solution: 

4) 

For the following exercises, the rectangular coordinates  of a point are given. Find 4 different representation of the point in
cylindrical coordinates  where 

5) 

Solution: 

6) 

7) 

Solution: 

8) 

For the following exercises, the equation of a surface in cylindrical coordinates is given. Find the equation of the surface in
rectangular coordinates. Identify and graph the surface.

9) [T] 

Solution: A cylinder of equation  with its center at the origin and rulings parallel to the z-axis,

10) [T] 

11) [T] 

Solution: Hyperboloid of two sheets of equation  with the y-axis as the axis of symmetry,

(2 , 2, 3)3–√

(3, , 5)
π

3

(4, , 3)
7π

6

(−2 , −2, 3)3–√

(2, π, −4)

(x, y, z)
(r, θ, z) −2π < θ < 2π

(1, , 2)3–√

(2, , 2)
π

3

(1, 1, 5)

(3, −3, 7)

(3 , − , 7)2
–√

π

4

(−2 , 2 , 4)2–√ 2–√

r = 4

+ = 16,x2 y2

z = co θr2 s2

cos(2θ) + +1 = 0r2 z2

− + − = 1,x2 y2 z2
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12) [T] 

13) [T] 

Solution: Cylinder of equation  with a center at  and radius , with rulings parallel to the z-axis,

14) [T] 

15) [T] 

Solution: Plane of equation 

16) [T] 

For the following exercises, the equation of a surface in rectangular coordinates is given. Find the equation of the surface in
cylindrical coordinates. Graph the surface for numbers 17 through 21

17) 

Solution: 

18) 

19) 

Solution: 

20) 

21) 

Solution: 

22) 

For the following exercises, the spherical coordinates  of a point are given. Find the rectangular coordinates  of the
point.

23) 

r = 3sinθ

r = 2cosθ

−2x+ = 0,x2 y2 (1, 0, 0) 1

+ = 5r2 z2

r = 2secθ

x = 2,

r = 3cscθ

z = 3

z = 3

x = 6

+ + = 9x2 y2 z2

+ = 9r2 z2

y = 2x2

+ −16x = 0x2 y2

r = 16cosθ, r = 0

+ −3 +2 = 0x2 y2 +x2 y2
− −−−−−

√

(ρ, θ,φ) (x, y, z)

(3, 0, π)
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Solution: 

24) 

25) 

Solution: 

26) 

For the following exercises, the rectangular coordinates  of a point are given. Find the spherical coordinates  of the
point. Express the measure of the angles in degrees rounded to the nearest integer.

27) 

Solution: 

28) 

29) 

Solution: 

30) 

For the following exercises, the equation of a surface in spherical coordinates is given. Find the equation of the surface in
rectangular coordinates. Identify and graph the surface.

31) [T] 

Solution: Sphere of equation  centered at the origin with radius ,

32) [T] 

33) [T] 

Solution: Sphere of equation  centered at  with radius ,

34) [T] 

35) [T] 

(0, 0, −3)

(1, , )
π

6

π

6

(12, − , )
π

4

π

4

(6, −6, 6 )2–√

(3, , )
π

4

π

6

(x, y, z) (ρ, θ,φ)

(4, 0, 0)

(4, 0, 90°)

(−1, 2, 1)

(0, 3, 0)

(3, 90°, 90°)

(−2, 2 , 4)3–√

ρ = 3

+ + = 9x2 y2 z2 3

φ =
π

3

ρ = 2cosφ

+ +(z−1 = 1x2 y2 )2 (0, 0, 1) 1

ρ = 4cscφ

φ =
π

2
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Solution: The xy-plane of equation 

36) [T] 

For the following exercises, the equation of a surface in rectangular coordinates is given. Find the equation of the surface in
spherical coordinates. Identify the surface.

37) 

Solution:  or  Elliptic cone

38) 

39) 

Solution:  Plane at 

40) 

For the following exercises, the cylindrical coordinates of a point are given. Find its associated spherical coordinates, with the
measure of the angle φ

in radians rounded to four decimal places.

41) [T] 

Solution: 

42) [T] 

43) 

Solution: 

44) 

For the following exercises, the spherical coordinates of a point are given. Find its associated cylindrical coordinates.

45) 

Solution: 

46) 

47) 

Solution: 

48) 

z = 0,

ρ = 6cscφsecθ

+ −3 = 0, z ≠ 0x2 y2 z2

φ =
π

3
φ = ;

2π

3

+ + −4z = 0x2 y2 z2

z = 6

ρcosφ = 6; z = 6

+ = 9x2 y2

(1, , 3)
π

4

( , , 0.3218)10−−√
π

4

(5, π, 12)

(3, , 3)
π

2

(3 , , )2
–√
π

2

π

4

(3, − , 3)
π

6

(2, − , )
π

4

π

2

(2, − , 0)
π

4

(4, , )
π

4

π

6

(8, , )
π

3

π

2

(8, , 0)
π

3

(9, − , )
π

6

π

3
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For the following exercises, find the most suitable system of coordinates to describe the solids.

49) The solid situated in the first octant with a vertex at the origin and enclosed by a cube of edge length , where 

Solution: Cartesian system, 

50) A spherical shell determined by the region between two concentric spheres centered at the origin, of radii of  and ,
respectively, where 

51) A solid inside sphere  and outside cylinder 

Solution: Cylindrical system, 

52) A cylindrical shell of height  determined by the region between two cylinders with the same center, parallel rulings, and radii
of  and , respectively

53) [T] Use a CAS to graph in cylindrical coordinates the region between elliptic paraboloid  and cone 

Solution: The region is described by the set of points 

54) [T] Use a CAS to graph in spherical coordinates the “ice cream-cone region” situated above the xy-plane between sphere 
 and elliptical cone 

55) Washington, DC, is located at  N and  W (see the following figure). Assume the radius of Earth is  mi. Express the
location of Washington, DC, in spherical coordinates.

Solution: 

56) San Francisco is located at  and  Assume the radius of Earth is mi. Express the location of San
Francisco in spherical coordinates.

57) Find the latitude and longitude of Rio de Janeiro if its spherical coordinates are 

Solution: 

58) Find the latitude and longitude of Berlin if its spherical coordinates are 

59) [T] Consider the torus of equation  where 

a. Write the equation of the torus in spherical coordinates.

a a > 0

(x, y, z)|0 ≤ x ≤ a, 0 ≤ y ≤ a, 0 ≤ z ≤ a

a b

b > a > 0

+ + = 9x2 y2 z2 (x− + =
3

2
)2 y2 9

4

(r, θ, z) ∣ + ≤ 9, r ≥ 3cosθ, 0 ≤ θ ≤ 2πr2 z2

10
2 5

z = +x2 y2

+ − = 0.x2 y2 z2

(r, θ, z) ∣∣ 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, ≤ z ≤ r.r2

+ + = 4x2 y2 z2 + − = 0.x2 y2 z2

39° 77° 4000

(4000, −77°, 51°)

37.78°N 122.42°W . 4000

(4000, −43.17°, 102.91°).

43.17°W , 22.91°S

(4000, 13.38°, 37.48°).

( + + + − = 4 ( + ),x2 y2 z2 R2 r2)2 R2 x2 y2 R ≥ r > 0.
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b. If  the surface is called a horn torus. Show that the equation of a horn torus in spherical coordinates is 

c. Use a CAS to graph the horn torus with  in spherical coordinates.

Solution: 

c.

60) [T] The “bumpy sphere” with an equation in spherical coordinates is , with  and 
, where  and  are positive numbers and  and  are positive integers, may be used in applied mathematics to model

tumor growth.

a. Show that the “bumpy sphere” is contained inside a sphere of equation  Find the values of  and  at which the
two surfaces intersect.

b. Use a CAS to graph the surface for  and  along with sphere 

c. Find the equation of the intersection curve of the surface at b. with the cone . Graph the intersection curve in the

plane of intersection.

Chapter Review Exercise 
For the following exercises, determine whether the statement is true or false. Justify the answer with a proof or a counterexample.

1) For vectors  and  and any given scalar 

Solution: True

2) For vectors  and  and any given scalar .

3) The symmetric equation for the line of intersection between two planes  and  is given by 

Solution: False

4) If  then  is perpendicular to .

For the following exercises, use the given vectors to find the quantities.

5) 

a. 

b. 

c. 

d. 

Solution: a.  b. ; c. Can’t dot a vector with a scalar; d. 

6) 

a. 

b. 

c. 

R = r,
ρ = 2Rsinφ.

R = r = 2

a. ρ = 0, ρ+R2 −r2 −2Rsinφ = 0;

ρ = a+bcos(mθ)sin(nφ) θ ∈ [0, 2π]
φ ∈ [0, π] a b m n

ρ = a+b. θ φ

a = 14, b = 2,m = 4, n = 6 ρ = a+b.

φ =
π

12

a b c, c(a ⋅ b) = (ca) ⋅ b.

a b c, c(a×b) = (ca) ×b

x+y+z = 2 x+2y−4z = 5

− = = z.
x−1

6

y−1

5

a ⋅ b = 0, a b

a = 9i−2j, b = −3i+j

3a+b

|a|

a×|b×|a

b×|a

⟨24, −5⟩; 85−−√ −29

a = 2i+j−9k, b = −i+2k, c = 4i−2j+k

2a−b

|b×c|

b×|b×c|
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d. 

e. 

7) Find the values of  such that vectors  and  are orthogonal.

Solution: 

For the following exercises, find the unit vectors.

8) Find the unit vector that has the same direction as vector  that begins at  and ends at 

9) Find the unit vector that has the same direction as vector  that begins at  and ends at 

Solution: 

For the following exercises, find the area or volume of the given shapes.

10) The parallelogram spanned by vectors  and 

11) The parallelepiped formed by  and  and 

Solution: 

For the following exercises, find the vector and parametric equations of the line with the given properties.

12) The line that passes through point  that is parallel to vector 

13) The line that passes through points  and 

Solution: 

For the following exercises, find the equation of the plane with the given properties.

14) The plane that passes through point  and has normal vector 

15) The plane that passes through points  and 

Solution: 

For the following exercises, find the traces for the surfaces in planes , and  Then, describe and draw the
surfaces.

16) 

17) 

Solution:  trace:  is a circle,  trace:  is a hyperbola (or a pair of lines if  trace: 
 is a hyperbola (or a pair of lines if ). The surface is a cone.

For the following exercises, write the given equation in cylindrical coordinates and spherical coordinates.

18) 

19) 

Solution: Cylindrical:  spherical: 

c×|b×a|

pro bja

a ⟨2, 4, a⟩ ⟨0, −1, a⟩

a = ±2

v (0, −3) (4, 10).

v (1, 4, 10) (3, 0, 4).

⟨ , − , − ⟩
1

14−−√

2

14−−√

3

14−−√

a = ⟨1, 13⟩ b = ⟨3, 21⟩

a = ⟨1, 4, 1⟩ b = ⟨3, 6, 2⟩, c = ⟨−2, 1, −5⟩

27

(2, −3, 7) ⟨1, 3, −2⟩

(1, 3, 5) (−2, 6, −3)

x = 1 −3t, y = 3 +3t, z = 5 −8t, r(t) = (1 −3t)i+3(1 + t)j+(5 −8t)k

(4, 7, −1) n = ⟨3, 4, 2⟩

(0, 1, 5), (2, −1, 6), (3, 2, 5).

−x+3y+8z = 43

x = k, y = k z = k.

9 +4 −16y+36 = 20x2 y2 z2

= +x2 y2 z2

x = k = +k2 y2 z2 y = k − =x2 z2 k2 k = 0), z = k

− =x2 y2 k2 k = 0

+ + = 144x2 y2 z2

z = + −1x2 y2

z = −1,r2 cosφ = ρsi φ−n2 1

ρ
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For the following exercises, convert the given equations from cylindrical or spherical coordinates to rectangular coordinates.
Identify the given surface.

20) 

21) 

Solution: , sphere

For the following exercises, consider a small boat crossing a river.

22) If the boat velocity is km/h due north in still water and the water has a current of  km/h due west (see the following figure),
what is the velocity of the boat relative to shore? What is the angle  that the boat is actually traveling?

23) When the boat reaches the shore, two ropes are thrown to people to help pull the boat ashore. One rope is at an angle of 
and the other is at . If the boat must be pulled straight and at a force of , find the magnitude of force for each rope (see the
following figure).

Solution: 331 N, and 244 N

24) An airplane is flying in the direction of 52° east of north with a speed of 450 mph. A strong wind has a bearing 33° east of
north with a speed of 50 mph. What is the resultant ground speed and bearing of the airplane?

25) Calculate the work done by moving a particle from position  to  along a straight line with a force 

Solution: 

The following problems consider your unsuccessful attempt to take the tire off your car using a wrench to loosen the bolts. Assume
the wrench is m long and you are able to apply a 200-N force.

(si (φ) −co (φ)) = 1ρ2 n2 s2

−2rcos(θ) + = 1r2 z2

−2x+ + = 1x2 y2 z2

5 2
θ

25°
35° 500N

(1, 2, 0) (8, 4, 5)
F = 2i+3j−k.

15J

0.3
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26) Because your tire is flat, you are only able to apply your force at a  angle. What is the torque at the center of the bolt?
Assume this force is not enough to loosen the bolt.

27) Someone lends you a tire jack and you are now able to apply a 200-N force at an  angle. Is your resulting torque going to be
more or less? What is the new resulting torque at the center of the bolt? Assume this force is not enough to loosen the bolt.

Solution: More, 
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CHAPTER OVERVIEW

2: Vector-Valued Functions
A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a
set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector.
Vector-valued functions provide a useful method for studying various curves both in the plane and in three-dimensional space. We
can apply this concept to calculate the velocity, acceleration, arc length, and curvature of an object’s trajectory. In this chapter, we
examine these methods and show how they are used.

2.1: Prelude to Vector-Valued Functions
2.2: Vector-Valued Functions and Space Curves
2.3: Calculus of Vector-Valued Functions
2.4: Arc Length and Curvature
2.5: Motion in Space
2.E: Vector-Valued Functions (Exercises)
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2.1: Prelude to Vector-Valued Functions
In 1705, using Sir Isaac Newton’s new laws of motion, the astronomer Edmond Halley made a prediction. He stated that comets
that had appeared in 1531, 1607, and 1682 were actually the same comet and that it would reappear in 1758. Halley was proved to
be correct, although he did not live to see it. However, the comet was later named in his honor. Halley’s Comet follows an elliptical
path through the solar system, with the Sun appearing at one focus of the ellipse. This motion is predicted by Johannes Kepler’s
first law of planetary motion, which we mentioned briefly previously. Kepler’s third law of planetary motion can be used with the
calculus of vector-valued functions to find the average distance of Halley’s Comet from the Sun.

Figure : Halley’s Comet appeared in view of Earth in 1986 and will appear again in 2061.

Vector-valued functions provide a useful method for studying various curves both in the plane and in three-dimensional space. We
can apply this concept to calculate the velocity, acceleration, arc length, and curvature of an object’s trajectory. In this chapter, we
examine these methods and show how they are used.

This page titled 2.1: Prelude to Vector-Valued Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated
by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

13.0: Prelude to Vector-Valued Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

2.1.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/63992?pdf
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/02%3A_Vector-Valued_Functions/2.01%3A_Prelude_to_Vector-Valued_Functions
https://cnx.org/contents/a31cd793-2162-4e9e-acb5-6e6bbd76a5fa@2.102:ef661a08-582f-4d4f-b18e-639507c5ce33
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/02%3A_Vector-Valued_Functions/2.01%3A_Prelude_to_Vector-Valued_Functions
https://creativecommons.org/licenses/by-nc-sa/4.0
https://openstax.org/
https://openstax.org/details/books/calculus-volume-1
https://math.libretexts.org/@go/page/9125
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


Access for free at OpenStax 2.2.1 https://math.libretexts.org/@go/page/63993

2.2: Vector-Valued Functions and Space Curves

Write the general equation of a vector-valued function in component form and unit-vector form.
Recognize parametric equations for a space curve.
Describe the shape of a helix and write its equation.
Define the limit of a vector-valued function.

Our study of vector-valued functions combines ideas from our earlier examination of single-variable calculus with our description
of vectors in three dimensions from the preceding chapter. In this section, we extend concepts from earlier chapters and also
examine new ideas concerning curves in three-dimensional space. These definitions and theorems support the presentation of
material in the rest of this chapter and also in the remaining chapters of the text.

Definition of a Vector-Valued Function
Our first step in studying the calculus of vector-valued functions is to define what exactly a vector-valued function is. We can then
look at graphs of vector-valued functions and see how they define curves in both two and three dimensions.

A vector-valued function is a function of the form

where the component functions , , and , are real-valued functions of the parameter . Vector-valued functions are also
written in the form

In both cases, the first form of the function defines a two-dimensional vector-valued function; the second form describes a three-
dimensional vector-valued function.

The parameter  can lie between two real numbers: . Another possibility is that the value of  might take on all real
numbers. Last, the component functions themselves may have domain restrictions that enforce restrictions on the value of . We
often use  as a parameter because  can represent time.

For each of the following vector-valued functions, evaluate , , and . Do any of these functions have domain
restrictions?

1. 
2. 

Solution

1. To calculate each of the function values, substitute the appropriate value of  into the function:

 Learning Objectives

 Definition: Vector-valued Functions

(t) = f(t) +g(t) or (t) = f(t) +g(t) +h(t) ,r⇀ î ĵ r⇀ î ĵ k̂

f g h t

(t) = ⟨f(t), g(t)⟩ or (t) = ⟨f(t), g(t), h(t)⟩.r⇀ r⇀

t a ≤ t ≤ b t

t

t t

 Example : Evaluating Vector-Valued Functions and Determining Domains2.2.1

(0)r⇀ ( )r⇀ π

2 ( )r⇀ 2π

3

(t) = 4 cos t +3 sin tr⇀ î ĵ

(t) = 3 tan t +4 sec t +5tr⇀ î ĵ k̂

t
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To determine whether this function has any domain restrictions, consider the component functions separately. The first
component function is  and the second component function is . Neither of these functions has a
domain restriction, so the domain of  is all real numbers.

2. To calculate each of the function values, substitute the appropriate value of t into the function:

To determine whether this function has any domain restrictions, consider the component functions separately. The first
component function is , the second component function is , and the third component function is

. The first two functions are not defined for odd multiples of , so the function is not defined for odd multiples of
. Therefore,

where  is any integer.

For the vector-valued function , evaluate , and . Does this function have
any domain restrictions?

Hint

Substitute the appropriate values of  into the function.

Answer

The domain of  is all real numbers.

Example  illustrates an important concept. The domain of a vector-valued function consists of real numbers. The domain can
be all real numbers or a subset of the real numbers. The range of a vector-valued function consists of vectors. Each real number in
the domain of a vector-valued function is mapped to either a two- or a three-dimensional vector.

(0) = 4 cos(0) +3 sin(0)r⇀ î ĵ

= 4 +0 = 4î ĵ î

( ) = 4 cos( ) +3 sin( )r⇀
π

2

π

2
î

π

2
ĵ

= 0 +3 = 3î ĵ ĵ

( ) = 4 cos( ) +3 sin( )r⇀
2π

3

2π

3
î

2π

3
ĵ

= 4 (− ) +3( ) = −2 +1
2 î

3√
2 ĵ î

3 3√
2 ĵ

f(t) = 4 cos t g(t) = 3 sin t

(t) = 4 cos t +3 sin tr⇀ î ĵ

(0) = 3 tan(0) +4 sec(0) +5(0)r⇀ î ĵ k̂

= 0 +4j+0 = 4î k̂ ĵ

( ) = 3 tan( ) +4 sec( ) +5( ) , which does not existr⇀
π

2

π

2
î

π

2
ĵ

π

2
k̂

( ) = 3 tan( ) +4 sec( ) +5( )r⇀
2π

3

2π

3
î

2π

3
ĵ

2π

3
k̂

= 3(− ) +4(−2) +3–√ î ĵ
10π

3
k̂

= (−3 ) −8 +3–√ î ĵ
10π

3
k̂

f(t) = 3 tan t g(t) = 4 sec t

h(t) = 5t π

2
π

2

= {t | t ≠ },D r⇀
(2n +1)π

2

n

 Exercise 2.2.1

(t) = ( −3t) +(4t +1)r⇀ t2 î ĵ (0), (1)r⇀ r⇀ (−4)r⇀

t

(0) = , (1) = −2 +5 , (−4) = 28 −15r⇀ ĵ r⇀ î ĵ r⇀ î ĵ

(t) = ( −3t) +(4t +1)r⇀ t2 î ĵ

2.2.1
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Graphing Vector-Valued Functions
Recall that a plane vector consists of two quantities: direction and magnitude. Given any point in the plane (the initial point), if we
move in a specific direction for a specific distance, we arrive at a second point. This represents the terminal point of the vector. We
calculate the components of the vector by subtracting the coordinates of the initial point from the coordinates of the terminal point.

A vector is considered to be in standard position if the initial point is located at the origin. When graphing a vector-valued function,
we typically graph the vectors in the domain of the function in standard position, because doing so guarantees the uniqueness of the
graph. This convention applies to the graphs of three-dimensional vector-valued functions as well. The graph of a vector-valued
function of the form

consists of the set of all points , and the path it traces is called a plane curve. The graph of a vector-valued function of
the form

consists of the set of all points , and the path it traces is called a space curve. Any representation of a plane curve
or space curve using a vector-valued function is called a vector parameterization of the curve.

Each plane curve and space curve has an orientation, indicated by arrows drawn in on the curve, that shows the direction of
motion along the curve as the value of the parameter  increases.

Create a graph of each of the following vector-valued functions:

1. The plane curve represented by , 
2. The plane curve represented by , 
3. The space curve represented by , 

Solution

1. As with any graph, we start with a table of values. We then graph each of the vectors in the second column of the table in
standard position and connect the terminal points of each vector to form a curve (Figure ). This curve turns out to be an
ellipse centered at the origin.

Table : Table of Values for , 

  

(t) = f(t) +g(t)r⇀ î ĵ

(f(t), g(t))

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂

(f(t), g(t), h(t))

t

 Example  : Graphing a Vector-Valued Function2.2.2

(t) = 4 cos t +3 sin tr⇀ î ĵ 0 ≤ t ≤ 2π

(t) = 4 cos( ) +3 sin( )r⇀ t3 î t3 ĵ 0 ≤ t ≤ 2π
−−√3

(t) = 4 cos t +4 sin t + tr⇀ î ĵ k̂ 0 ≤ t ≤ 4π

2.2.1

2.2.1 (t) = 4 cos t + 3 sin tr⇀ î ĵ 0 ≤ t ≤ 2π

t (t)r
⇀

t (t)r
⇀

0 4 î π −4 î

π

4
2 +2–√ î

3 2√

2
ĵ

5π

4
−2 −2–√ î

3 2√

2
ĵ

π

2 3 ĵ
3π

2
−3 ĵ

3π

4
−2 +2–√ î

3 2√

2
ĵ

7π

4
2 −2–√ î

3 2√

2
ĵ

2π 4 î
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Figure : The graph of the first vector-valued function is an ellipse.

2. The table of values for ,  is as follows:

Table of Values for , 

  

The graph of this curve is also an ellipse centered at the origin.

Figure : The graph of the second vector-valued function is also an ellipse.

3. We go through the same procedure for a three-dimensional vector function.

Table of Values for , 

2.2.1

(t) = 4 cos( ) +3 sin( )r⇀ t3 î t3 ĵ 0 ≤ t ≤ 2π
−−

√3

(t) = 4 cos( ) + 3 sin( )r⇀ t3 î t3 ĵ 0 ≤ t ≤ 2π
−−

√3

t (t)r⇀ t (t)r⇀

0 4 î π−−√3 −4 î

π

4

−−
√3 2 +2

–√ î
3 2√

2 ĵ
5π

4

−−−
√3 −2 −2

–√ î
3 2√

2 ĵ

π

2

−−
√3 3 ĵ

3π

2

−−−
√3 −3 ĵ

3π

4

−−−
√3 −2 +2

–√ î
3 2√

2 ĵ
7π

4

−−−
√3 2 −2

–√ î
3 2√

2 ĵ

2π
−−√3 4 î

2.2.2

r(t) = 4 cos t + 4 sin t + tî ĵ k̂ 0 ≤ t ≤ 4π
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The values then repeat themselves, except for the fact that the coefficient of  is always increasing ( ). This curve is
called a helix. Notice that if the  component is eliminated, then the function becomes , which is a
circle of radius 4 centered at the origin.

Figure : The graph of the third vector-valued function is a helix.

You may notice that the graphs in parts a. and b. are identical. This happens because the function describing curve b is a so-called
reparameterization of the function describing curve a. In fact, any curve has an infinite number of reparameterizations; for example,
we can replace  with  in any of the three previous curves without changing the shape of the curve. The interval over which  is
defined may change, but that is all. We return to this idea later in this chapter when we study arc-length parameterization. As
mentioned, the name of the shape of the curve of the graph in  is a helix. The curve resembles a spring, with a circular cross-
section looking down along the -axis. It is possible for a helix to be elliptical in cross-section as well. For example, the vector-
valued function  describes an elliptical helix. The projection of this helix into the -plane is an
ellipse. Last, the arrows in the graph of this helix indicate the orientation of the curve as  progresses from  to .

Create a graph of the vector-valued function , .

Hint

Start by making a table of values, then graph the vectors for each value of .

Answer

tt (t)(t)rr⇀
⇀

tt (t)(t)rr⇀
⇀

0 4 î π −4 + πî k̂

π

4
2 + 2 +2–√ î 2–√ ĵ π

4 k̂
5π

4
−2 − 2 +2–√ î 2–√ ĵ 5π

4 k̂

π

2
4 +ĵ π

2 k̂
3π

2
−4 +ĵ 3π

2 k̂

3π

4
−2 + 2 +2–√ î 2–√ ĵ 3π

4 k̂
7π

4
2 − 2 +2–√ î 2–√ ĵ 7π

4 k̂

2π 4 + 2πĵ k̂

k̂ 2.2.3

k̂ (t) = 4 cos t +4 sin tr⇀ î ĵ

2.2.3

t 2t t

2.2.3
z

(t) = 4 cos t +3 sin t + tr⇀ î ĵ k̂ xy

t 0 4π

 Exercise 2.2.2

(t) = ( −1) +(2t −3)r⇀ t2 î ĵ 0 ≤ t ≤ 3
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At this point, you may notice a similarity between vector-valued functions and parameterized curves. Indeed, given a vector-valued
function  we can define  and . If a restriction exists on the values of  (for example,  is
restricted to the interval  for some constants , then this restriction is enforced on the parameter. The graph of the
parameterized function would then agree with the graph of the vector-valued function, except that the vector-valued graph would
represent vectors rather than points. Since we can parameterize a curve defined by a function , it is also possible to
represent an arbitrary plane curve by a vector-valued function.

Limits and Continuity of a Vector-Valued Function

We now take a look at the limit of a vector-valued function. This is important to understand to study the calculus of vector-valued
functions.

A vector-valued function  approaches the limit  as  approaches , written

provided

This is a rigorous definition of the limit of a vector-valued function. In practice, we use the following theorem:

Let , , and  be functions of . Then the limit of the vector-valued function  as t approaches a is given
by

provided the limits  and  exist.

Similarly, the limit of the vector-valued function  as  approaches  is given by

provided the limits ,  and  exist.

In the following example, we show how to calculate the limit of a vector-valued function.

(t) = f(t) +g(t)r⇀ î ĵ x = f(t) y = g(t) t t

[a, b] a < b

y = f(x)

 Definition: limit of a vector-valued function

r⇀ L
⇀

t a

(t) = ,lim
t→a

r⇀ L
⇀

(t) − = 0.lim
t→a

∥∥r⇀ L
⇀∥∥

 Theorem: Limit of a vector-valued function

f g h t (t) = f(t) +g(t)r⇀ î ĵ

(t) = [ f(t)] +[ g(t)] ,lim
t→a

r⇀ lim
t→a

î lim
t→a

ĵ (2.2.1)

f(t)lim
t→a

g(t)lim
t→a

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂ t a

(t) = [ f(t)] +[ g(t)] +[ h(t)] ,lim
t→a

r⇀ lim
t→a

î lim
t→a

ĵ lim
t→a

k̂ (2.2.2)

f(t)lim
t→a

g(t)lim
t→a

h(t)lim
t→a
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For each of the following vector-valued functions, calculate  for

a. 
b. 

Solution

a. Use Equation  and substitute the value  into the two component expressions:

b. Use Equation  and substitute the value  into the three component expressions:

Calculate  for the function 

Hint

Use Equation  from the preceding theorem.

Answer

Now that we know how to calculate the limit of a vector-valued function, we can define continuity at a point for such a function.

Let , , and  be functions of . Then, the vector-valued function  is continuous at point  if the
following three conditions hold:

1.  exists
2.  exists

3. 

Similarly, the vector-valued function  is continuous at point  if the following three
conditions hold:

1.  exists
2.  exists

3. 

 Example : Evaluating the Limit of a Vector-Valued Function2.2.3

(t)lim
t→3

r⇀

(t) = ( −3t +4) +(4t +3)r⇀ t2 î ĵ

(t) = + +(4t −3)r⇀ 2t−4
t+1

î t

+1t2
ĵ k̂

2.2.1 t = 3

(t) = [( −3t +4) +(4t +3) ]lim
t→3

r⇀ lim
t→3

t2 î ĵ

= [ ( −3t +4)] +[ (4t +3)]lim
t→3

t2 î lim
t→3

ĵ

= 4 +15î ĵ

2.2.2 t = 3

(t) = ( + +(4t −3) )lim
t→3

r⇀ lim
t→3

2t −4

t +1
î

t

+1t2
ĵ k̂

= [ ( )] +[ ( )] +[ (4t −3)]lim
t→3

2t −4

t +1
î lim

t→3

t

+1t2
ĵ lim

t→3
k̂

= + +91
2 î 3

10 ĵ k̂

 Exercise 2.2.3

(t)lim
t→2

r⇀ (t) = −(4t −3) −sinr⇀ +3t −1t2− −−−−−−−−√ î ĵ
(t+1)π

2 k̂

2.2.2

(t) = 3 −5 +lim
t→2

r⇀ î ĵ k̂

 Definitions

f g h t (t) = f(t) +g(t)r⇀ î ĵ t = a

(a)r⇀

(t)lim
t→a

r⇀

(t) = (a)lim
t→a

r⇀ r⇀

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂ t = a

(a)r⇀

(t)lim
t→a

r⇀

(t) = (a)lim
t→a

r⇀ r⇀
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Summary

A vector-valued function is a function of the form  or , where the
component functions , , and  are real-valued functions of the parameter .
The graph of a vector-valued function of the form  is called a plane curve. The graph of a vector-valued
function of the form  is called a space curve.
It is possible to represent an arbitrary plane curve by a vector-valued function.
To calculate the limit of a vector-valued function, calculate the limits of the component functions separately.

Key Equations

Vector-valued function 
 or ,or  or 

Limit of a vector-valued function 
 or 

Glossary

component functions

the component functions of the vector-valued function  are  and , and the component functions of
the vector-valued function  are ,  and 

helix
a three-dimensional curve in the shape of a spiral

limit of a vector-valued function

a vector-valued function  has a limit  as  approaches  if 

plane curve
the set of ordered pairs  together with their defining parametric equations  and 

reparameterization
an alternative parameterization of a given vector-valued function

space curve
the set of ordered triples  together with their defining parametric equations ,  and 

vector parameterization
any representation of a plane or space curve using a vector-valued function

vector-valued function

a function of the form  or ,where the component functions , , and  are
real-valued functions of the parameter .

Contributors and Attributions
Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is
licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

Edited by Paul Seeburger (Monroe Community College)

This page titled 2.2: Vector-Valued Functions and Space Curves is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

13.1: Vector-Valued Functions and Space Curves by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

(t) = f(t) +g(t)r⇀ î ĵ (t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂

f g h t

(t) = f(t) +g(t)r⇀ î ĵ

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂

(t) = f(t) +g(t)r⇀ î ĵ (t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂ (t) = ⟨f(t), g(t)⟩r⇀ (t) = ⟨f(t), g(t), h(t)⟩r⇀

(t) = [ f(t)] +[ g(t)]lim
t→a

r⇀ lim
t→a

î lim
t→a

ĵ (t) = [ f(t)] +[ g(t)] +[ h(t)]lim
t→a

r⇀ lim
t→a

î lim
t→a

ĵ lim
t→a

k̂

(t) = f(t) +g(t)r⇀ î ĵ f(t) g(t)

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂ f(t) g(t) h(t)

(t)r
⇀

L
⇀

t a lim t → a (t) − = 0∣
∣r
⇀

L
⇀∣

∣

(f(t), g(t)) x = f(t) y = g(t)

(f(t), g(t), h(t)) x = f(t) y = g(t) z = h(t)

(t) = f(t) +g(t)r⇀ î ĵ (t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂ f g h
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2.3: Calculus of Vector-Valued Functions

Write an expression for the derivative of a vector-valued function.
Find the tangent vector at a point for a given position vector.
Find the unit tangent vector at a point for a given position vector and explain its significance.
Calculate the definite integral of a vector-valued function.

To study the calculus of vector-valued functions, we follow a similar path to the one we took in studying real-valued functions. First,
we define the derivative, then we examine applications of the derivative, then we move on to defining integrals. However, we will find
some interesting new ideas along the way as a result of the vector nature of these functions and the properties of space curves.

Derivatives of Vector-Valued Functions
Now that we have seen what a vector-valued function is and how to take its limit, the next step is to learn how to differentiate a
vector-valued function. The definition of the derivative of a vector-valued function is nearly identical to the definition of a real-valued
function of one variable. However, because the range of a vector-valued function consists of vectors, the same is true for the range of
the derivative of a vector-valued function.

The derivative of a vector-valued function  is

provided the limit exists. If  exists, then  is differentiable at . If  exists for all  in an open interval  then 
 is differentiable over the interval . For the function to be differentiable over the closed interval , the following two

limits must exist as well:

and

Many of the rules for calculating derivatives of real-valued functions can be applied to calculating the derivatives of vector-valued
functions as well. Recall that the derivative of a real-valued function can be interpreted as the slope of a tangent line or the
instantaneous rate of change of the function. The derivative of a vector-valued function can be understood to be an instantaneous rate
of change as well; for example, when the function represents the position of an object at a given point in time, the derivative
represents its velocity at that same point in time.

We now demonstrate taking the derivative of a vector-valued function.

Use the definition to calculate the derivative of the function

Solution

Let’s use Equation :

 Learning Objectives

 Definition: Derivative of Vector-Valued Functions

(t)r
⇀

'(t) =r
⇀ lim

Δt→0

(t+Δt) − (t)r
⇀

r
⇀

Δt
(2.3.1)

(t)r
⇀′ (t)r

⇀ t '(t)r
⇀ t (a, b)

(t)r
⇀ (a, b) [a, b]

'(a) =r⇀ lim
Δt→0+

(a+Δt) − (a)r
⇀

r
⇀

Δt

'(b) =r⇀ lim
Δt→0−

(b+Δt) − (b)r
⇀

r
⇀

Δt

 Example : Finding the Derivative of a Vector-Valued Function2.3.1

(t) = (3t+4) +( −4t+3) .r
⇀

î t2
ĵ

2.3.1
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Use the definition to calculate the derivative of the function .

Hint

Use Equation .

Answer

Notice that in the calculations in Example , we could also obtain the answer by first calculating the derivative of each component
function, then putting these derivatives back into the vector-valued function. This is always true for calculating the derivative of a
vector-valued function, whether it is in two or three dimensions. We state this in the following theorem. The proof of this theorem
follows directly from the definitions of the limit of a vector-valued function and the derivative of a vector-valued function.

Let , , and  be differentiable functions of .

1. If  then

2. If  then

Use Theorem  to calculate the derivative of each of the following functions.

a. 
b. 
c. 

Solution

We use Theorem  and what we know about differentiating functions of one variable.

a. The first component of

'(t)r
⇀ = lim

Δt→0

(t+Δt) − (t)r⇀ r⇀

Δt

= lim
Δt→0

[(3(t+Δt) +4) +((t+Δt −4(t+Δt) +3) ] −[(3t+4) +( −4t+3) ]î )2 ĵ î t2 ĵ

Δt

= lim
Δt→0

(3t+3Δt+4) −(3t+4) +( +2tΔt+(Δt −4t−4Δt+3) −( −4t+3)î î t2 )2 ĵ t2 ĵ

Δt

= lim
Δt→0

(3Δt) +(2tΔt+(Δt −4Δt)î )2 ĵ

Δt

= (3 +(2t+Δt−4) )lim
Δt→0

î ĵ

= 3 +(2t−4)î ĵ

 Exercise 2.3.1

(t) = (2 +3) +(5t−6)r
⇀ t2 î ĵ

2.3.1

'(t) = 4t +5r
⇀

î ĵ

2.3.1

 Theorem : Differentiation of Vector-Valued Functions2.3.1

f g h t

(t) = f(t) +g(t)r
⇀

î ĵ

'(t) = f '(t) +g'(t) .r
⇀

î ĵ

(t) = f(t) +g(t) +h(t)r
⇀

î ĵ k̂

'(t) = f '(t) +g'(t) +h'(t) .r
⇀

î ĵ k̂

 Example : Calculating the Derivative of Vector-Valued Functions2.3.2

2.3.1

(t) = (6t+8) +(4 +2t−3)r
⇀

î t2 ĵ

(t) = 3 cos t +4 sin tr
⇀

î ĵ

(t) = sin t + cos t −r⇀ et î et ĵ e2t k̂

2.3.1

(t) = (6t+8) +(4 +2t−3)r⇀ î t2 ĵ
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is . The second component is . We have  and , so the Theorem 
 gives .

b. The first component is  and the second component is . We have  and 
, so we obtain .

c. The first component of  is , the second component is , and
the third component is . We have , , and , so the
theorem gives .

Calculate the derivative of the function

Hint

Identify the component functions and use Theorem .

Answer

We can extend to vector-valued functions the properties of the derivative that we presented previously. In particular, the constant
multiple rule, the sum and difference rules, the product rule, and the chain rule all extend to vector-valued functions. However, in the
case of the product rule, there are actually three extensions:

1. for a real-valued function multiplied by a vector-valued function,
2. for the dot product of two vector-valued functions, and
3. for the cross product of two vector-valued functions.

Let  and  be differentiable vector-valued functions of , let  be a differentiable real-valued function of , and let  be a scalar.

The proofs of the first two properties follow directly from the definition of the derivative of a vector-valued function. The third
property can be derived from the first two properties, along with the product rule. Let . Then

f(t) = 6t+8 g(t) = 4 +2t−3t2 f '(t) = 6 g'(t) = 8t+2

2.3.1 '(t) = 6 +(8t+2)r
⇀

î ĵ

f(t) = 3 cos t g(t) = 4 sin t f '(t) = −3 sin t

g'(t) = 4 cos t '(t) = −3 sin t +4 cos tr⇀ î ĵ

(t) = sin t + cos t −r⇀ et î et ĵ e2t k̂ f(t) = sin tet g(t) = cos tet

h(t) = −e2t f '(t) = (sin t+cos t)et g'(t) = (cos t−sin t)et h'(t) = −2e2t

'(t) = (sin t+cos t) + (cos t−sin t) −2r⇀ et î et ĵ e2t k̂

 Exercise 2.3.2

(t) = (t ln t) +(5 ) +(cos t−sin t) .r
⇀

î et ĵ k̂

2.3.1

'(t) = (1 +ln t) +5 −(sin t+cos t)r
⇀

î et ĵ k̂

 Theorem: Properties of the Derivative of Vector-Valued Functions

r⇀ u⇀ t f t c

i.

ii.

iii.

iv.

v.

vi.

vii.

[c (t)]
d

dt
r
⇀

[ (t) ± (t)]
d

dt
r
⇀

u
⇀

[f(t) (t)]
d

dt
u
⇀

[ (t) ⋅ (t)]
d

dt
r
⇀

u
⇀

[ (t) × (t)]
d

dt
r
⇀

u
⇀

[ (f(t))]
d

dt
r⇀

If (t) ⋅ (t)r
⇀

r
⇀

=

=

=

=

=

=

=

c '(t)r
⇀

'(t) ± '(t)r
⇀

u
⇀

f '(t) (t) +f(t) '(t)u
⇀

u
⇀

'(t) ⋅ (t) + (t) ⋅ '(t)r
⇀

u
⇀

r
⇀

u
⇀

'(t) × (t) + (t) × '(t)r
⇀

u
⇀

r
⇀

u
⇀

'(f(t)) ⋅ f '(t)r⇀

c, then (t) ⋅ '(t) = 0 .r
⇀

r
⇀

Scalar multiple

Sum and difference

Scalar product

Dot product

Cross product

Chain rule

 Proof

(t) = g(t) +h(t)u⇀ î ĵ
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To prove property iv. let  and . Then

The proof of property v. is similar to that of property iv. Property vi. can be proved using the chain rule. Last, property vii. follows
from property iv:

Now for some examples using these properties.

Given the vector-valued functions

and

calculate each of the following derivatives using the properties of the derivative of vector-valued functions.

a. 

b. 

Solution

We have  and . Therefore, according to property iv:

1. 

[f(t) (t)]
d

dt
u
⇀ = [f(t)(g(t) +h(t) )]

d

dt
î ĵ

= [f(t)g(t) +f(t)h(t) ]
d

dt
î ĵ

= [f(t)g(t)] + [f(t)h(t)]
d

dt
î

d

dt
ĵ

= (f '(t)g(t) +f(t)g'(t)) +(f '(t)h(t) +f(t)h'(t))î ĵ

= f '(t) (t) +f(t) '(t).u
⇀

u
⇀

(t) = (t) + (t)r
⇀ f1 î g1 ĵ (t) = (t) + (t)u

⇀ f2 î g2 ĵ

[ (t) ⋅ (t)]
d

dt
r
⇀

u
⇀ = [ (t) (t) + (t) (t)]

d

dt
f1 f2 g1 g2

= '(t) (t) + (t) '(t) + '(t) (t) + (t) '(t) = '(t) (t) + '(t) (t) + (t) '(t) + (t) '(t)f1 f2 f1 f2 g1 g2 g1 g2 f1 f2 g1 g2 f1 f2 g1 g2

= ( ' + ' ) ⋅ ( + ) +( + ) ⋅ ( ' + ' )f1 î g1 ĵ f2 î g2 ĵ f1 î g1 ĵ f2 î g2 ĵ

= '(t) ⋅ (t) + (t) ⋅ '(t).r
⇀

u
⇀

r
⇀

u
⇀

[ (t) ⋅ (t)]
d

dt
r
⇀

r
⇀

'(t) ⋅ (t) + (t) ⋅ '(t)r
⇀

r
⇀

r
⇀

r
⇀

2 (t) ⋅ '(t)r⇀ r⇀

(t) ⋅ '(t)r
⇀

r
⇀

= [c]
d

dt

= 0

= 0

= 0

 Example : Using the Properties of Derivatives of Vector-Valued Functions2.3.3

(t) = (6t+8) +(4 +2t−3) +5tr
⇀

î t2
ĵ k̂

(t) = ( −3) +(2t+4) +( −3t) ,u
⇀ t2

î ĵ t3
k̂

[ (t) ⋅ (t)]
d

dt
r
⇀

u
⇀

[ (t) × '(t)]
d

dt
u
⇀

u
⇀

'(t) = 6 +(8t+2) +5r
⇀

î ĵ k̂ '(t) = 2t +2 +(3 −3)u
⇀

î ĵ t2 k̂
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2. First, we need to adapt property v for this problem:

Recall that the cross product of any vector with itself is zero. Furthermore,  represents the second derivative of 

Therefore,

Calculate  and  for the vector-valued functions:

,

Hint

Follow the same steps as in Example .

Answer

Tangent Vectors and Unit Tangent Vectors
Recall that the derivative at a point can be interpreted as the slope of the tangent line to the graph at that point. In the case of a vector-
valued function, the derivative provides a tangent vector to the curve represented by the function. Consider the vector-valued function

The derivative of this function is

[ (t) ⋅ (t)]
d

dt
r
⇀

u
⇀ = '(t) ⋅ (t) + (t) ⋅ '(t)r

⇀
u
⇀

r
⇀

u
⇀

= (6 +(8t+2) +5 ) ⋅ (( −3) +(2t+4) +( −3t) )î ĵ k̂ t2
î ĵ t3

k̂

+((6t+8) +(4 +2t−3) +5t ) ⋅ (2t +2 +(3 −3) )î t2
ĵ k̂ î ĵ t2

k̂

= 6( −3) +(8t+2)(2t+4) +5( −3t)t2 t3

+2t(6t+8) +2(4 +2t−3) +5t(3 −3)t2 t2

= 20 +42 +26t−16.t3 t2

[ (t) × '(t)] = '(t) × '(t) + (t) × ''(t).
d

dt
u⇀ u⇀ u⇀ u⇀ u⇀ u⇀

''(t)u⇀ (t) :u⇀

''(t) = [ '(t)] = [2t +2 +(3 −3) ] = 2 +6t .u⇀
d

dt
u⇀

d

dt
î ĵ t2 k̂ î k̂

[ (t) × '(t)]
d

dt
u⇀ u⇀ = 0 +(( −3) +(2t+4) +( −3t) ) ×(2 +6t )t2 î ĵ t3 k̂ î k̂

=

∣

∣

∣
∣
∣

î

−3t2

2

ĵ

2t+4

0

k̂

−3tt3

6t

∣

∣

∣
∣
∣

= 6t(2t+4) −(6t( −3) −2( −3t)) −2(2t+4)î t2 t3 ĵ k̂

= (12 +24t) +(12t−4 ) −(4t+8) .t2
î t3

ĵ k̂

 Exercise 2.3.3

[ (t) ⋅ '(t)]
d

dt
r
⇀

r
⇀ [ (t) × (t)]

d

dt
u
⇀

r
⇀

(t) = cos t +sin t −r
⇀

î ĵ e2t k̂

(t) = t +sin t +cos tu
⇀

î ĵ k̂

2.3.3

[ (t) ⋅ '(t)] = 8
d

dt
r
⇀

r
⇀ e4t

[ (t) × (t)] = −( (cos t+2 sin t) +cos 2t) +( (2t+1) −sin2t) +(t cos t+sin t−cos 2t)
d

dt
u
⇀

r
⇀

e2t î e2t ĵ k̂

(t) = cos t +sin tr
⇀

î ĵ (2.3.2)

'(t) = −sin t +cos tr
⇀

î ĵ
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If we substitute the value  into both functions we get

and

The graph of this function appears in Figure , along with the vectors  and .

Figure : The tangent line at a point is calculated from the derivative of the vector-valued function .

Notice that the vector  is tangent to the circle at the point corresponding to . This is an example of a tangent vector to

the plane curve defined by Equation .

Let  be a curve defined by a vector-valued function , and assume that  exists when  A tangent vector  at  is
any vector such that, when the tail of the vector is placed at point  on the graph, vector  is tangent to curve . Vector 

 is an example of a tangent vector at point . Furthermore, assume that . The principal unit tangent vector at 
 is defined to be

provided .

The unit tangent vector is exactly what it sounds like: a unit vector that is tangent to the curve. To calculate a unit tangent vector, first
find the derivative . Second, calculate the magnitude of the derivative. The third step is to divide the derivative by its magnitude.

Find the unit tangent vector for each of the following vector-valued functions:

a. 
b. 

Solution

a. 

t = π/6

( ) = +r
⇀ π

6

3
–√

2
î

1

2
ĵ

'( ) = − + .r
⇀ π

6

1

2
î

3
–√

2
ĵ

2.3.1 ( )r
⇀ π

6
( )r

⇀′ π

6

2.3.1 (t)r⇀

'( )r
⇀ π

6
t =

π

6
2.3.2

 Definition: principal unit tangent vector

C r
⇀

'(t)r
⇀ t = t0 r

⇀ t = t0

( )r
⇀ t0 r

⇀ C

'( )r
⇀ t0 t = t0 '(t) ≠ 0r

⇀

t

(t) = ,T
⇀ '(t)r

⇀

∥ '(t)∥r
⇀

∥ '(t)∥ ≠ 0r
⇀

'(t)r⇀

 Example : Finding a Unit Tangent Vector2.3.4

(t) = cos t +sin tr⇀ î ĵ

(t) = (3 +2t) +(2 −4 ) +(6t+5)u⇀ t2 î t3 ĵ k̂

First step:

Second step:

Third step:

'(t)r⇀

∥ '(t)∥r
⇀

(t)T
⇀

=

=

=

−sin t +cos tî ĵ

= 1(−sin t +(cos t)2 )2− −−−−−−−−−−−−−−√

= = −sin t +cos t
'(t)r

⇀

∥ '(t)∥r
⇀

−sin t +cos tî ĵ

1
î ĵ
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b. 

Find the unit tangent vector for the vector-valued function

Hint

Follow the same steps as in Example .

Answer

Integrals of Vector-Valued Functions

We introduced antiderivatives of real-valued functions in Antiderivatives and definite integrals of real-valued functions in The
Definite Integral. Each of these concepts can be extended to vector-valued functions. Also, just as we can calculate the derivative of a
vector-valued function by differentiating the component functions separately, we can calculate the antiderivative in the same manner.
Furthermore, the Fundamental Theorem of Calculus applies to vector-valued functions as well.

The antiderivative of a vector-valued function appears in applications. For example, if a vector-valued function represents the velocity
of an object at time t, then its antiderivative represents position. Or, if the function represents the acceleration of the object at a given
time, then the antiderivative represents its velocity.

Let , , and  be integrable real-valued functions over the closed interval 

1. The indefinite integral of a vector-valued function  is

The definite integral of a vector-valued function is

2. The indefinite integral of a vector-valued function  is

The definite integral of the vector-valued function is

First step:

Second step:

Third step:

'(t)r
⇀

∥ '(t)∥r
⇀

(t)T
⇀

=

=

=

=

=

=

(6t+2) −12 +6î t2 ĵ k̂

(6t+2 +(−12 +)2 t2)2 62
− −−−−−−−−−−−−−−−−−−−

√

144 +36 +24t+40t4 t2− −−−−−−−−−−−−−−−−−
√

2 36 +9 +6t+10t4 t2− −−−−−−−−−−−−−−−
√

=
'(t)r⇀

∥ '(t)∥r
⇀

(6t+2) −12 +6î t2 ĵ k̂

2 36 +9 +6t+10t4 t2
− −−−−−−−−−−−−−−−

√

− +
3t+1

36 +9 +6t+10t4 t2
− −−−−−−−−−−−−−−−

√
î

6t2

36 +9 +6t+10t4 t2
− −−−−−−−−−−−−−−−

√
ĵ

3

36 +9 +6t+10t4 t2
− −−−−−−−−−−−−−−−

√
k̂

 Exercise 2.3.4

(t) = ( −3) +(2t+1) +(t−2) .r
⇀ t2

î ĵ k̂

2.3.4

(t) = + +T
⇀ 2t

4 +5t2− −−−−−
√

î
2

4 +5t2− −−−−−
√

ĵ
1

4 +5t2− −−−−−
√

k̂

 Definition: Definite and Indefinite Integrals of Vector-Valued Functions

f g h [a, b].

(t) = f(t) +g(t)r
⇀

î ĵ

∫ [f(t) +g(t) ] dt = [∫ f(t)dt] +[∫ g(t)dt] .î ĵ î ĵ

[f(t) +g(t) ] dt = [ f(t)dt] +[ g(t)dt] .∫
b

a

î ĵ ∫
b

a

î ∫
b

a

ĵ

(t) = f(t) +g(t) +h(t)r⇀ î ĵ k̂

∫ [f(t) +g(t) +h(t) ] dt = [∫ f(t)dt] +[∫ g(t)dt] +[∫ h(t)dt] .î ĵ k̂ î ĵ k̂

[f(t) +g(t) +h(t) ] dt = [ f(t)dt] +[ g(t)dt] +[ h(t)dt] .∫
b

a

î ĵ k̂ ∫
b

a

î ∫
b

a

ĵ ∫
b

a

k̂
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Since the indefinite integral of a vector-valued function involves indefinite integrals of the component functions, each of these
component integrals contains an integration constant. They can all be different. For example, in the two-dimensional case, we can
have

where  and  are antiderivatives of  and , respectively. Then

where . Therefore, the integration constants becomes a constant vector.

Calculate each of the following integrals:

a. 

b. 

c. 

Solution

a. We use the first part of the definition of the integral of a space curve:

b. 

c. First calculate 

Next, substitute this back into the integral and integrate:

d. Use the second part of the definition of the integral of a space curve:

∫ f(t)dt = F (t) + and ∫ g(t)dt = G(t) + ,C1 C2

F G f g

∫ [f(t) +g(t) ] dtî ĵ = [∫ f(t)dt] +[∫ g(t)dt]î ĵ

= (F (t) + ) +(G(t) + )C1 î C2 ĵ

= F (t) +G(t) + +î ĵ C1 î C2 ĵ

= F (t) +G(t) +î ĵ C
⇀

= +C
⇀

C1 î C2 ĵ

 Example : Integrating Vector-Valued Functions2.3.5

∫ [(3 +2t) +(3t−6) +(6 +5 −4) ] dtt2
î ĵ t3 t2

k̂

∫ [⟨t, , ⟩× ⟨ , , t⟩] dtt2 t3 t3 t2

[sin2t +tan t + ] dt∫

π

3

0
î ĵ e−2t

k̂

∫ [(3 +2t) +(3t−6) +(6 +5 −4) ] dtt2 î ĵ t3 t2 k̂ = [∫ 3 +2t dt] +[∫ 3t−6 dt] +[∫ 6 +5 −4 dt]t2 î ĵ t3 t2 k̂

= ( + ) +( −6t) +( + −4t) + .t3 t2 î
3

2
t2 ĵ

3

2
t4 5

3
t3 k̂ C

⇀

⟨t, , ⟩× ⟨ , , t⟩ :t2 t3 t3 t2

⟨t, , ⟩× ⟨ , , t⟩t2 t3 t3 t2 =

∣

∣

∣
∣
∣

î

t

t3

ĵ

t2

t2

k̂

t3

t

∣

∣

∣
∣
∣

= ( (t) − ( )) −( − ( )) +(t( ) − ( ))t2 t3 t2 î t2 t3 t3 ĵ t2 t2 t3 k̂

= ( − ) +( − ) +( − ) .t3 t5 î t6 t2 ĵ t3 t5 k̂

∫ [⟨t, , ⟩× ⟨ , , t⟩] dtt2 t3 t3 t2 = ∫ ( − ) +( − ) +( − ) dtt3 t5 î t6 t2 ĵ t3 t5 k̂

=( − ) +( − ) +( − ) + .
t4

4

t6

6
î

t7

7

t3

3
ĵ

t4

4

t6

6
k̂ C

⇀
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Calculate the following integral:

Hint

Use the definition of the definite integral of a plane curve.

Answer

Summary
To calculate the derivative of a vector-valued function, calculate the derivatives of the component functions, then put them back
into a new vector-valued function.
Many of the properties of differentiation of scalar functions also apply to vector-valued functions.
The derivative of a vector-valued function  is also a tangent vector to the curve. The unit tangent vector  is calculated by
dividing the derivative of a vector-valued function by its magnitude.
The antiderivative of a vector-valued function is found by finding the antiderivatives of the component functions, then putting
them back together in a vector-valued function.
The definite integral of a vector-valued function is found by finding the definite integrals of the component functions, then putting
them back together in a vector-valued function.

Key Equations
Derivative of a vector-valued function

Principal unit tangent vector

Indefinite integral of a vector-valued function

Definite integral of a vector-valued function

[sin2t +tan t + ] dt∫

π

3

0
î ĵ e−2t k̂ = [ sin2t dt] +[ tan t dt] +[ dt]∫

π

3

0
î ∫

π

3

0
ĵ ∫

π

3

0
e−2t k̂

= (− cos 2t) −(ln | cos t|) −( )1
2

∣
∣
π/3

0
î ∣

∣
π/3

0
ĵ

1
2 e

−2t ∣
∣
π/3

0
k̂

= (− cos + cos 0) −(ln(cos )−ln(cos 0)) −( − )1
2

2π
3

1
2 î π

3 ĵ 1
2 e

−2π/3 1
2 e

−2(0) k̂

= ( + ) −(−ln2) −( − )1
4

1
2 î ĵ

1
2 e

−2π/3 1
2 k̂

= +(ln2) +( − ) .3
4 î ĵ

1
2

1
2 e

−2π/3
k̂

 Exercise 2.3.5

[(2t+4) +(3 −4t) ] dt∫
3

1
î t2 ĵ

[(2t+4) +(3 −4t) ] dt = 16 +10∫
3

1
î t2

ĵ î ĵ

(t)r⇀ (t)T
⇀

'(t) =r
⇀ lim

Δt→0

(t+Δt) − (t)r⇀ r⇀

Δt

(t) =T
⇀ '(t)r⇀

∥ '(t)∥r
⇀

∫ [f(t) +g(t) +h(t) ] dt = [∫ f(t)dt] +[∫ g(t)dt] +[∫ h(t)dt]î ĵ k̂ î ĵ k̂

[f(t) +g(t) +h(t) ] dt = [ f(t)dt] +[ g(t)dt] +[ h(t)dt]∫
b

a

î ĵ k̂ ∫
b

a

î ∫
b

a

ĵ ∫
b

a

k̂
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Glossary

definite integral of a vector-valued function
the vector obtained by calculating the definite integral of each of the component functions of a given vector-valued function, then
using the results as the components of the resulting function

derivative of a vector-valued function

the derivative of a vector-valued function  is , provided the limit exists

indefinite integral of a vector-valued function
a vector-valued function with a derivative that is equal to a given vector-valued function

principal unit tangent vector
a unit vector tangent to a curve C

tangent vector
to  at  any vector  such that, when the tail of the vector is placed at point  on the graph, vector  is tangent to
curve C

This page titled 2.3: Calculus of Vector-Valued Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

13.2: Calculus of Vector-Valued Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

(t)r
⇀

'(t) =r
⇀ lim

Δt→0

(t+Δt)− (t)r⇀ r⇀

Δt

(t)r
⇀ t = t0 v

⇀ ( )r
⇀ t0 v

⇀
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2.4: Arc Length and Curvature

Determine the length of a particle’s path in space by using the arc-length function.
Explain the meaning of the curvature of a curve in space and state its formula.
Describe the meaning of the normal and binormal vectors of a curve in space.

In this section, we study formulas related to curves in both two and three dimensions, and see how they are related to various
properties of the same curve. For example, suppose a vector-valued function describes the motion of a particle in space. We would
like to determine how far the particle has traveled over a given time interval, which can be described by the arc length of the path it
follows. Or, suppose that the vector-valued function describes a road we are building and we want to determine how sharply the
road curves at a given point. This is described by the curvature of the function at that point. We explore each of these concepts in
this section.

Arc Length for Vector Functions
We have seen how a vector-valued function describes a curve in either two or three dimensions. Recall that the formula for the arc
length of a curve defined by the parametric functions  is given by

In a similar fashion, if we define a smooth curve using a vector-valued function , where , the arc
length is given by the formula

In three dimensions, if the vector-valued function is described by  over the same interval 
, the arc length is given by

Plane curve: Given a smooth curve  defined by the function , where  lies within the interval ,
the arc length of  over the interval is

Space curve: Given a smooth curve  defined by the function , where  lies within the
interval , the arc length of  over the interval is

The two formulas are very similar; they differ only in the fact that a space curve has three component functions instead of two.
Note that the formulas are defined for smooth curves: curves where the vector-valued function  is differentiable with a non-

 Learning Objectives

x = x(t), y = y(t), ≤ t ≤t1 t2

s = dt.∫
t2

t1

(x'(t) +(y'(t))2 )2
− −−−−−−−−−−−−−

√

(t) = f(t) +g(t)r⇀ î ĵ a ≤ t ≤ b

s = dt.∫
b

a

(f '(t) +(g'(t))2 )2
− −−−−−−−−−−−−−

√

(t) = f(t) +g(t) +h(t)r
⇀

î ĵ k̂

a ≤ t ≤ b

s = dt.∫
b

a

(f '(t) +(g'(t) +(h'(t))2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−

√

 Theorem: Arc-Length Formulas for Plane and Space curves

C (t) = f(t) +g(t)r
⇀

î ĵ t [a, b]
C

s = dt∫
b

a

[f '(t) +[g'(t)]2 ]2
− −−−−−−−−−−−−

√

= ∥ '(t)∥dt.∫
b

a

r
⇀

(2.4.1)

(2.4.2)

C (t) = f(t) +g(t) +h(t)r
⇀

î ĵ k̂ t

[a, b] C

s = dt∫
b

a

[f '(t) +[g'(t) +[h'(t)]2 ]2 ]2
− −−−−−−−−−−−−−−−−−−−−

√

= ∥ '(t)∥dt.∫
b

a

r
⇀

(2.4.3)

(2.4.4)

(t)r
⇀
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zero derivative. The smoothness condition guarantees that the curve has no cusps (or corners) that could make the formula
problematic.

Calculate the arc length for each of the following vector-valued functions:

a. 
b. 

Solution

a. Using Equation , , so

b. Using Equation , , so

Here we can use a table integration formula

so we obtain

Calculate the arc length of the parameterized curve

Hint

 Example : Finding the Arc Length2.4.1

(t) = (3t−2) +(4t+5) , 1 ≤ t ≤ 5r
⇀

î ĵ

(t) = ⟨t cos t, t sin t, 2t⟩, 0 ≤ t ≤ 2πr
⇀

2.4.2 '(t) = 3 +4r
⇀

î ĵ

s = ∥ '(t)∥dt∫
b

a

r⇀

= dt∫
5

1
+32 42− −−−−−

√

= 5dt = 5t = 20.∫
5

1

∣∣
5

1

2.4.4 '(t) = ⟨cos t− t sin t, sin t+ t cos t, 2⟩r⇀

s = ∥ '(t) ∥ dt∫
b

a

r
⇀

= dt∫
2π

0
(cos t− t sin t +(sin t+ t cos t +)2 )2 22

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

= dt∫
2π

0
( t−2t sin t cos t+ t) +( t+2t sin t cos t+ t) +4cos2 t2 sin2 sin2 t2 cos2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

= dt∫
2π

0
t+ t+ ( t+ t) +4cos2 sin2 t2 cos2 sin2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

= dt∫
2π

0
+5t2− −−−−

√

∫ du = + ln u+ +C,+u2 a2− −−−−−√ u

2
+u2 a2− −−−−−√ a2

2
∣∣ +u2 a2− −−−−−√ ∣∣

dt∫
2π

0
+5t2− −−−−

√ = (t +5 ln t+
1

2
+5t2− −−−−

√ ∣∣ +5t2− −−−−
√ ∣∣)

2π

0

= (2π +5 ln(2π+ ))− ln
1

2
4 +5π2− −−−−−

√ 4 +5π2− −−−−−
√ 5

2
5–√

≈ 25.343 units.

 Exercise 2.4.1

(t) = ⟨2 +1, 2 −1, ⟩, 0 ≤ t ≤ 3.r
⇀ t2 t2 t3
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Use Equation .

Answer

 so  units

We now return to the helix introduced earlier in this chapter. A vector-valued function that describes a helix can be written in the
form

where  represents the radius of the helix,  represents the height (distance between two consecutive turns), and the helix
completes  turns. Let’s derive a formula for the arc length of this helix using Equation . First of all,

Therefore,

This gives a formula for the length of a wire needed to form a helix with  turns that has radius  and height .

Arc-Length Parameterization
We now have a formula for the arc length of a curve defined by a vector-valued function. Let’s take this one step further and
examine what an arc-length function is.

If a vector-valued function represents the position of a particle in space as a function of time, then the arc-length function measures
how far that particle travels as a function of time. The formula for the arc-length function follows directly from the formula for arc
length:

If the curve is in two dimensions, then only two terms appear under the square root inside the integral. The reason for using the
independent variable u is to distinguish between time and the variable of integration. Since  measures distance traveled as a
function of time,  measures the speed of the particle at any given time. Since we have a formula for  in Equation , we
can differentiate both sides of the equation:

2.4.4

'(t) = ⟨4t, 4t, 3 ⟩,r
⇀ t2 s = ( − ) ≈ 37.7851

27 1133/2 323/2

(t) = R cos( ) +R sin( ) + t , 0 ≤ t ≤ h,r
⇀ 2πNt

h
î

2πNt

h
ĵ k̂

R h

N 2.4.4

'(t) = − sin( ) + cos( ) + .r
⇀ 2πNR

h

2πNt

h
î

2πNR

h

2πNt

h
ĵ k̂

s = ∥ '(t)∥dt∫
b

a

r
⇀

= dt∫
h

0
(− sin( ) +( cos( ) +

2πNR

h

2πNt

h
)

2 2πNR

h

2πNt

h
)

2

12

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= dt∫
h

0
( ( )+ ( ))+1

4π2N 2R2

h2
sin2 2πNt

h
cos2 2πNt

h

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= dt∫
h

0
+1

4π2N 2R2

h2

− −−−−−−−−−−

√

= [t +1
4π2N 2R2

h2

− −−−−−−−−−−

√ ]
h

0

= h
4 +π2N 2R2 h2

h2

− −−−−−−−−−−−

√

= .4 +π2N 2R2 h2− −−−−−−−−−−−
√

N R h

s = du.∫
t

a

(f '(u) +(g'(u) +(h'(u))2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−−

√ (2.4.5)

s(t)
s'(t) s(t) 2.4.5
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If we assume that  defines a smooth curve, then the arc length is always increasing, so  for . Last, if  is a
curve on which  for all , then

which means that  represents the arc length as long as .

Let  describe a smooth curve for . Then the arc-length function is given by

Furthermore,

If  for all , then the parameter  represents the arc length from the starting point at .

A useful application of this theorem is to find an alternative parameterization of a given curve, called an arc-length
parameterization. Recall that any vector-valued function can be reparameterized via a change of variables. For example, if we
have a function  that parameterizes a circle of radius 3, we can change the parameter from  to

, obtaining a new parameterization . The new parameterization still defines a circle of radius 3, but
now we need only use the values  to traverse the circle once.

Suppose that we find the arc-length function  and are able to solve this function for  as a function of . We can then
reparameterize the original function  by substituting the expression for  back into . The vector-valued function is now
written in terms of the parameter . Since the variable  represents the arc length, we call this an arc-length parameterization of the
original function . One advantage of finding the arc-length parameterization is that the distance traveled along the curve
starting from  is now equal to the parameter . The arc-length parameterization also appears in the context of curvature
(which we examine later in this section) and line integrals.

Find the arc-length parameterization for each of the following curves:

a. 
b. 

Solution

a. First we find the arc-length function using Equation :

s'(t) = [ du]
d

dt
∫

t

a

(f '(u) +(g'(u) +(h'(u))2 )2 )2
− −−−−−−−−−−−−−−−−−−−−−−

√

= [ ∥ '(u)∥du]
d

dt
∫

t

a

r⇀

= ∥ '(t)∥.r
⇀

(t)r
⇀ s'(t) > 0 t > a (t)r

⇀

∥ '(t)∥ = 1r
⇀ t

s(t) = ∥ '(u)∥ du = 1 du = t−a,∫
t

a

r
⇀ ∫

t

a

t a = 0

 Theorem: Arc-Length Function

(t)r⇀ t ≥ a

s(t) = ∥ '(u)∥ du∫
t

a

r⇀

= ∥ '(t)∥ > 0.
ds

dt
r
⇀

∥ '(t)∥ = 1r
⇀ t ≥ a t t = a

(t) = ⟨3 cos t, 3 sin t⟩, 0 ≤ t ≤ 2πr
⇀ t

4t (t) = ⟨3 cos 4t, 3 sin4t⟩r
⇀

0 ≤ t ≤ π/2

s(t) t s

(t)r
⇀ t (t)r

⇀

s s

(t)r
⇀

s = 0 s

 Example : Finding an Arc-Length Parameterization2.4.2

(t) = 4 cos t +4 sin t , t ≥ 0r
⇀

î ĵ

(t) = ⟨t+3, 2t−4, 2t⟩, t ≥ 3r
⇀

2.4.5
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b. which gives the relationship between the arc length  and the parameter  as  so, . Next we replace the
variable  in the original function  with the expression  to obtain

This is the arc-length parameterization of . Since the original restriction on  was given by , the restriction on s
becomes , or .

c. The arc-length function is given by Equation :

Therefore, the relationship between the arc length  and the parameter  is , so . Substituting this into
the original function  yields

This is an arc-length parameterization of . The original restriction on the parameter  was , so the restriction on 
is , or .

Find the arc-length function for the helix

Then, use the relationship between the arc length and the parameter  to find an arc-length parameterization of .

Hint

Start by finding the arc-length function.

Answer

, or . Substituting this into  gives

s(t) = ∥ '(u)∥ du∫
t

a

r
⇀

= ∥⟨−4 sinu, 4 cosu⟩∥ du∫
t

0

= du∫
t

0
(−4 sinu +(4 cosu)2 )2
− −−−−−−−−−−−−−−−−−

√

= du∫
t

0
16 u+16 usin2 cos2− −−−−−−−−−−−−−−−

√

= 4 du = 4t,∫
t

0

s t s = 4t; t = s/4

t (t) = 4 cos t +4 sin tr
⇀

î ĵ s/4

(s) = 4 cos( ) +4 sin( ) .r
⇀ s

4
î

s

4
ĵ

(t)r
⇀ t t ≥ 0

s/4 ≥ 0 s ≥ 0
2.4.5

s(t) = ∥ '(u)∥ du∫
t

a

r
⇀

= ∥⟨1, 2, 2⟩∥ du∫
t

3

= du∫
t

3
+ +12 22 22− −−−−−−−−−

√

= 3 du∫
t

3

= 3t−9.

s t s = 3t−9 t = +3s

3

(t) = ⟨t+3, 2t−4, 2t⟩r
⇀

(s) = ⟨( +3)+3, 2( +3)−4, 2( +3)⟩ = ⟨ +6, +2, +6⟩.r⇀
s

3

s

3

s

3

s

3

2s

3

2s

3

(t)r⇀ t t ≥ 3 s

(s/3) +3 ≥ 3 s ≥ 0

 Exercise 2.4.2

(t) = ⟨3 cos t, 3 sin t, 4t⟩, t ≥ 0.r⇀

t (t)r⇀

s = 5t t = s/5 (t) = ⟨3 cos t, 3 sin t, 4t⟩r
⇀
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Curvature
An important topic related to arc length is curvature. The concept of curvature provides a way to measure how sharply a smooth
curve turns. A circle has constant curvature. The smaller the radius of the circle, the greater the curvature.

Think of driving down a road. Suppose the road lies on an arc of a large circle. In this case you would barely have to turn the wheel
to stay on the road. Now suppose the radius is smaller. In this case you would need to turn more sharply to stay on the road. In the
case of a curve other than a circle, it is often useful first to inscribe a circle to the curve at a given point so that it is tangent to the
curve at that point and “hugs” the curve as closely as possible in a neighborhood of the point (Figure ). The curvature of the
graph at that point is then defined to be the same as the curvature of the inscribed circle.

Figure : The graph represents the curvature of a function  The sharper the turn in the graph, the greater the
curvature, and the smaller the radius of the inscribed circle.

Let  be a smooth curve in the plane or in space given by , where  is the arc-length parameter. The curvature  at  is

Visit this video for more information about the curvature of a space curve.

The formula in the definition of curvature is not very useful in terms of calculation. In particular, recall that  represents the
unit tangent vector to a given vector-valued function , and the formula for  is

To use the formula for curvature, it is first necessary to express  in terms of the arc-length parameter , then find the unit
tangent vector  for the function , then take the derivative of  with respect to . This is a tedious process.
Fortunately, there are equivalent formulas for curvature.

If  is a smooth curve given by , then the curvature  of  at  is given by

If  is a three-dimensional curve, then the curvature can be given by the formula

If  is the graph of a function  and both  and  exist, then the curvature  at point  is given by

(s) = ⟨3 cos( ), 3 sin( ), ⟩, s ≥ 0r
⇀ s

5

s

5

4s

5

2.4.1

2.4.1 y = f(x).

Definition: Curvature

C (s)r
⇀ s κ s

κ = = ∥ '(s)∥.∥
∥∥
dT

⇀

ds

∥
∥∥ T

⇀

(t)T
⇀

(t)r
⇀ (t)T

⇀

(t) = .T
⇀ '(t)r

⇀

∥ '(t)∥r
⇀

(t)r
⇀ s

(s)T
⇀

(s)r
⇀ (s)T

⇀
s

 Theorem: Alternate Formulas of Curvature

C (t)r⇀ κ C t

κ = .
∥ '(t)∥T

⇀

∥ '(t)∥r⇀
(2.4.6)

C

κ = .
∥ '(t) × ''(t)∥r⇀ r⇀

∥ '(t)r⇀ ∥3
(2.4.7)

C y = f(x) y' y′′ κ (x, y)

κ = .
| |y′′

[1 +(y')2]3/2
(2.4.8)
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The first formula follows directly from the chain rule:

where  is the arc length along the curve . Dividing both sides by , and taking the magnitude of both sides gives

Since , this gives the formula for the curvature  of a curve  in terms of any parameterization of :

In the case of a three-dimensional curve, we start with the formulas  and .
Therefore, . We can take the derivative of this function using the scalar product formula:

Using these last two equations we get

Since , this reduces to

Since  is parallel to , and  is orthogonal to , it follows that  and  are orthogonal. This means that 
, so

Now we solve this equation for  and use the fact that :

Then, we divide both sides by . This gives

This proves . To prove , we start with the assumption that curve  is defined by the function . Then, we
can define . Using the previous formula for curvature:

 Proof

= ,
dT

⇀

dt

dT
⇀

ds

ds

dt

s C ds/dt

= .∥
∥∥
dT

⇀

ds

∥
∥∥

∥

∥

∥
∥
∥

'(t)T
⇀

ds

dt

∥

∥

∥
∥
∥

ds/dt = ∥ '(t)∥r⇀ κ C C

κ = .
∥ '(t)∥T

⇀

∥ '(t)∥r⇀

(t) = ( '(t))/∥ '(t)∥T
⇀

r⇀ r⇀ ds/dt = ∥ '(t)∥r⇀

'(t) = (ds/dt) (t)r
⇀

T
⇀

'' (t) = (t) + '(t).r⇀
sd2

dt2
T
⇀ ds

dt
T
⇀

'(t) × '' (t)r
⇀

r
⇀ = (t) ×( (t) + '(t))

ds

dt
T
⇀ sd2

dt2
T
⇀ ds

dt
T
⇀

= (t) × (t) +( (t) × '(t).
ds

dt

sd2

dt2
T
⇀

T
⇀ ds

dt
)2

T
⇀

T
⇀

(t) × (t) = 0T
⇀

T
⇀

'(t) × ''(t) = (t) × '(t).r⇀ r⇀ ( )
ds

dt

2

T
⇀

T
⇀

'T
⇀

N
⇀

T
⇀

N
⇀

T
⇀

'T
⇀

∥ × '∥ = ∥ ∥∥ '∥ sin(π/2) = ∥ '∥T
⇀

T
⇀

T
⇀

T
⇀

T
⇀

∥ '(t) × '' (t)∥ = ∥ '(t)∥.r
⇀

r
⇀ ( )

ds

dt

2

T
⇀

∥ '(t)∥T
⇀

ds/dt = ∥ '(t)∥r
⇀

∥ '(t)∥ = .T
⇀ ∥ '(t) × '' (t)∥r⇀ r⇀

∥ '(t)r⇀ ∥2

∥ '(t)∥r⇀

κ = = .
∥ '(t)∥T

⇀

∥ '(t)∥r⇀

∥ '(t) × '' (t)∥r⇀ r⇀

∥ '(t)r⇀ ∥3

2.4.7 2.4.8 C y = f(x)

(t) = x +f(x) +0r⇀ î ĵ k̂
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Therefore,

Find the curvature for each of the following curves at the given point:

a. 

b. 

Solution

a. This function describes a helix.

The curvature of the helix at  can be found by using . First, calculate :

Next, calculate 

Last, apply  :

'(t)r
⇀

'' (t)r
⇀

'(t) × '' (t)r
⇀

r
⇀

= +f '(x)î ĵ

= f '' (x) ĵ

= = f '' (x) .

∣

∣

∣
∣
∣

î

1

0

ĵ

f '(x)

f '' (x)

k̂

0

0

∣

∣

∣
∣
∣

k̂

κ = =
∥ '(t) × '' (t)∥r

⇀
r
⇀

∥ '(t)r
⇀ ∥3

|f '' (x)|

(1 +[f '(x)]2)3/2

 Example : Finding Curvature2.4.3

(t) = 4 cos t +4 sin t +3t , t =r
⇀

î ĵ k̂
4π

3
f(x) = , x = 24x −x2− −−−−−√

t = (4π)/3 2.4.6 (t)T
⇀

(t)T
⇀

=
'(t)r⇀

∥ '(t)∥r⇀

=
⟨−4 sin t, 4 cos t, 3⟩

(−4 sin t +(4 cos t +)2 )2 32
− −−−−−−−−−−−−−−−−−−−−

√

= ⟨− sin t, cos t, ⟩.
4

5

4

5

3

5

'(t) :T
⇀

'(t) = ⟨− cos t, − sin t, 0⟩.T
⇀ 4

5

4

5

2.4.6
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The curvature of this helix is constant at all points on the helix.

2. This function describes a semicircle.

To find the curvature of this graph, we must use . First, we calculate  and 

Then, we apply :

κ = =
∥ '(t)∥T

⇀

∥ '(t)∥r
⇀

∥⟨− cos t, − sin t, 0⟩∥
4

5

4

5
∥⟨−4 sin t, 4 cos t, 3⟩∥

=

(− cos t +(− sin t +
4

5
)2 4

5
)2 02

− −−−−−−−−−−−−−−−−−−−−−−
√

(−4 sin t +(4 cos t +)2 )2 32
− −−−−−−−−−−−−−−−−−−−−

√

= = .
4/5

5

4

25

2.4.8 y' y'' :

y

y'

y''

= = (4x−4x−x2− −−−−−
√ x2)1/2

= (4x− (4 −2x) = (2 −x)(4x−
1

2
x2)−1/2 x2)−1/2

= −(4x− +(2 −x)(− )(4x− (4 −2x)x2)−1/2 1

2
x2)−3/2

= − −
4x−x2

(4x−x2)3/2

(2 −x)2

(4x−x2)3/2

=
−4x−(4 −4x+ )x2 x2

(4x−x2)3/2

= − .
4

(4x−x2)3/2

2.4.8

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/63995?pdf


Access for free at OpenStax 2.4.10 https://math.libretexts.org/@go/page/63995

The curvature of this circle is equal to the reciprocal of its radius. There is a minor issue with the absolute value in  ;
however, a closer look at the calculation reveals that the denominator is positive for any value of .

Find the curvature of the curve defined by the function

at the point .

Hint

Use .

Answer

The Normal and Binormal Vectors

We have seen that the derivative  of a vector-valued function is a tangent vector to the curve defined by , and the unit
tangent vector  can be calculated by dividing  by its magnitude. When studying motion in three dimensions, two other
vectors are useful in describing the motion of a particle along a path in space: the principal unit normal vector and the binormal
vector.

Let  be a three-dimensional smooth curve represented by  over an open interval . If , then the principal unit
normal vector at  is defined to be

The binormal vector at  is defined as

where  is the unit tangent vector.

Note that, by definition, the binormal vector is orthogonal to both the unit tangent vector and the normal vector. Furthermore, 
is always a unit vector. This can be shown using the formula for the magnitude of a cross product.

κ =
| |y′′

[1 +(y')2]3/2

= =

−∣
∣∣

4

(4x−x2)3/2

∣
∣∣

[1 +((2 −x)(4x−x2)−1/2)2]
3/2

∣
∣∣

4

(4x−x2)3/2

∣
∣∣

[1 +
(2 −x)2

4x−x2
]

3/2

= = ⋅

∣
∣∣

4

(4x−x2)3/2

∣
∣∣

[
4x− + −4x+4x2 x2

4x−x2
]

3/2

∣
∣∣

4

(4x−x2)3/2

∣
∣∣

(4x−x2)3/2

8

= .
1

2

2.4.8
x

 Exercise 2.4.3

y = 3 −2x+4x2

x = 2

2.4.8

κ = ≈ 0.00596

1013/2

'(t)r
⇀ (t)r

⇀

(t)T
⇀

'(t)r
⇀

Definition: Binormal Vectors

C r⇀ I '(t) ≠T
⇀

0
⇀

t

(t) = .N
⇀ '(t)T

⇀

∥ '(t)∥T
⇀ (2.4.9)

t

(t) = (t) × (t),B
⇀

T
⇀

N
⇀

(2.4.10)

(t)T
⇀

(t)B
⇀
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where  is the angle between  and . Since  is the derivative of a unit vector, property (vii) of the derivative of a
vector-valued function tells us that  and  are orthogonal to each other, so . Furthermore, they are both unit
vectors, so their magnitude is 1. Therefore,  and  is a unit vector.

The principal unit normal vector can be challenging to calculate because the unit tangent vector involves a quotient, and this
quotient often has a square root in the denominator. In the three-dimensional case, finding the cross product of the unit tangent
vector and the unit normal vector can be even more cumbersome. Fortunately, we have alternative formulas for finding these two
vectors, and they are presented in Motion in Space.

For each of the following vector-valued functions, find the principal unit normal vector. Then, if possible, find the binormal
vector.

1. 
2. 

Solution

1. This function describes a circle.

To find the principal unit normal vector, we first must find the unit tangent vector 

∥ (t)∥ = ∥ (t) × (t)∥ = ∥ (t)∥∥ (t)∥ sinθ,B
⇀

T
⇀

N
⇀

T
⇀

N
⇀

θ (t)T
⇀

(t)N
⇀

(t)N
⇀

(t)T
⇀

(t)N
⇀

θ = π/2

∥ (t)∥∥ (t)∥ sinθ = (1)(1) sin(π/2) = 1T
⇀

N
⇀

(t)B
⇀

 Example : Finding the Principal Unit Normal Vector and Binormal Vector2.4.4

(t) = 4 cos t −4 sin tr
⇀

î ĵ

(t) = (6t+2) +5 −8tr
⇀

î t2 ĵ k̂

(t) :T
⇀

(t)T
⇀

=
'(t)r

⇀

∥ '(t)∥r⇀

=
−4 sin t −4 cos tî ĵ

(−4 sin t +(−4 cos t)2 )2− −−−−−−−−−−−−−−−−−−√

=
−4 sin t −4 cos tî ĵ

16 t+16 tsin2 cos2
− −−−−−−−−−−−−−−

√

=
−4 sin t −4 cos tî ĵ

16( t+ t)sin2 cos2
− −−−−−−−−−−−−−

√

=
−4 sin t −4 cos tî ĵ

4

= −sin t −cos t .î ĵ
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Next, we use  :

Notice that the unit tangent vector and the principal unit normal vector are orthogonal to each other for all values of :

Furthermore, the principal unit normal vector points toward the center of the circle from every point on the circle. Since 
defines a curve in two dimensions, we cannot calculate the binormal vector.

2. This function looks like this:

To find the principal unit normal vector, we first find the unit tangent vector 

2.4.9

(t)N
⇀

=
'(t)T

⇀

∥ '(t)∥T
⇀

=
−cos t +sin tî ĵ

(−cos t +(sin t)2 )2− −−−−−−−−−−−−−−
√

=
−cos t +sin tî ĵ

t+ tcos2 sin2− −−−−−−−−−−√

= −cos t +sin t .î ĵ

t

(t) ⋅ (t)T
⇀

N
⇀

= ⟨−sin t, −cos t⟩ ⋅ ⟨−cos t, sin t⟩

= sin t cos t−cos t sin t

= 0.

(t)r⇀

(t) :T
⇀
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Next, we calculate  and :

Therefore, according to  :

Once again, the unit tangent vector and the principal unit normal vector are orthogonal to each other for all values of :

(t)T
⇀

=
'(t)r⇀

∥ '(t)∥r
⇀

=
6 +10t −8î ĵ k̂

+(10t +(−862 )2 )2
− −−−−−−−−−−−−−−

√

=
6 +10t −8î ĵ k̂

36 +100 +64t2− −−−−−−−−−−−√

=
6 +10t −8î ĵ k̂

100( +1)t2− −−−−−−−−
√

=
3 −5t −4î ĵ k̂

5 +1t2− −−−−√

= ( +1 − t( +1 − ( +1 .
3

5
t2 )−1/2

î t2 )−1/2
ĵ

4

5
t2 )−1/2

k̂

'(t)T
⇀

∥ '(t)∥T
⇀

'(t)T
⇀

∥ '(t)∥T
⇀

= (− )( +1 (2t) −(( +1 − t( )( +1 (2t)) − (− )( +1 (2t)
3

5

1

2
t2 )−3/2

î t2 )−1/2 1

2
t2 )−3/2

ĵ
4

5

1

2
t2 )−3/2

k̂

= − − +
3t

5( +1t2 )3/2
î

1

( +1t2 )3/2
ĵ

4t

5( +1t2 )3/2
k̂

= (− +(− +(
3t

5( +1t2 )3/2
)

2 1

( +1t2 )3/2
)

2 4t

5( +1t2 )3/2
)

2− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= + +
9t2

25( +1t2 )3

1

( +1t2 )3

16t2

25( +1t2 )3

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

=
25 +25t2

25( +1t2 )3

− −−−−−−−−

√

=
1

( +1t2 )2

− −−−−−−−

√

= .
1

+1t2

2.4.9

(t)N
⇀

=
'(t)T

⇀

∥ '(t)∥T
⇀

=(− − + )( +1)
3t

5( +1t2 )3/2
î

1

( +1t2 )3/2
ĵ

4t

5( +1t2 )3/2
k̂ t2

= − − +
3t

5( +1t2 )1/2
î

5

5( +1t2 )1/2
ĵ

4t

5( +1t2 )1/2
k̂

= − .
3t +5 −4tî ĵ k̂

5 +1t2− −−−−√

t
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Last, since  represents a three-dimensional curve, we can calculate the binormal vector using  :

Find the unit normal vector for the vector-valued function  and evaluate it at .

Hint

First, find , then use .

Answer

For any smooth curve in three dimensions that is defined by a vector-valued function, we now have formulas for the unit tangent
vector , the unit normal vector , and the binormal vector . The unit normal vector and the binormal vector form a plane that is
perpendicular to the curve at any point on the curve, called the normal plane. In addition, these three vectors form a frame of
reference in three-dimensional space called the Frenet frame of reference (also called the TNB frame) (Figure ). Last, the
plane determined by the vectors  and  forms the osculating plane of  at any point  on the curve.

(t) ⋅ (t)T
⇀

N
⇀

=( ) ⋅(− )
3 −5t −4î ĵ k̂

5 +1t2− −−−−√

3t +5 −4tî ĵ k̂

5 +1t2− −−−−√

=
3(−3t) −5t(−5) −4(4t)

25( +1)t2

=
−9t+25t−16t

25( +1)t2

= 0.

(t)r
⇀ 2.4.10

(t)B
⇀

= (t) × (t)T
⇀

N
⇀

=

∣

∣

∣
∣
∣
∣
∣

î

3

5 +1t2− −−−−
√

−
3t

5 +1t2− −−−−√

ĵ

−
5t

5 +1t2− −−−−
√

−
5

5 +1t2− −−−−√

k̂

−
4

5 +1t2− −−−−
√

4t

5 +1t2− −−−−√

∣

∣

∣
∣
∣
∣
∣

=((− )( )−(− )(− ))
5t

5 +1t2− −−−−√

4t

5 +1t2− −−−−√

4

5 +1t2− −−−−√

5

5 +1t2− −−−−√
î

−(( )( )−(− )(− ))
3

5 +1t2− −−−−√

4t

5 +1t2− −−−−√

4

5 +1t2− −−−−√

3t

5 +1t2− −−−−√
ĵ

+(( )(− )−(− )(− ))
3

5 +1t2− −−−−√

5

5 +1t2− −−−−√

5t

5 +1t2− −−−−√

3t

5 +1t2− −−−−√
k̂

=( ) +( )
−20 −20t2

25( +1)t2
î

−15 −15t2

25( +1)t2
k̂

= −20( ) −15( )
+1t2

25( +1)t2 î
+1t2

25( +1)t2 k̂

= − − .
4

5
î

3

5
k̂

 Exercise 2.4.4

(t) = ( −3t) +(4t+1)r
⇀ t2 î ĵ t = 2

(t)T
⇀

2.4.9

(2) = ( − )N
⇀ 2–√

2
î ĵ

T
⇀

N
⇀

B
⇀

2.4.2

T
⇀

N
⇀

C P
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Figure : This figure depicts a Frenet frame of reference. At every point  on a three-dimensional curve, the unit tangent, unit
normal, and binormal vectors form a three-dimensional frame of reference.

Suppose we form a circle in the osculating plane of  at point  on the curve. Assume that the circle has the same curvature as the
curve does at point  and let the circle have radius . Then, the curvature of the circle is given by . We call  the radius of
curvature of the curve, and it is equal to the reciprocal of the curvature. If this circle lies on the concave side of the curve and is
tangent to the curve at point , then this circle is called the osculating circle of  at , as shown in Figure .

Figure : In this osculating circle, the circle is tangent to curve  at point  and shares the same curvature.

For more information on osculating circles, see this demonstration on curvature and torsion, this article on osculating circles, and
this discussion of Serret formulas.

To find the equation of an osculating circle in two dimensions, we need find only the center and radius of the circle.

Find the equation of the osculating circle of the curve defined by the function  at .

Solution

Figure  shows the graph of .

Figure : We want to find the osculating circle of this graph at the point where .

First, let’s calculate the curvature at :

2.4.2 P

C P

P r 1
r r

P C P 2.4.3

2.4.3 C P

 Example : Finding the Equation of an Osculating Circle2.4.5

y = −3x+1x3 x = 1

2.4.4 y = −3x+1x3

2.4.4 x = 1

x = 1
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This gives . Therefore, the radius of the osculating circle is given by . Next, we then calculate the

coordinates of the center of the circle. When , the slope of the tangent line is zero. Therefore, the center of the osculating
circle is directly above the point on the graph with coordinates . The center is located at . The formula for a
circle with radius  and center  is given by . Therefore, the equation of the osculating circle is 

. The graph and its osculating circle appears in the following graph.

Figure : The osculating circle has radius .

Find the equation of the osculating circle of the curve defined by the vector-valued function  at .

Hint

Use  to find the curvature of the graph, then draw a graph of the function around  to help visualize the circle in
relation to the graph.

Answer

At the point , the curvature is equal to . Therefore, the radius of the osculating circle is .

A graph of this function appears next:

κ = = .
|f '' (x)|

(1 +[f '(x)]2)
3/2

|6x|

(1 +[3 −3x2 ]2)3/2

κ = 6 R = =1
κ

1

6
x = 1

(1, −1) (1, − )5
6

r (h, k) (x−h +(y−k =)2 )2 r2

(x−1 +(y+ =)2 5
6 )2 1

36

2.4.5 R = 1
6

 Exercise 2.4.5

y = 2 −4x+5x2 x = 1

2.4.8 x = 1

κ = 4

[1+(4x−4)2]3/2

x = 1 4 1
4
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The vertex of this parabola is located at the point . Furthermore, the center of the osculating circle is directly above
the vertex. Therefore, the coordinates of the center are . The equation of the osculating circle is

.

Key Concepts

The arc-length function for a vector-valued function is calculated using the integral formula . This

formula is valid in both two and three dimensions.
The curvature of a curve at a point in either two or three dimensions is defined to be the curvature of the inscribed circle at that
point. The arc-length parameterization is used in the definition of curvature.
There are several different formulas for curvature. The curvature of a circle is equal to the reciprocal of its radius.
The principal unit normal vector at  is defined to be

The binormal vector at  is defined as , where  is the unit tangent vector.
The Frenet frame of reference is formed by the unit tangent vector, the principal unit normal vector, and the binormal vector.
The osculating circle is tangent to a curve at a point and has the same curvature as the tangent curve at that point.

Key Equations
Arc length of space curve 

Arc-length function 

Principal unit normal vector 

Binormal vector 

Glossary

arc-length function
a function  that describes the arc length of curve  as a function of 

arc-length parameterization
a reparameterization of a vector-valued function in which the parameter is equal to the arc length

binormal vector
a unit vector orthogonal to the unit tangent vector and the unit normal vector

curvature
the derivative of the unit tangent vector with respect to the arc-length parameter

Frenet frame of reference
(TNB frame) a frame of reference in three-dimensional space formed by the unit tangent vector, the unit normal vector, and the
binormal vector

(1, 3)

(1, )13
4

(x−1 +(y− =)2 13
4

)2 1
16

s(t) = ∥ '(t)∥ dt∫
b

a

r
⇀

t

(t) = .N
⇀ '(t)T

⇀

∥ '(t)∥T
⇀

t (t) = (t) × (t)B
⇀

T
⇀

N
⇀

(t)T
⇀

s = dt = ∥ '(t)∥ dt∫
b

a

[f '(t) +[g'(t) +[h'(t)]2 ]2 ]2
− −−−−−−−−−−−−−−−−−−−−√ ∫

b

a

r
⇀

s(t) = du or s(t) = ∥ '(u)∥ du∫
t

a

f '(u) +(g'(u) +(h'(u))2 )2 )2− −−−−−−−−−−−−−−−−−−−−−
√ ∫

t

a

r⇀

κ = or κ = or κ =
∥ '(t)∥T

⇀

∥ '(t)∥r⇀
∥ '(t)× ''(t)∥r⇀ r⇀

∥ '(t)r⇀ ∥3

|y''|

[1+(y')2]3/2

(t) =N
⇀ '(t)T

⇀

∥ '(t)∥T
⇀

(t) = (t) × (t)B
⇀

T
⇀

N
⇀
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normal plane
a plane that is perpendicular to a curve at any point on the curve

osculating circle
a circle that is tangent to a curve  at a point  and that shares the same curvature

osculating plane
the plane determined by the unit tangent and the unit normal vector

principal unit normal vector

a vector orthogonal to the unit tangent vector, given by the formula 

radius of curvature
the reciprocal of the curvature

smooth
curves where the vector-valued function  is differentiable with a non-zero derivative

This page titled 2.4: Arc Length and Curvature is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

13.3: Arc Length and Curvature by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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2.5: Motion in Space

Describe the velocity and acceleration vectors of a particle moving in space.
Explain the tangential and normal components of acceleration.
State Kepler’s laws of planetary motion.

We have now seen how to describe curves in the plane and in space, and how to determine their properties, such as arc length and
curvature. All of this leads to the main goal of this chapter, which is the description of motion along plane curves and space curves.
We now have all the tools we need; in this section, we put these ideas together and look at how to use them.

Motion Vectors in the Plane and in Space
Our starting point is using vector-valued functions to represent the position of an object as a function of time. All of the following
material can be applied either to curves in the plane or to space curves. For example, when we look at the orbit of the planets, the
curves defining these orbits all lie in a plane because they are elliptical. However, a particle traveling along a helix moves on a
curve in three dimensions.

Let  be a twice-differentiable vector-valued function of the parameter  that represents the position of an object as a
function of time.

The velocity vector  of the object is given by

The acceleration vector  is defined to be

The speed is defined to be

Since  can be in either two or three dimensions, these vector-valued functions can have either two or three components. In two
dimensions, we define  and in three dimensions . Then the velocity,
acceleration, and speed can be written as shown in the following table.

Table : Formulas for Position, Velocity, Acceleration, and Speed
Quantity Two Dimensions Three Dimensions

Position

Velocity

Acceleration

Speed

A particle moves in a parabolic path defined by the vector-valued function , where  measures time in
seconds.

1. Find the velocity, acceleration, and speed as functions of time.
2. Sketch the curve along with the velocity vector at time .

Solution

 Learning Objectives

 Definition: Speed, Velocity, and Acceleration

(t)r
⇀ t

(t)v⇀

Velocity = (t) = '(t).v
⇀

r
⇀ (2.5.1)

(t)a⇀

Acceleration = (t) = '(t) = '' (t).a
⇀

v
⇀

r
⇀ (2.5.2)

Speed = v(t) = ∥ (t)∥ = ∥ '(t)∥ = .v
⇀

r
⇀ ds

dt
(2.5.3)

(t)r⇀

(t) = x(t) +y(t)r⇀ î ĵ (t) = x(t) +y(t) +z(t)r⇀ î ĵ k̂

2.5.1

(t) = x(t) + y(t)r⇀ î ĵ (t) = x(t) + y(t) + z(t)r⇀ î ĵ k̂

(t) = x'(t) + y'(t)v⇀ î ĵ (t) = x'(t) + y'(t) + z'(t)v⇀ î ĵ k̂

(t) = x''(t) + y''(t)a⇀ î ĵ (t) = x''(t) + y''(t) + z''(t)a⇀ î ĵ k̂

∥ (t)∥ =v⇀ (x'(t) + (y'(t))2 )2− −−−−−−−−−−−−−√ ∥ (t)∥ =v⇀ (x'(t) + (y'(t) + (z'(t))2 )2 )2− −−−−−−−−−−−−−−−−−−−−−√

 Example : Studying Motion Along a Parabola2.5.1

(t) = +r⇀ t2 î 5 − t2− −−−−√ ĵ t

t = 1
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1. We use Equations , , and :

2. The graph of  is a portion of a parabola (Figure ). 
 
When , . 
 
Thus the particle would be located at the point  when . 
 
The velocity vector at  is

and the acceleration vector at  is

Notice that the velocity vector is tangent to the path, as is always the case.

Figure : This graph depicts the velocity vector at time  for a particle moving in a parabolic path.

2.5.1 2.5.2 2.5.3

(t)v
⇀

(t)a⇀

|| (t)||v
⇀

= '(t) = 2t −r
⇀

î
t

5 − t2− −−−−√
ĵ

= '(t) = 2 −5(5 −v⇀ î t2)− 3

2 ĵ

= || '(t)||r
⇀

= (2t +)2 (− )
t

5 − t2− −−−−√

2− −−−−−−−−−−−−−−−−−

√

= 4 +t2 t2

5 − t2

− −−−−−−−−−

√

= .
21 −4t2 t4

5 − t2

− −−−−−−−−

√

(t) = +r
⇀ t2 î 5 − t2− −−−−√ ĵ 2.5.1

t = 1 (1) = (1 + = + = +2r⇀ )2 î 5 −(1)2− −−−−−−
√ ĵ î 4–√ ĵ î ĵ

(1, 2) t = 1

t = 1

(1)v
⇀ = '(1) = 2(1) −r

⇀
î

1

5 −12− −−−−
√

ĵ

= 2 −î
1

2
ĵ

t = 1

(1) = '(1) = 2 −5(5 − = 2 − .a⇀ v⇀ î 12)−3/2 ĵ î
5

8
ĵ

2.5.1 t = 1
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A particle moves in a path defined by the vector-valued function , where 
measures time in seconds and where distance is measured in feet. Find the velocity, acceleration, and speed as functions of
time.

Hint

Use Equations , , and .

Answer

The units for velocity and speed are feet per second, and the units for acceleration are feet per second squared.

To gain a better understanding of the velocity and acceleration vectors, imagine you are driving along a curvy road. If you do not
turn the steering wheel, you would continue in a straight line and run off the road. The speed at which you are traveling when you
run off the road, coupled with the direction, gives a vector representing your velocity, as illustrated in Figure .

Figure : At each point along a road traveled by a car, the velocity vector of the car is tangent to the path traveled by the car.

However, the fact that you must turn the steering wheel to stay on the road indicates that your velocity is always changing (even if
your speed is not) because your direction is constantly changing to keep you on the road. As you turn to the right, your acceleration
vector also points to the right. As you turn to the left, your acceleration vector points to the left. This indicates that your velocity
and acceleration vectors are constantly changing, regardless of whether your actual speed varies (Figure ).

Figure : The dashed line represents the trajectory of an object (a car, for example). The acceleration vector points toward the
inside of the turn at all times.

Components of the Acceleration Vector
We can combine some of the concepts discussed in Arc Length and Curvature with the acceleration vector to gain a deeper
understanding of how this vector relates to motion in the plane and in space. Recall that the unit tangent vector  and the unit

 Exercise 2.5.1

(t) = ( −3t) +(2t−4) +(t+2)r⇀ t2 î ĵ k̂ t

2.5.1 2.5.2 2.5.3

(t)v
⇀

(t)a
⇀

= (t) = (2t−3) +2 +r
⇀′

î ĵ k̂

= '(t) = 2v
⇀

î

|| '(t)|| = =r
⇀ (2t−3 + +)2 22 12

− −−−−−−−−−−−−−−
√ 4 −12t+14t2− −−−−−−−−−−

√

2.5.2

2.5.2

2.5.3

2.5.3

T
⇀
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normal vector  form an osculating plane at any point  on the curve defined by a vector-valued function . The following
theorem shows that the acceleration vector  lies in the osculating plane and can be written as a linear combination of the unit
tangent and the unit normal vectors.

The acceleration vector  of an object moving along a curve traced out by a twice-differentiable function  lies in the
plane formed by the unit tangent vector  and the principal unit normal vector  to . Furthermore,

Here,  is the speed of the object and  is the curvature of  traced out by .

Because  and , we have .

Now we differentiate this equation:

Since , we know , so

A formula for curvature is , so .

This gives 

The coefficients of  and  are referred to as the tangential component of acceleration and the normal component of
acceleration, respectively. We write  to denote the tangential component and  to denote the normal component.

Let  be a vector-valued function that denotes the position of an object as a function of time. Then  is the
acceleration vector. The tangential and normal components of acceleration  and  are given by the formulas

and

These components are related by the formula

Here  is the unit tangent vector to the curve defined by , and  is the unit normal vector to the curve defined by 
.

N
⇀

P (t)r⇀

(t)a⇀

 Theorem : The Plane of the Acceleration Vector2.5.1

(t)a
⇀ (t)r

⇀

(t)T
⇀

(t)N
⇀

C

(t) = (t) (t) +[v(t) κ (t)a
⇀ v′

T
⇀

]2 N
⇀

v(t) = ∥ (t)∥v
⇀ κ C (t)r

⇀

 Proof

(t) = '(t)v⇀ r⇀ (t) =T
⇀ '(t)r

⇀

|| '(t)||r
⇀ (t) = || '(t)|| (t) = v(t) (t)v⇀ r⇀ T

⇀
T
⇀

(t) = '(t) = (v(t) (t)) = v'(t) (t) +v(t) '(t)a
⇀

v
⇀ d

dt
T
⇀

T
⇀

T
⇀

(t) =N
⇀ '(t)T

⇀

|| '(t)||T
⇀ '(t) = || '(t)|| (t)T

⇀
T
⇀

N
⇀

(t) = v'(t) (t) +v(t)|| '(t)|| (t).a
⇀

T
⇀

T
⇀

N
⇀

κ =
|| (t)||T

⇀′

|| (t)||r⇀
′ (t) = κ|| (t)|| = κv(t)T

⇀′
r
⇀′

(t) = v'(t) (t) +κ(v(t) (t).a
⇀

T
⇀

)2N
⇀

□

(t)T
⇀

(t)N
⇀

a
T
⇀ a

N
⇀

 Theorem : Tangential and Normal Components of Acceleration2.5.2

(t)r⇀ (t) = ''(t)a
⇀

r⇀

a
T
⇀ a

N
⇀

= ⋅ =a
T
⇀ a⇀ T

⇀ ⋅v⇀ a⇀

|| ||v⇀
(2.5.4)

= ⋅ = = .a
N
⇀ a⇀ N

⇀ || × ||v
⇀

a
⇀

|| ||v⇀
|| | −a⇀ |2 ( )a

T
⇀

2
− −−−−−−−−−−−

√ (2.5.5)

(t) = (t) + (t).a⇀ a
T
⇀T

⇀
a

N
⇀N

⇀
(2.5.6)

(t)T
⇀

(t)r⇀ (t)N
⇀

(t)r⇀
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The normal component of acceleration is also called the centripetal component of acceleration or sometimes the radial component
of acceleration. To understand centripetal acceleration, suppose you are traveling in a car on a circular track at a constant speed.
Then, as we saw earlier, the acceleration vector points toward the center of the track at all times. As a rider in the car, you feel a
pull toward the outside of the track because you are constantly turning. This sensation acts in the opposite direction of centripetal
acceleration. The same holds true for non-circular paths. The reason is that your body tends to travel in a straight line and resists
the force resulting from acceleration that push it toward the side. Note that at point  in Figure  the acceleration vector is
pointing backward. This is because the car is decelerating as it goes into the curve.

Figure : The tangential and normal components of acceleration can be used to describe the acceleration vector.

The tangential and normal unit vectors at any given point on the curve provide a frame of reference at that point. The tangential and
normal components of acceleration are the projections of the acceleration vector onto  and , respectively.

A particle moves in a path defined by the vector-valued function , where  measures
time in seconds and distance is measured in feet.

a. Find  and  as functions of .
b. Find  and  at time .

Solution

a. Let’s start deriving the velocityand acceleration functions:

Now we apply Equation :

Now we can apply Equation :

B 2.5.4

2.5.4

T
⇀

N
⇀

 Example : Finding Components of Acceleration2.5.2

(t) = +(2t−3) +(3 −3t)r
⇀ t2 î ĵ t2 k̂ t

a
T
⇀ a

N
⇀ t

a
T
⇀ a

N
⇀ t = 2

(t)v
⇀

(t)a
⇀

= (t)r
⇀′

= 2t +2 +(6t−3)î ĵ k̂

= (t)v
⇀′

= 2 +6î k̂

2.5.4

a
T
⇀ =

⋅v
⇀

a
⇀

|| ||v
⇀

=
(2t +2 +(6t−3) ) ⋅ (2 +6 )î ĵ k̂ î k̂

||2t +2 +(6t−3) ||î ĵ k̂

=
4t+6(6t−3)

(2t + +(6t−3)2 22 )2
− −−−−−−−−−−−−−−−−

√

=
40t−18

40 −36t+13t2
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b. We must evaluate each of the answers from part a at :

The units of acceleration are feet per second squared, as are the units of the normal and tangential components of
acceleration.

An object moves in a path defined by the vector-valued function , where  measures time in seconds.

a. Find  and  as functions of .
b. Find  and  at time .

Hint

Use Equations  and 

Answer

a.

a
N
⇀ = || | −a⇀ |2 ( )a

T
⇀

2
− −−−−−−−−−−−

√

= ||2 +6 | −î k̂ |2 ( )
40t−18

40 −36t+13t2− −−−−−−−−−−−√

2− −−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 4 +36 −
(40t−18)2

40 −36t+13t2

− −−−−−−−−−−−−−−−−−−−

√

=
40(40 −36t+13) −(1600 −1440t+324)t2 t2

40 −36t+13t2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

=
196

40 −36t+13t2

− −−−−−−−−−−−−
√

=
14

40 −36t+13t2− −−−−−−−−−−−√

t = 2

(2)a
T
⇀

(2)a
N
⇀

=
40(2) −18

40(2 −36(2) +13)2− −−−−−−−−−−−−−−
√

=
80 −18

160 −72 +13− −−−−−−−−−−√

=
62

101
−−−√

=
14

40(2 −36(2) +13)2− −−−−−−−−−−−−−−√

= = .
14

160 −72 +13− −−−−−−−−−−√

14

101−−−√

 Exercise 2.5.2
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b.

 

Projectile Motion
Now let’s look at an application of vector functions. In particular, let’s consider the effect of gravity on the motion of an object as it
travels through the air, and how it determines the resulting trajectory of that object. In the following, we ignore the effect of air
resistance. This situation, with an object moving with an initial velocity but with no forces acting on it other than gravity, is known
as projectile motion. It describes the motion of objects from golf balls to baseballs, and from arrows to cannonballs.

First we need to choose a coordinate system. If we are standing at the origin of this coordinate system, then we choose the positive 
-axis to be up, the negative -axis to be down, and the positive -axis to be forward (i.e., away from the thrower of the object).

The effect of gravity is in a downward direction, so Newton’s second law tells us that the force on the object resulting from gravity
is equal to the mass of the object times the acceleration resulting from gravity, or , where  represents the force from
gravity and  represents the acceleration resulting from gravity at Earth’s surface. The value of  in the English system of
measurement is approximately 32 ft/sec  and it is approximately 9.8 m/sec  in the metric system. This is the only force acting on
the object. Since gravity acts in a downward direction, we can write the force resulting from gravity in the form , as
shown in Figure .
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Figure : An object is falling under the influence of gravity.

Newton’s second law also tells us that , where  represents the acceleration vector of the object. This force must be equal
to the force of gravity at all times, so we therefore know that

Now we use the fact that the acceleration vector is the first derivative of the velocity vector. Therefore, we can rewrite the last
equation in the form

By taking the antiderivative of each side of this equation we obtain

for some constant vector . To determine the value of this vector, we can use the velocity of the object at a fixed time, say at time 
. We call this velocity the initial velocity: . Therefore,  and . This gives the

velocity vector as .

Next we use the fact that velocity  is the derivative of position . This gives the equation

Taking the antiderivative of both sides of this equation leads to

with another unknown constant vector . To determine the value of , we can use the position of the object at a given time, say
at time . We call this position the initial position: . Therefore, . This
gives the position of the object at any time as

Let’s take a closer look at the initial velocity and initial position. In particular, suppose the object is thrown upward from the origin
at an angle  to the horizontal, with initial speed . How can we modify the previous result to reflect this scenario? First, we can
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assume it is thrown from the origin. If not, then we can move the origin to the point from where it is thrown. Therefore, , as
shown in Figure .

Figure : Projectile motion when the object is thrown upward at an angle θ. The horizontal motion is at constant velocity and
the vertical motion is at constant acceleration.

We can rewrite the initial velocity vector in the form . Then the equation for the position function 
becomes

The coefficient of  represents the horizontal component of  and is the horizontal distance of the object from the origin at time 
. The maximum value of the horizontal distance (measured at the same initial and final altitude) is called the range . The

coefficient of  represents the vertical component of  and is the altitude of the object at time . The maximum value of the
vertical distance is the height .

During an Independence Day celebration, a cannonball is fired from a cannon on a cliff toward the water. The cannon is aimed
at an angle of 30° above horizontal and the initial speed of the cannonball is 600 ft/sec. The cliff is 100 ft above the water
(Figure ).

a. Find the maximum height of the cannonball.
b. How long will it take for the cannonball to splash into the sea?
c. How far out to sea will the cannonball hit the water?
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ĵ v0 î v0 ĵ
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Figure : The flight of a cannonball (ignoring air resistance) is projectile motion.

Solution

We use the equation

with , , and . Then the position equation becomes

a. The cannonball reaches its maximum height when the vertical component of its velocity is zero, because the cannonball is
neither rising nor falling at that point. The velocity vector is

Therefore, the vertical component of velocity is given by the expression . Setting this expression equal to zero
and solving for  gives  sec. The height of the cannonball at this time is given by the vertical component of the
position vector, evaluated at .

Therefore, the maximum height of the cannonball is 1406.39 ft above the cannon, or 1506.39 ft above sea level.
b. When the cannonball lands in the water, it is 100 ft below the cannon. Therefore, the vertical component of the position

vector is equal to  Setting the vertical component of  equal to  and solving, we obtain
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θ = 30∘ g = 32
ft

sec2
= 600v0

ft

sec

(t)s⇀ = 600t(cos ) +(600t sin − (32) )30∘ î 30∘ 1
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The positive value of  that solves this equation is approximately 19.08. Therefore, the cannonball hits the water after
approximately 19.08 sec.

c. To find the distance out to sea, we simply substitute the answer from part (b) into :

Therefore, the ball hits the water about 9914.26 ft away from the base of the cliff. Notice that the vertical component of the
position vector is very close to −100, which tells us that the ball just hit the water. Note that 9914.26 feet is not the true
range of the cannon since the cannonball lands in the ocean at a location below the cannon. The range of the cannon would
be determined by finding how far out the cannonball is when its height is 100 ft above the water (the same as the altitude of
the cannon).

An archer fires an arrow at an angle of 40° above the horizontal with an initial speed of 98 m/sec. The height of the archer is
171.5 cm. Find the horizontal distance the arrow travels before it hits the ground.

Hint

The equation for the position vector needs to account for the height of the archer in meters.

Answer

967.15 m

One final question remains: In general, what is the maximum distance a projectile can travel, given its initial speed? To determine
this distance, we assume the projectile is fired from ground level and we wish it to return to ground level. In other words, we want
to determine an equation for the range. In this case, the equation of projectile motion is

Setting the second component equal to zero and solving for  yields

Therefore, either  or . We are interested in the second value of , so we substitute this into , which gives
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 Exercise 2.5.3

= t cosθ +( t sinθ− g ) .s⇀ v0 î v0
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Thus, the expression for the range of a projectile fired at an angle  is

The only variable in this expression is . To maximize the distance traveled, take the derivative of the coefficient of  with respect
to  and set it equal to zero:

This value of  is the smallest positive value that makes the derivative equal to zero. Therefore, in the absence of air resistance,
the best angle to fire a projectile (to maximize the range) is at a 45° angle. The distance it travels is given by

Therefore, the range for an angle of 45° is  units.

Kepler’s Laws

During the early 1600s, Johannes Kepler was able to use the amazingly accurate data from his mentor Tycho Brahe to formulate his
three laws of planetary motion, now known as Kepler’s laws of planetary motion. These laws also apply to other objects in the
solar system in orbit around the Sun, such as comets (e.g., Halley’s comet) and asteroids. Variations of these laws apply to satellites
in orbit around Earth.

1. The path of any planet about the Sun is elliptical in shape, with the center of the Sun located at one focus of the ellipse (the
law of ellipses).

2. A line drawn from the center of the Sun to the center of a planet sweeps out equal areas in equal time intervals (the law of
equal areas) (Figure ).

3. The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of the lengths of their semimajor
orbital axes (the Law of Harmonies).
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Figure : Kepler’s first and second laws are pictured here. The Sun is located at a focus of the elliptical orbit of any planet.
Furthermore, the shaded areas are all equal, assuming that the amount of time measured as the planet moves is the same for
each region.

Kepler’s third law is especially useful when using appropriate units. In particular, 1 astronomical unit is defined to be the average
distance from Earth to the Sun, and is now recognized to be 149,597,870,700 m or, approximately 93,000,000 mi. We therefore
write 1 A.U. = 93,000,000 mi. Since the time it takes for Earth to orbit the Sun is 1 year, we use Earth years for units of time. Then,
substituting 1 year for the period of Earth and 1 A.U. for the average distance to the Sun, Kepler’s third law can be written as

for any planet in the solar system, where  is the period of that planet measured in Earth years and  is the average distance
from that planet to the Sun measured in astronomical units. Therefore, if we know the average distance from a planet to the Sun (in
astronomical units), we can then calculate the length of its year (in Earth years), and vice versa.

Kepler’s laws were formulated based on observations from Brahe; however, they were not proved formally until Sir Isaac Newton
was able to apply calculus. Furthermore, Newton was able to generalize Kepler’s third law to other orbital systems, such as a moon
orbiting around a planet. Kepler’s original third law only applies to objects orbiting the Sun.

Let’s now prove Kepler’s first law using the calculus of vector-valued functions. First we need a coordinate system. Let’s place
the Sun at the origin of the coordinate system and let the vector-valued function  represent the location of a planet as a
function of time. Newton proved Kepler’s law using his second law of motion and his law of universal gravitation. Newton’s
second law of motion can be written as , where  represents the net force acting on the planet. His law of universal

gravitation can be written in the form , which indicates that the force resulting from the gravitational

attraction of the Sun points back toward the Sun, and has magnitude  (Figure ).

Figure : The gravitational force between Earth and the Sun is equal to the mass of the earth times its acceleration.

Setting these two forces equal to each other, and using the fact that , we obtain
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which can be rewritten as

This equation shows that the vectors  and  are parallel to each other, so . Next, let’s differentiate 
 with respect to time:

This proves that  is a constant vector, which we call . Since  and  are both perpendicular to  for all values of ,
they must lie in a plane perpendicular to . Therefore, the motion of the planet lies in a plane.

Next we calculate the expression :

The last equality in Equation  is from the triple cross product formula (see the cross product section in Introduction to
Vectors in Space). We need an expression for . To calculate this, we differentiate  with respect to time:

Since , we also have

Combining Equation  and Equation , we get

Substituting this into Equation  gives us
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Therefore, Equation  becomes

Since  is a constant vector, we can integrate both sides and obtain

where  is a constant vector. Our goal is to solve for . Let’s start by calculating :

However, , so

Since , we have

Note that , where  is the angle between  and . Therefore,

Solving for ,

where . This is the polar equation of a conic with a focus at the origin, which we set up to be the Sun. It is a
hyperbola if , a parabola if , or an ellipse if . Since planets have closed orbits, the only possibility is an
ellipse. However, at this point it should be mentioned that hyperbolic comets do exist. These are objects that are merely passing
through the solar system at speeds too great to be trapped into orbit around the Sun. As they pass close enough to the Sun, the
gravitational field of the Sun deflects the trajectory enough so the path becomes hyperbolic.

Kepler’s third law of planetary motion can be modified to the case of one object in orbit around an object other than the Sun, such
as the Moon around the Earth. In this case, Kepler’s third law becomes

where m is the mass of the Moon and M is the mass of Earth, a represents the length of the major axis of the elliptical orbit, and P
represents the period.
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Given that the mass of the Moon is  kg, the mass of Earth is  kg, , and
the period of the moon is 27.3 days, let’s find the length of the major axis of the orbit of the Moon around Earth.

Solution

It is important to be consistent with units. Since the universal gravitational constant contains seconds in the units, we need to
use seconds for the period of the Moon as well:

Substitute all the data into Equation  and solve for :

Analysis

According to solarsystem.nasa.gov, the actual average distance from the Moon to Earth is 384,400 km. This is calculated using
reflectors left on the Moon by Apollo astronauts back in the 1960s.

Titan is the largest moon of Saturn. The mass of Titan is approximately . The mass of Saturn is approximately 
 kg. Titan takes approximately 16 days to orbit Saturn. Use this information, along with the universal gravitation

constant  to estimate the distance from Titan to Saturn.

Hint

Make sure your units agree, then use Equation .

Answer

We now return to the chapter opener, which discusses the motion of Halley’s comet around the Sun. Kepler’s first law states
that Halley’s comet follows an elliptical path around the Sun, with the Sun as one focus of the ellipse. The period of Halley’s
comet is approximately 76.1 years, depending on how closely it passes by Jupiter and Saturn as it passes through the outer
solar system. Let’s use  years. What is the average distance of Halley’s comet from the Sun?

 Example : Using Kepler’s Third Law for Nonheliocentric Orbits2.5.4
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24 hr

1 day

3600 esc

1 hour

2.5.12 a

(2, 358, 720sec =)2 4π2a3

(6.67 × ) (7.35 × kg +5.97 × kg)10−11 m

kg×sec2 1022 1024

5.563 × =1012 4π2a3

(6.67 × )(6.04 × )10−11m3 1024

(5.563 × )(6.67 × )(6.04 × ) = 41012 10−11m3 1024 π2a3

=a3 2.241 ×1027

4π2
m3

a = 3.84 × m108

≈ 384, 000 km.

 Exercise 2.5.4

1.35 × kg1023

5.68 ×1026

G= 6.67 × m/kg ⋅10−11 sec2

2.5.12

a ≈ 1.224 × m = 1, 224, 000km109

 Example : Halley’s Comet2.5.5

T = 76.1
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Solution

Using the equation  with , we obtain , so  A.U. This comes out to approximately 
 mi.

A natural question to ask is: What are the maximum (aphelion) and minimum (perihelion) distances from Halley’s Comet to
the Sun? The eccentricity of the orbit of Halley’s Comet is 0.967 (Source:
http://nssdc.gsfc.nasa.gov/planetary...cometfact.html). Recall that the formula for the eccentricity of an ellipse is ,
where a is the length of the semimajor axis and c is the distance from the center to either focus. Therefore, 
and  A.U. Subtracting this from a gives the perihelion distance  A.U. According
to the National Space Science Data Center (Source: http://nssdc.gsfc.nasa.gov/planetary...cometfact.html), the perihelion
distance for Halley’s comet is 0.587 A.U. To calculate the aphelion distance, we add

This is approximately  mi. The average distance from Pluto to the Sun is 39.5 A.U. (Source:
http://www.oarval.org/furthest.htm), so it would appear that Halley’s Comet stays just within the orbit of Pluto.

How fast can a racecar travel through a circular turn without skidding and hitting the wall? The answer could depend on
several factors:

The weight of the car;
The friction between the tires and the road;
The radius of the circle;
The “steepness” of the turn.

In this project we investigate this question for NASCAR racecars at the Bristol Motor Speedway in Tennessee. Before
considering this track in particular, we use vector functions to develop the mathematics and physics necessary for answering
questions such as this.

A car of mass  moves with constant angular speed  around a circular curve of radius  (Figure ). The curve is banked
at an angle . If the height of the car off the ground is , then the position of the car at time  is given by the function 

.

Figure : Views of a race car moving around a track.

=T 2 D3 T = 76.1 = 5791.21D3 D ≈ 17.96

1.67 ×109

e = c/a
0.967 = c/17.96

c ≈ 17.37 p = a−c = 17.96 −17.37 = 0.59

P = a+c = 17.96 +17.37 = 35.33 A.U.

3.3 ×109

 NAVIGATING A BANKED TURN

m ω R 2.5.9
θ h t

(t) =< R cos(ωt),R sin(ωt),h >r⇀

2.5.9
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1. Find the velocity function  of the car. Show that  is tangent to the circular curve. This means that, without a force to
keep the car on the curve, the car will shoot off of it.

2. Show that the speed of the car is . Use this to show that .
3. Find the acceleration . Show that this vector points toward the center of the circle and that .
4. The force required to produce this circular motion is called the centripetal force, and it is denoted . This force points

toward the center of the circle (not toward the ground). Show that .

As the car moves around the curve, three forces act on it: gravity, the force exerted by the road (this force is perpendicular to
the ground), and the friction force (Figure ). Because describing the frictional force generated by the tires and the road is
complex, we use a standard approximation for the frictional force. Assume that  for some positive constant . The
constant  is called the coefficient of friction.

Figure : The car has three forces acting on it: gravity (denoted by ), the friction force , and the force exerted by the
road .

Let  denote the maximum speed the car can attain through the curve without skidding. In other words,  is the fastest
speed at which the car can navigate the turn. When the car is traveling at this speed, the magnitude of the centripetal force is

The next three questions deal with developing a formula that relates the speed  to the banking angle .

5. Show that . Conclude that .
6. The centripetal force is the sum of the forces in the horizontal direction, since the centripetal force points toward the center

of the circular curve. Show that

Conclude that

7. Show that . Conclude that the maximum speed does not actually
depend on the mass of the car. 
Now that we have a formula relating the maximum speed of the car and the banking angle, we are in a position to answer
the questions like the one posed at the beginning of the project. 
The Bristol Motor Speedway is a NASCAR short track in Bristol, Tennessee. The track has the approximate shape shown
in Figure . Each end of the track is approximately semicircular, so when cars make turns they are traveling along an
approximately circular curve. If a car takes the inside track and speeds along the bottom of turn 1, the car travels along a
semicircle of radius approximately 211 ft with a banking angle of 24°. If the car decides to take the outside track and speeds
along the top of turn 1, then the car travels along a semicircle with a banking angle of 28°. (The track has variable angle
banking.)

(t)v
⇀

v
⇀

ωR (2π4)/∥ ∥ = (2π)/ωv
⇀

a
⇀ ∥ ∥ = Ra

⇀ ω2

F
⇀
cent

∥ ∥ = (m| ) /RF
⇀
cent v⇀|2
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= μf
⇀

N
⇀

μ

μ

2.5.10 mg⇀ f
⇀

N
⇀

vmax vmax

∥ ∥ = .F
⇀
cent

m(vmax)2

R

vmax θ

cosθ = m + sinθN
⇀

g
⇀

f
⇀

= (m )/(cosθ−μ sinθ)N
⇀

g
⇀

= sinθ+ cosθ.F
⇀
cent N

⇀
f
⇀

= m .F
⇀
cent

sinθ+μ cosθ

cosθ−μ sinθ
g
⇀

( = ((sinθ+μ cosθ)/(cosθ−μ sinθ))gRvmax)2
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Figure : At the Bristol Motor Speedway, Bristol, Tennessee (a), the turns have an inner radius of about 211 ft and a width
of 40 ft (b). (credit: part (a) photo by Raniel Diaz, Flickr)

The coefficient of friction for a normal tire in dry conditions is approximately 0.7. Therefore, we assume the coefficient for a
NASCAR tire in dry conditions is approximately 0.98.

Before answering the following questions, note that it is easier to do computations in terms of feet and seconds, and then
convert the answers to miles per hour as a final step.

8. In dry conditions, how fast can the car travel through the bottom of the turn without skidding?
9. In dry conditions, how fast can the car travel through the top of the turn without skidding?

10. In wet conditions, the coefficient of friction can become as low as 0.1. If this is the case, how fast can the car travel through
the bottom of the turn without skidding?

11. Suppose the measured speed of a car going along the outside edge of the turn is 105 mph. Estimate the coefficient of
friction for the car’s tires.

Key Concepts
If  represents the position of an object at time t, then  represents the velocity and  represents the acceleration of
the object at time t. The magnitude of the velocity vector is speed.
The acceleration vector always points toward the concave side of the curve defined by . The tangential and normal
components of acceleration  and  are the projections of the acceleration vector onto the unit tangent and unit normal
vectors to the curve.
Kepler’s three laws of planetary motion describe the motion of objects in orbit around the Sun. His third law can be modified to
describe motion of objects in orbit around other celestial objects as well.
Newton was able to use his law of universal gravitation in conjunction with his second law of motion and calculus to prove
Kepler’s three laws.

Key Equations
Velocity

Acceleration

Speed

Tangential component of acceleration

Normal component of acceleration

2.5.11

(t)r
⇀ (t)r

⇀′
''(t)r

⇀

(t)r
⇀

a
T
⇀ a

N
⇀

(t) = '(t)v
⇀

r
⇀

(t) = '(t) = ''(t)a
⇀

v
⇀

r
⇀

v(t) = || (t)|| = || '(t)|| =v
⇀

r
⇀ ds

dt

= ⋅ =a
T
⇀ a

⇀
T
⇀ ⋅v

⇀
a
⇀

|| ||v
⇀
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Glossary

acceleration vector
the second derivative of the position vector

Kepler’s laws of planetary motion
three laws governing the motion of planets, asteroids, and comets in orbit around the Sun

normal component of acceleration

the coefficient of the unit normal vector  when the acceleration vector is written as a linear combination of  and 

projectile motion
motion of an object with an initial velocity but no force acting on it other than gravity

tangential component of acceleration

the coefficient of the unit tangent vector  when the acceleration vector is written as a linear combination of  and 

velocity vector
the derivative of the position vector
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2.E: Vector-Valued Functions (Exercises)

2.2: Vector-Valued Functions and Space Curves 

1) Given , find the following values (if possible).

a. 

b. 

c. 

2) Sketch the curve of the vector-valued function  and give the orientation of the curve. Sketch asymptotes
as a guide to the graph.

Answer:

3. Evaluate 

4. Given the vector-valued function  find the following values:

a. 

b. 

c. Is  continuous at ? Explain.

d. Graph .

Answer:  a. ⟩, b. ⟨ ⟩, c. Yes, the limit as t approaches  is equal to , d.

5) Given the vector-valued function , find the following values:

a. 

b. 

r(t) = 3 sec ti +2 tantj

r( )π

4

r(π)

r( )π

2

r(t) = 3 sec ti +2 tantj

⟨ i + j + k⟩lim
t→0

et sin t
t e−t

r(t) = ⟨cos t, sint⟩

r(t)lim
t→ π

4

r( )π

3

r(t) t = π

3

r(t)

⟨ ,2√

2
2√

2 ,1
2

3√

2
π

3 r( )π

3

r(t) = ⟨t, +1⟩t2

r(t)lim
t→−3

r(−3)
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c. Is  continuous at ?

d. 

6) Let . Find the following values:

a. 

b. 

c. Is  continuous at ? Explain.

Answer:  a. ⟨ ⟩; b. ⟨ ⟩; c. Yes

Find the limit of the following vector-valued functions at the indicated value of t.

7. 

8.  for 

Answer: 

9) 

10) 

Answer:  

11) 

12)  for 

Answer:  The limit does not exist because the limit of  as t approaches infinity does not exist.

13) Describe the curve defined by the vector-valued function .

Find the domain of the vector-valued functions.

14)  

Answer:  , where k is an integer

15)  

16)  

Answer:  , where n is an integer

17) Let  

a. For what values of t is  continuous?

b. Sketch the graph of .

Answer:

Note: The cross section is in xz-plane, not in xy-plane

r(t) x = −3

r(t +2) −r(t)

r(t) = i +sintj +lntket

r( )π
4

r(t)lim
t→ π

4

r(t) t = π

4

, , ln( )e
π

4
2√

2
π
4 , , ln( )e

π

4
2√

2
π
4

⟨ , , tan( )⟩lim
t→4

t −3− −−−√
−2t√

t−4
π
t

r(t)lim
t→ π

2

r(t) = i +sintj +lntket

⟨ , 1, ln( )⟩e
π

2
π
2

⟨ , , arctan(2t)⟩lim
t→∞

e−2t 2t+3
3t−1

⟨t ln(t), ,lim
t→e2

ln t
t2

ln( )⟩t2− −−−−
√

2 i + j +2ke2 2
e4

⟨cos 2t, sin2t, 1⟩lim
t→ π

6

r(t)lim
t→∞

r(t) = 2 i + j +ln(t −1)ke−t e−t

ln(t −1)

r(t) = (1 +t)i +(2 +5t)j +(−1 +6t)k

r(t) = ⟨ , tant, lnt⟩t2

t > 0, t ≠ (2k +1) π

2

r(t) = ⟨ , , ⟩t2 t −3− −−−√ 3
2t+1

r(t) = ⟨csc(t), , ln(t −2)⟩1
t−3√

t > 3, t ≠ nπ

r(t) = ⟨cos t, t, sint⟩

r(t)

r(t)
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18) Let .

a. Find the domain of 

b. For what values of t is  continuous?

Answer:  All t such that 

19) Eliminate the parameter t, write the equation in Cartesian coordinates, then sketch the graphs of the vector-valued functions. 

a. 

b.  

c. 

d.  

20) Use a graphing utility to sketch each of the following vector-valued functions:

a.  

b. 

c.  

21) Find a vector-valued function that traces out the given curve in the indicated direction. Sketch the graphs of each curve.

r(t) = 2 i + j +ln(t −1)ke−t e−t

r(t)

r(t)

t ∈ (1, ∞)

r(t) = 2ti + jt2

r(t) = i +2tjt3

r(t) = 2(sinht)i +2(cosht)j, t > 0

r(t) = 3(cost)i +3(sint)j

r(t) = 2 cos i +(2 − )jt2 t√

r(t) = ⟨ , ⟩ecos(3t) e− sin(t)

r(t) = ⟨2 −sin(2t), 3 +2 cos t⟩
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a. ; clockwise and counterclockwise

b. ; from left to right  

c. The line through P and Q where P is  and Q is 

d. The circle , oriented clockwise, with position  at time .

e. The ellipse  oriented counterclockwise

f. The hyperbola   top piece is oriented from left-to-right

g. The hyperbola   right piece is oriented from bottom-to-top

22) Consider the curve described by the vector-valued function .

a. What is the initial point of the path corresponding to ? 

b. What is ? 

c. Eliminate the parameter t to show that  where .

 

2.3: Calculus of Vector-Valued Functions 

1) Compute the derivatives of the vector-valued functions.

Answer:  

2) 

3) . A sketch of the graph is shown here. Notice the varying periodic nature of the graph.

Answer:  

4) 

5) 

4 +9 = 36x2 y2

y = x2

(1, 4, −2) (3, 9, 6)

+ = 36x2 y2 (6, 0) t = 0

+ = 1x2 y2

36

− = 1y2

36 x2

− = 1x2

49

y2

64

r(t) = (50 cos t)i +(50 sint)j +(5 −5 )ke−t e−t e−t

r(0)

r(t)lim
t→∞

z = 5 − u
10 = +u2 x2 y2

r(t) = i +3 j + kt3 t2 t3

6

(t) = ⟨3 , 6t, ⟩r′ t2 1
2 t2

r(t) = sin(t)i +cos(t)j + ket

r(t) = i +sin(3t)j +10 ke−t t√

(t) = ⟨− , 3 cos(3t), ⟩r′ e−t 5
t√

r(t) = i +2 j +ket et

r(t) = i + j +k
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Answer:  

6) 

7) 

Answer:  

8) 

9) 

Answer:

10) 

For the following problems, find a tangent vector at the indicated value of t.

11) ; 

Answer:  

12) 

13) 

 Answer: 

14) 

Find the unit tangent vector for the following parameterized curves.

15) 

Answer:  

16) . Two views of this curve are presented here:

(t) = ⟨0, 0, 0⟩r′

r(t) = t i +t ln(t)j +sin(3t)ket

r(t) = i +arctan(t)j +ln k1
t+1 t3

(t) = ⟨ , , ⟩r′ −1

(t+1)2

1
1+t2

3
t

r(t) = tan(2t)i +sec(2t)j + (t)ksin2

r(t) = 3i +4 sin(3t)j +t cos(t)k

(t) = ⟨0, 12 cos(3t), cos t −t sint⟩r′

r(t) = i +t j −5 kt2 e−2t e−4t

r(t) = ti +sin(2t)j +cos(3t)k t = π

3

⟨1, −1, 0⟩1
2√

r(t) = 3 i +2 j + k; t = 1t3 t2 1
t

r(t) = 3 i +2 j +4 k; t = ln(2)et e−3t e2t

⟨6, − , 32⟩1
1060.5625√

3
4

r(t) = cos(2t)i +2 sintj + k; t =t2 π

2

r(t) = 6i +cos(3t)j +3 sin(4t)k, 0 ≤ t < 2π

⟨0, −3 sin(3t), 12 cos(4t)⟩1

9si (3t)+144 (4t)n2 cos2√

r(t) = cos ti +sintj +sintk, 0 ≤ t < 2π
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17) 

Answer:  

18) 

19) Let  and  

Find the following.

a.  

b. 

c.   

20) Compute the first, second, and third derivatives of .

21) Find 

Answer:  

22) Evaluate  given .

Answer:  

23) Find the antiderivative of  that satisfies the initial condition .

24) Evaluate .

Answer:  

25) Given  and , find .

26) Find an equation of the tangent line to the curve  at .

r(t) = 3 cos(4t)i +3 sin(4t)j +5tk, 1 ≤ t ≤ 2

T(t) = − sin(4t)i + cos(4t)j + k12
13

12
13

5
13

r(t) = ti +3tj + kt2

r(t) = ti + j − kt2 t4 s(t) = sin(t)i + j +cos(t)ket

[r( )]d
dt t2

[( )s(t)]d
dt t2

[r(t) ⋅ s(t)]d
dt

r(t) = 3ti +6 ln(t)j +5 ke−3t

(t) ⋅ (t) for r(t) = −3 i +5tj +2 k.r′ r′′ t5 t2

900 +16tt7

[u(t) ×u'(t)]d
dt u(t) = i −2tj +kt2

0i +2j +4tj

(t) = cos(2t)i −2 sintj + kr′ 1
1+t2

r(0) = 3i −2j +k

∥ti + j∥dt∫ 3
0 t2

( −1)1
3 10

3

2

r(t) = ti +3tj + kt2 u(t) = 4ti + j + kt2 t3 (r(t) ×u(t))d
dt

r(t) = ⟨ , , 0⟩et e−t t = 0
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Answer:  

27) Let . 

a. Describe and sketch the curve represented by the vector-valued function 

b. Locate the highest point on the curve  and give the value of the function at this point.

Answer:   at 

28) Find the unit tangent vector T(t) for the following vector-valued functions.

a. . The graph is shown here:

Answer:  

b. 

c. 

Answer:  

29) Evaluate the following integrals:

a. 

b. , where 

Answer:

30) For each of the following vector valued functions determine any values of t at which   is not smooth. Determine the
open intervals on which  is smooth. 

a. 

b.  

Answer:

 is not smooth at , since . 
 is smooth on the open intervals  and .

x −1 = t, y −1 = −t, z −0 = 0

r(t) = ⟨6t, 6t − ⟩t2

r(t)

r(t) = ⟨6t, 6t − ⟩t2

r(t) = ⟨18, 9⟩ t = 3

r(t) = ⟨t, ⟩1
t

T(t) = ⟨ , ⟩t2

+1t4√

−1

+1t4√

r(t) = ⟨t cos t, tsint⟩

r(t) = ⟨t +1, 2t +1, 2t +2⟩

T(t) = ⟨1, 2, 2⟩1
3

∫( i +sintj + k)dtet 1
2t−1

r(t)dt∫ 1
0 r(t) = ⟨ , , ⟩t√3 1

t+1 e−t

i +ln(2)j +(1 − )k3
4

1
e

r(t) = r(t)
r(t) = r(t)

(t) = ⟨3t, 5 −1⟩r⇀ t2

(t) = +5r⇀ t3 î t2 ĵ

r⇀ t = 0 (0) =r⇀
′

0
⇀

r⇀ (−∞, 0) (0, ∞)
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c. 

d. 

Answer:

 is not smooth at  and , since  and . 
 is smooth on the open intervals , , and .

e. 

f. 

Answer:

 is not smooth at , since . 
Since the domain of  is , this is all we have to remove. 

 is smooth on the open intervals  and .

g. , for 

h. 

Answer:

The domain of  is . And  is not smooth at , since . 
The domain of  is , since  is undefined at . 

 is smooth on the open intervals  and .

i. , for 

Answer:

The domain of  is . 
. It's domain is also . 

But note that both components have a factor of , so both components will be  when . 
Therefore,  is not smooth at  and at , since  and . Note then that  is not smooth

for any odd multiple of , that is for , for any integer value . 

 is smooth on the open intervals , for any integer value . 

 

2.4: Arc Length and Curvature 

Exercises 

1) Find the arc length of the curve on the given interval.

a. . This portion of the graph is shown here:

(t) = ⟨5, 2 sin(t), cos(t)⟩r⇀

(t) = ⟨ −3 , 7⟩r⇀ t3 t2

r⇀ t = 0 t = 2 (0) =r⇀
′

0
⇀

(2) =r⇀
′

0
⇀

r⇀ (−∞, 0) (0, 2) (2, ∞)

(t) = + −5r⇀ t2 î t3 ĵ e−4t k̂

(t) =⟨ln( +4t+5), −4t, 5⟩r⇀ t2 t3

3

r⇀ t = −2 (−2) =r⇀
′

0
⇀

r⇀ (−∞, ∞)
r⇀ (−∞, −2) (−2, ∞)

(t) = (5 cos t−cos 5t) +(5 sin t−sin5t)r⇀ î ĵ 0 ≤ t ≤ 2π

(t) = +( +12t) +7r⇀ +9t3 t2− −−−−−√ î t2 ĵ k̂

r⇀ [−9, ∞) r⇀ t = −6 (−6) =r⇀
′

0
⇀

r⇀
′ (−9, ∞) r⇀

′
t = −9

r⇀ (−9, −6) (−6, ∞)

(t) = t +sin tr⇀ cos3 î ĵ 0 ≤ t ≤ 2π

r⇀ (−∞, ∞)

(t) = −3( t)(sin t) +cos tr⇀
′ cos2 î ĵ (−∞, ∞)

cos t 0 cos t = 0

r⇀ t = π

2 t = 3π
2 ( ) =r⇀

′ π

2 0
⇀

( ) =r⇀
′ 3π

2 0
⇀

r⇀

π

2 t =
(2n+1)π

2 n

r⇀ ( , )
(2n−1)π

2

(2n+1)π

2
n

r(t) = i +14tj, 0 ≤ t ≤ 7t2
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b. 

Answer:  

c. . This portion of the graph is shown here:

d. 

Answer:  

e.  over the interval . Here is the portion of the graph on the indicated interval:

2) Find the length of one turn of the helix given by 

r(t) = i +(2 +1)j, 1 ≤ t ≤ 3t2 t2

8 5–√

r(t) = ⟨2 sint, 5t, 2 cos t⟩, 0 ≤ t ≤ π

r(t) = ⟨ +1, 4 +3⟩, −1 ≤ t ≤ 0t2 t3

( −1)1
54 373/2

r(t) = ⟨ , ⟩e−t cos t e−t sin t [0, ]π

2

r(t) = cos ti + sintj + tk.1
2

1
2

3
4

−−
√
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Answer:  Length 

3) Find the arc length of the vector-valued function  over .

4) A particle travels in a circle with the equation of motion . Find the distance traveled around the
circle by the particle.

Answer:  

5) Set up an integral to find the circumference of the ellipse with the equation 

6) Find the length of the curve  over the interval . The graph is shown here:

Answer:  

7) Find the length of the curve  for .

8) The position function for a particle is . Find the unit tangent vector, the unit normal vector and
the binormal vector at 

Answer:  

9) Given , find the binormal vector .

10) Given , determine the tangent vector .

Answer:  

11) Given , determine the unit tangent vector  evaluated at .

12) Given , find the unit tangent vector, the unit normal vector, and the binormal vector evaluated at 

Answer:  , , 

13) Given , find the unit normal vector evaluated at .

14) Given , find the unit tangent vector . The graph is shown here:

= 2π

r(t) = −ti +4tj +3tk [0, 1]

r(t) = 3 cos ti +3 sintj +0k

6π

r(t) = cos ti +2 sintj +0k.

r(t) = ⟨ t, , ⟩2
–√ et e−t 0 ≤ t ≤ 1

e − 1
e

r(t) = ⟨2 sint, 5t, 2 cos t⟩ t ∈ [−10, 10]

r(t) = a cos(ωt)i +bsin(ωt)j

t = 0.

T(0) = j, N(0) = −i, B(0) = k

r(t) = a cos(ωt)i +bsin(ωt)j B(0)

r(t) = ⟨2 , cos t, sint⟩et et et T(t)

T(t) = ⟨2 , cos t − sint, cos t + sint⟩et et et et et

r(t) = ⟨2 , cos t, sint⟩et et et T(t) t = 0

r(t) = ⟨2 , cos t, sint⟩et et et

t = 0

T(0) = ⟨ , , ⟩2
6√

1
6√

1
6√

N(0) = ⟨0, − , ⟩
2√

2
2√

2 B(0) = ⟨ , − , − ⟩1
3√

1
3√

1
3√

r(t) = ⟨2 , cos t, sint⟩et et et t = 0

r(t) = ti + j +tkt2 T(t)
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Answer:  

15) Find the unit tangent vector  and unit normal vector  at  for the plane curve . The
graph is shown here:

16) Find the unit tangent vector  for 

Answer:  

17) Find the principal normal vector to the curve  at the point determined by .

18) Find  for the curve .

Answer:  

19) Find  for the curve .

20) Find the unit normal vector  for .

Answer:  

21) Find the unit tangent vector  for .

22) Find the arc-length function  for the line segment given by . Write r as a parameter of s.

T(t) = < 1, 2t, 1 >1

4 +2t2√

T(t) N(t) t = 0 r(t) = ⟨ −4t, 5 −2⟩t3 t2

T(t) r(t) = 3ti +5 j +2tkt2

T(t) = (3i +10tj +2k)1

100 +13t2√

r(t) = ⟨6 cos t, 6 sint⟩ t = π/3

T(t) r(t) = ( −4t)i +(5 −2)jt3 t2

T(t) = ([3 −4]i +10tj)1

9 +76 +16t4 t2√
t2

N(t) r(t) = ( −4t)i +(5 −2)jt3 t2

N(t) r(t) = ⟨2sint, 5t, 2cost⟩

N(t) = ⟨−sint, 0, −cost⟩

T(t) r(t) = ⟨2 sint, 5t, 2 cos t⟩

s(t) r(t) = ⟨3 −3t, 4t⟩
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Answer:  Arc-length function: ; r as a parameter of s: 

23) Parameterize the helix  using the arc-length parameter s, from .

24) Parameterize the curve using the arc-length parameter s, at the point at which  for 

Answer:  

25) Find the curvature of the curve  at . (Note: The graph is an ellipse.)

26) Find the x-coordinate at which the curvature of the curve  is a maximum value.

Answer:  The maximum value of the curvature occurs at .

27) Find the curvature of the curve . Does the curvature depend upon the parameter t?

28) Find the curvature  for the curve  at the point .

Answer:  

29) Find the curvature  for the curve  at the point .

30) Find the curvature κκ of the curve . The graph is shown here:

Answer:  

31) Find the curvature of .

s(t) = 5t r(s) = (3 − )i + j3s
5

4s
5

r(t) = cos ti +sintj +tk t = 0

t = 0 r(t) = sinti + cos tjet et

(s) = (1 + ) sin(ln(1 + ))i +(1 + ) cos[ln(1 + )]js
2√

s
2√

s
2√

s
2√

r(t) = 5 cos ti +4 sintj t = π/3

y = 1/x

x = ±1

r(t) = 5 cos ti +5 sintj

κ y = x − 1
4 x2 x = 2

1
2

κ y = 1
3

x3 x = 1

r(t) = ti +6 j +4tkt2

κ ≈ 49.477

(17+144t2)3/2

r(t) = ⟨2 sint, 5t, 2 cos t⟩

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/63997?pdf


Access for free at OpenStax 2.E.13 https://math.libretexts.org/@go/page/63997

32) Find the curvature of  at point .

Answer:  

33) At what point does the curve  have maximum curvature? What happens to the curvature as  for the curve 
? 

34) Find the point of maximum curvature on the curve .

35) Find the equations of the normal plane and the osculating plane of the curve  at point .

Answer:   and 

36) Find equations of the osculating circles of the ellipse  at the points  and .

37) Find the equation for the osculating plane at point  on the curve .

Answer:  (\mathrm{x+2z=\frac{π}{2}}\)

38) Find the radius of curvature of  at the point 

39) Find the curvature at each point  on the hyperbola .

Answer:  

40) Calculate the curvature of the circular helix .

41) Find the radius of curvature of  at point .

Answer:  

42) Find the radius of curvature of the hyperbola  at point .

43) A particle moves along the plane curve C described by . Solve the following problems.

a. Find the length of the curve over the interval . 

b. Find the curvature of the plane curve at .

c. Describe the curvature as t increases from  to . 

 

2.5: Motion in Space 

1) Given ,

a. find the velocity of a particle moving along this curve.

b. find the acceleration of a particle moving along this curve.

Answer: a. ; b. 

2)  Given the position function, find the velocity, acceleration, and speed in terms of the parameter .

r(t) = ti + j + k2–√ et e−t P(0, 1, 1)

1
2 2√

y = ex x → ∞
y = ex

y = lnx

r(t) = ⟨2 sin(3t), t, 2 cos(3t)⟩ (0, π, −2)

y = 6x +π x +6y = 6π

4 +9 = 36y2 x2 (2, 0) (0, 3)

t = π/4 r(t) = cos(2t)i +sin(2t)j +t

6y = x3 (2, ).4
3

(x, y) r(t) = ⟨a cosh(t), bsinh(t)⟩

a4b4

( +b4x2 a4y2)3/2

r(t) = r sin(t)i +r cos(t)j +tk

y = ln(x +1) (2, ln3)

10 10√

3

xy = 1 (1, 1)

r(t) = ti + jt2

[0, 2]

t = 0, 1, 2

t = 0 t = 2

(t) = (3 −2) +(2t−sin t)r⇀ t2 î ĵ

(t) = 6t +(2 −cos t)v⇀ î î (t) = 6 +sin ta⇀ î î

t
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a. 

b. 

Answer:

 
 

c. 

d. .

Answer:

 
 

3) Find the velocity, acceleration, and speed of a particle with the given position function.

a. 

b. 

Answer:

, 
 

c. . The graph is shown here:

4)  The position function of an object is given by . At what time is the speed a minimum?

Answer: 

5) Let . Find the velocity and acceleration vectors and show that the acceleration is
proportional to .

6) The acceleration function, initial velocity, and initial position of a particle are

 Find .

7) The position vector of a particle is . Find the velocity as t approaches but is not equal to 
(if it exists). 

8) Find the velocity and the speed of a particle with the position function . The speed of a particle is
the magnitude of the velocity and is represented by .

(t) = + +tan tr⇀ e−t î t2 ĵ k̂

(t) = ⟨3 cos t, 3 sin t, ⟩r⇀ t2

(t) = −3 sin t +3 cos t +2tv⇀ î ĵ k̂

(t) = −3 cos t −3 sin t +2a⇀ î ĵ k̂

Speed(t) = ∥ (t)∥ =v⇀ 9 +4t2− −−−−−
√

(t) = +(3 +2t−5) +(3t−1)r⇀ t5 î t2 ĵ k̂

(t) = 2 cos t +3 sin tr⇀ ĵ k̂

(t) = −2 sin t +3 cos tv⇀ ĵ k̂

(t) = −2 cos t −3 sin ta⇀ ĵ k̂

Speed(t) = ∥ (t)∥ = =v⇀ 4 t+9 tsin2 cos2
− −−−−−−−−−−−−

√ 4 +5 tcos2− −−−−−−−−√

(t) = ⟨ −1, t⟩r⇀ t2

(t) = ⟨ , ⟩r⇀ et e−t

(t) = ⟨ , − ⟩v⇀ et e−t

(t) = ⟨ , ⟩,a⇀ et e−t

∥ (t)∥ =v⇀ +e2t e−2t− −−−−−−−√

(t) = ⟨sin t, t, cos t⟩r⇀

(t) = ⟨ , 5t, −16t⟩r⇀ t2 t2

t = 4

(t) = r cosh(ωt) +r sinh(ωt)r⇀ î ĵ

(t)r⇀

a(t) = −5 cos ti −5 sintj, v(0) = 9i +2j, and r(0) = 5i. v(t) and r(t)

r(t) = 5 sec(2t)i −4tan(t)j +7 kt2 π

4

r(t) = ( )i +ln(1 −4 )j
2t−1
2t+1 t2

∥r'(t)∥
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9) A particle moves on a circular path of radius b according to the function  where  is the angular
velocity, .

a. Find the velocity function and show that  is always orthogonal to . 

b. Show that the speed of the particle is proportional to the angular velocity.

10) An object starts from rest at point  and moves with an acceleration of  where  is measured in feet
per second per second. Find the location of the object after  sec.

11) Given , find the velocity and the speed at any time.

Answer:  

12) Find the velocity vector for the function .

13) The position vector for a particle is .The graph is shown here:

a. Find the velocity vector at any time.

b. Find the speed of the particle at time  sec.

Answer:  

c. Find the acceleration at time  sec.

14) A particle travels along the path of a helix with the equation . See the graph presented here:

r(t) = bcos(ωt)i +bsin(ω)j, ω
dθ
dt

v(t) r(t)

P(1, 2, 0) a(t) = j +2k, ∥a(t)∥
t = 2

r(t) = ⟨t +cos t, t −sint⟩

v(t) = ⟨1 −sint, 1 −cos t⟩, speed = ∥v(t)∥ = 4 −2(sint +cos t)
− −−−−−−−−−−−−−−

√

r(t) = ⟨ , , 0⟩et e−t

r(t) = ti + j + kt2 t3

t = 2

593
−−−√

t = 2

r(t) = cos(t)i +sin(t)j +tk
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Find the following:

a. Velocity of the particle at any time

b. Speed of the particle at any time

c. Acceleration of the particle at any time

d. Find the unit tangent vector for the helix.

15) A particle travels along the path of an ellipse with the equation . Find the following:

a. Velocity of the particle

Answer:  

b. Speed of the particle at 

c. Acceleration of the particle at 

Answer:  

16) Given the vector-valued function  (graph is shown here), find the following:

r(t) = cos ti +2 sintj +0k

v(t) = ⟨−sint, 2 cos t, 0⟩

t = π

4

t = π

4

a(t) = ⟨− , − , 0⟩
2√

2 2–√

r(t) = ⟨tant, sec t, 0⟩
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a. Velocity

b. Speed

Answer:  

c. Acceleration

17) Find the minimum speed of a particle traveling along the curve  .

Answer:   Minimum speed is 

18) Consider the motion of a point on the circumference of a rolling circle. As the circle rolls, it generates the cycloid 
, where  is the angular velocity of the circle and  is the radius of the circle:

 

Find the equations for the velocity, acceleration, and speed of the particle at any time.

Answer:

 
 

19) A person on a hang glider is spiraling upward as a result of the rapidly rising air on a path having position vector 
. The path is similar to that of a helix, although it is not a helix. The graph is shown here:

a. Find the velocity and acceleration vectors and the glider’s speed at any time

∥v(t)∥ = =t + t tsec4 sec2 tan2− −−−−−−−−−−−−−−
√ t( t + t)sec2 sec2 tan2

− −−−−−−−−−−−−−−−
√

r(t) = ⟨t +cos t, t −sint⟩ t ∈ [0, 2π)

−12
–√

(t) = (ωt−sin(ωt)) +(1 −cos(ωt))r⇀ î ĵ ω b

(t) = (ω−ωcos(ωt)) +(ω sin(ωt))v⇀ î ĵ

(t) = ( sin(ωt)) +( cos(ωt))a⇀ ω2 î ω2 ĵ

speed(t) = (ω−ωcos(ωt) +(ω sin(ωt))2 )2
− −−−−−−−−−−−−−−−−−−−−−−−

√

= −2 cos(ωt) + (ωt) + (ωt)ω2 ω2 ω2 cos2 ω2 sin2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 2 (1 −cos(ωt))ω2
− −−−−−−−−−−−−

√

(t) = (3 cos t) +(3 sin t) +r⇀ î ĵ t2 k̂
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Answer:  

b. The times, if any, at which the glider’s acceleration is orthogonal to its velocity

20) Given that  is the position vector of a moving particle, find the velocity, the speed and the
acceleration of the particle.

Answer: 

21) Find the maximum speed of a point on the circumference of an automobile tire of radius 1 ft when the automobile is traveling
at 55 mph.

22) Find the position vector-valued function , given that ,   and   .

23) Find  given that , and .

24) The acceleration of an object is given by . The velocity at  sec is  and the position of the
object at  sec is . Find the object’s position at any time.

Answer: 

25) A projectile is shot in the air from ground level with an initial velocity of 500 m/sec at an angle of 60° with the horizontal. 

a. At what time does the projectile reach maximum height?

Answer: 44.185 sec

b. What is the approximate maximum height of the projectile?

c. At what time is the maximum range of the projectile attained?

Answer: t=88.37 sec

d. What is the maximum range?

e. What is the total flight time of the projectile?

Answer: 88.37 sec

26) A projectile is fired at a height of 1.5 m above the ground with an initial velocity of 100 m/sec and at an angle of 30° above the
horizontal. Use this information to answer the following questions:

a. Determine the maximum height of the projectile.

b. Determine the range of the projectile.

Answer: The range is approximately 886.29 m.

27) A golf ball is hit in a horizontal direction off the top edge of a building that is 100 ft tall. How fast must the ball be launched to
land 450 ft away?

28) A projectile is fired from ground level at an angle of 8° with the horizontal. The projectile is to have a range of 50 m. Find the
minimum velocity necessary to achieve this range.

Answer: v=42.16v=42.16 m/sec

29) Prove that an object moving in a straight line at a constant speed has an acceleration of zero.

30) The acceleration of an object is given by . The velocity at  sec is  and the position of the
object at   sec is . Find the object’s position at any time.

31)  Find the tangential and normal components of acceleration for  when .

Answer:  

32) Find the tangential and normal components of acceleration.

∥ (t)∥ =v⇀ 9 +4t2− −−−−−
√

(t) = ⟨ sin t, cos t, 4 ⟩r⇀ e−5t e−5t e−5t

(t) = ⟨ (cos t−5 sin t), − (sin t+5 cos t), −20 ⟩v⇀ e−5t e−5t e−5t

(t) = ⟨ (−sin t−5 cos t) −5 (cos t−5 sin t), − (cos t−5 sin t) +5 (sin t+5 cos t), 100 ⟩a⇀ e−5t e−5t e−5t e−5t e−5t

(t)r⇀ (t) = + , (0) = 2a⇀ î et ĵ v⇀ ĵ (0) = 2r⇀ î

(t)r⇀ (t) = −32 , (0) = 600 +600a⇀ ĵ v⇀ 3
–√ î ĵ (0) =r⇀ 0

⇀

(t) = t + ta⇀ ĵ k̂ t = 1 (1) = 5v⇀ ĵ

t = 1 (1) = 0 +0 +0r⇀ î ĵ k̂

(t) = 0 +( +4.5t− ) +( − t+ )r⇀ î 1
6 t

3 14
3 ĵ 1

6 t
3 1

2
1
3 k̂
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a. 

b. . The graph is shown here:

Answer: 

c. 

d. 

Answer: 

e. 

f.  

Answer: 

g. 

Answer: 

33) Suppose that the position function for an object in three dimensions is given by the equation 
.

a. Show that the particle moves on a circular cone.

b. Find the angle between the velocity and acceleration vectors when .

c. Find the tangential and normal components of acceleration when .

Answer:  

34)  The force on a particle is given by . The particle is located at point  at . The initial
velocity of the particle is given by . Find the path of the particle of mass . (Recall, .)

Answer: 

 

(t) = ⟨cos(2t), sin(2t), 1⟩r⇀

(t) = ⟨ cos t, sin t, ⟩r⇀ et et et

= , =a
T
⇀ 3–√ et a

N
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3 )3/2 2

3 )3/2 2–√
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3

= 2t, = 2a
T
⇀ a
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⇀

(t) = + +r⇀ t2 î t2 ĵ t3 k̂
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√

a
N
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1 +4 +t2 t4

1 + +t2 t4

− −−−−−−−−−

√
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= 0, = 12a
T
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N
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î ĵ (c, 0) t = 0

(0) =v⇀ v0 ĵ m = mF
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Chapter Review Exercises 

True or False? Justify your answer with a proof or a counterexample.

1. A parametric equation that passes through points  and  can be given by  where  and 

2. 

Answer:

False, 

3. The curvature of a circle of radius  is constant everywhere. Furthermore, the curvature is equal to 

4. The speed of a particle with a position function  is 

Answer:
False, it is 

 

Find the domains of the vector-valued functions.

5. 

6. 

Answer:

 

Sketch the curves for the following vector equations. Use a calculator if needed.

7. [T]  

8. [T]  

Answer:

 

Find a vector function that describes the following curves.

9. Intersection of the cylinder  with the plane 

P Q (t) = ⟨ , 3t+1, t−2⟩,r⇀ t2 P (1, 4, −1)
Q(16, 11, 2).

[ (t) × (t)]= 2 '(t) × (t)
d

dt
u⇀ u⇀ u⇀ u⇀

[ (t) × (t)]= .
d

dt
u
⇀

u
⇀

0
⇀

r 1/r.

(t)r⇀ .
'(t)r⇀

∥ '(t)∥r⇀

∥ '(t)∥r⇀

(t) = ⟨sin(t), ln(t), ⟩r⇀ t√

(t) =⟨ , , sec t⟩r⇀ et
1

4 − t
− −−−

√

t < 4, t ≠
nπ

2

(t) = ⟨ , ⟩r⇀ t2 t3

(t) = ⟨sin(20t) , cos(20t) , ⟩r⇀ e−t e−t e−t

+ = 4x2 y2 x+z = 6
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10. Intersection of the cone  and plane 

Answer:

 

Find the derivatives of  and  Find the unit tangent vector.

11.  

12.  

Answer:
 
 

 

 

 

unit tangent vector: 

 

Evaluate the following integrals.

13. 

14.  with 

Answer:

 

Find the length for the following curves.

15.    for  

16.    for  

Answer:

 

Reparameterize the following functions with respect to their arc length measured from  in direction of increasing 

17.  

18.  

Answer:

z = +x2 y2− −−−−−
√ z = y−4

(t) = ⟨t, 2 − , −2 − ⟩r⇀ t2

8
t2

8
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d

dt
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⇀
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t8 t3 t2

(t) = + +T
⇀ 2t

400 +4 +4t8 t2− −−−−−−−−−−−
√

î
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Find the curvature for the following vector functions.

19.  

20.  

Answer:

 

21. Find the unit tangent vector, the unit normal vector, and the binormal vector for 

22. Find the tangential and normal acceleration components with the position vector 

Answer:

 

 

23. A Ferris wheel car is moving at a constant speed  and has a constant radius  Find the tangential and normal acceleration of
the Ferris wheel car.

24. The position of a particle is given by  where  is measured in seconds and  is measured in meters.
Find the velocity, acceleration, and speed functions. What are the position, velocity, speed, and acceleration of the particle at 1 sec?

Answer:
 

 

; 

At  m,  m/sec,  m/sec , and  m/sec

 

The following problems consider launching a cannonball out of a cannon. The cannonball is shot out of the cannon with an
angle  and initial velocity  The only force acting on the cannonball is gravity, so we begin with a constant acceleration 

25. Find the velocity vector function 

26. Find the position vector  and the parametric representation for the position.

Answer:

  where  

27. At what angle do you need to fire the cannonball for the horizontal distance to be greatest? What is the total distance it would
travel?
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= ,aT
e2t

1 +e2t

=aN
2 +4 sin t cos t+1e2t e2t− −−−−−−−−−−−−−−−−−−

√

1 +e2t

v r.
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1

CHAPTER OVERVIEW

3: Functions of Several Variables
When dealing with a function of more than one independent variable, several questions naturally arise. For example, how do we
calculate limits of functions of more than one variable? The definition of derivative we used before involved a limit. Does the new
definition of derivative involve limits as well? Do the rules of differentiation apply in this context? Can we find relative extrema of
functions using derivatives? All these questions are answered in this chapter.

3.1: Prelude to Differentiation of Functions of Several Variables
3.2: Functions of Several Variables
3.3: Limits and Continuity
3.4: Partial Derivatives
3.5: Tangent Planes and Linear Approximations
3.6: The Chain Rule for Multivariable Functions
3.7: Directional Derivatives and the Gradient
3.8: Maxima/Minima Problems
3.9: Lagrange Multipliers
3.E: Differentiation of Functions of Several Variables (Exercise)

Thumbnail: Real function of two real variables. (Public Domain; Maschen).
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3.1: Prelude to Differentiation of Functions of Several Variables
In Introduction to Applications of Derivatives, we studied how to determine the maximum and minimum of a function of one
variable over a closed interval. This function might represent the temperature over a given time interval, the position of a car as a
function of time, or the altitude of a jet plane as it travels from New York to San Francisco. In each of these examples, the function
has one independent variable.

Figure : Americans use (and lose) millions of golf balls a year, which keeps golf ball manufacturers in business. In this
chapter, we study a profit model and learn methods for calculating optimal production levels for a typical golf ball manufacturing
company. (credit: modification of work by oatsy40, Flickr)

Suppose, however, that we have a quantity that depends on more than one variable. For example, temperature can depend on
location and the time of day, or a company’s profit model might depend on the number of units sold and the amount of money spent
on advertising. In this chapter, we look at a company that produces golf balls. We develop a profit model and, under various
restrictions, we find that the optimal level of production and advertising dollars spent determines the maximum possible profit.
Depending on the nature of the restrictions, both the method of solution and the solution itself changes.

When dealing with a function of more than one independent variable, several questions naturally arise. For example, how do we
calculate limits of functions of more than one variable? The definition of derivative we used before involved a limit. Does the new
definition of derivative involve limits as well? Do the rules of differentiation apply in this context? Can we find relative extrema of
functions using derivatives? All these questions are answered in this chapter.

This page titled 3.1: Prelude to Differentiation of Functions of Several Variables is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

14.0: Prelude to Differentiation of Functions of Several Variables by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0.
Original source: https://openstax.org/details/books/calculus-volume-1.
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3.2: Functions of Several Variables

Recognize a function of two variables and identify its domain and range.
Sketch a graph of a function of two variables.
Sketch several traces or level curves of a function of two variables.
Recognize a function of three or more variables and identify its level surfaces.

Our first step is to explain what a function of more than one variable is, starting with functions of two independent variables. This
step includes identifying the domain and range of such functions and learning how to graph them. We also examine ways to relate
the graphs of functions in three dimensions to graphs of more familiar planar functions.

Functions of Two Variables
The definition of a function of two variables is very similar to the definition for a function of one variable. The main difference is
that, instead of mapping values of one variable to values of another variable, we map ordered pairs of variables to another variable.

A function of two variables  maps each ordered pair  in a subset  of the real plane  to a unique real
number z. The set  is called the domain of the function. The range of  is the set of all real numbers z that has at least one
ordered pair  such that  as shown in Figure .

Figure : The domain of a function of two variables consists of ordered pairs .

Determining the domain of a function of two variables involves taking into account any domain restrictions that may exist. Let’s
take a look.

Find the domain and range of each of the following functions:

a. 
b. 

Solution

a. This is an example of a linear function in two variables. There are no values or combinations of  and  that cause  to
be undefined, so the domain of  is . To determine the range, first pick a value for z. We need to find a solution to the
equation  or  One such solution can be obtained by first setting , which yields the equation

. The solution to this equation is , which gives the ordered pair  as a solution to the

equation  for any value of . Therefore, the range of the function is all real numbers, or .

b. For the function  to have a real value, the quantity under the square root must be nonnegative:

This inequality can be written in the form

 Learning Objectives

 Definition: function of two variables

z = f(x, y) (x, y) D R2

D f

(x, y) ∈ D f(x, y) = z 3.2.1

3.2.1 (x,y)

 Example : Domains and Ranges for Functions of Two Variables3.2.1

f(x, y) = 3x+5y+2
g(x, y) = 9 − −x2 y2− −−−−−−−−

√

x y f(x, y)
f R2

f(x, y) = z, 3x−5y+2 = z. y = 0

3x+2 = z x =
z−2

3
( , 0)
z−2

3
f(x, y) = z z R

g(x, y)

9 − − ≥ 0.x2 y2
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Therefore, the domain of  is . The graph of this set of points can be described as a disk of
radius 3 centered at the origin. The domain includes the boundary circle as shown in the following graph.

Figure : The domain of the function  is a closed disk of radius 3.

To determine the range of  we start with a point  on the boundary of the domain, which is
defined by the relation . It follows that  and

If  (in other words, , then

This is the maximum value of the function. Given any value  between  and , we can find an entire set of points inside the
domain of  such that 

Since , this describes a circle of radius  centered at the origin. Any point on this circle satisfies the equation
. Therefore, the range of this function can be written in interval notation as 

Find the domain and range of the function .

Hint

+ ≤ 9.x2 y2

g(x, y) {(x, y) ∈ ∣ + ≤ 9}R2 x2 y2

3.2.2 g(x,y) = 9 − −x2 y2− −−−−−−−−
√

g(x, y) = 9 − −x2 y2
− −−−−−−−−

√ ( , )x0 y0

+ = 9x2 y2 + = 9x2
0

y2
0

g( , ) =x0 y0 9 − −x2
0 y2

0

− −−−−−−−−
√

= 9 −( + )x2
0 y2

0

− −−−−−−−−−−
√

= 9 −9
− −−−

√

= 0.

+ = 0x2
0 y2

0 = = 0)x0 y0

g( , ) =x0 y0 9 − −x2
0 y2

0

− −−−−−−−−
√

= 9 −( + )x2
0 y2

0

− −−−−−−−−−−
√

= = 3.9 −0− −−−
√

c 0 3
g g(x, y) = c :

= c9 − −x2 y2
− −−−−−−−−

√

9 − − =x2 y2 c2

+ = 9 − .x2 y2 c2

9 − > 0c2 9 −c2− −−−−
√

g(x, y) = c [0, 3].

 Exercise 3.2.1
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Determine the set of ordered pairs that do not make the radicand negative.

Solution

The domain is  the shaded circle defined by the inequality , which has a circle of radius 
 as its boundary. The range is 

Graphing Functions of Two Variables

Suppose we wish to graph the function  This function has two independent variables (  and ) and one dependent
variable . When graphing a function  of one variable, we use the Cartesian plane. We are able to graph any ordered
pair  in the plane, and every point in the plane has an ordered pair  associated with it. With a function of two variables,
each ordered pair  in the domain of the function is mapped to a real number . Therefore, the graph of the function  consists
of ordered triples . The graph of a function  of two variables is called a surface.

To understand more completely the concept of plotting a set of ordered triples to obtain a surface in three-dimensional space,
imagine the  coordinate system laying flat. Then, every point in the domain of the function f has a unique -value associated
with it. If  is positive, then the graphed point is located above the -plane, if  is negative, then the graphed point is located
below the -plane. The set of all the graphed points becomes the two-dimensional surface that is the graph of the function .

Create a graph of each of the following functions:

a. 
b. 

Solution

a. In Example , we determined that the domain of  is  and the
range is . When  we have . Therefore any point on the circle of radius 
centered at the origin in the -plane maps to  in . If , then  so any point on the circle of
radius  centered at the origin in the -plane maps to  in . As  gets closer to zero, the value of 
approaches . When , then . This is the origin in the -plane If  is equal to any other value
between  and , then  equals some other constant between  and . The surface described by this function is a
hemisphere centered at the origin with radius  as shown in the following graph.

{(x, y)| + ≤ 4}x2 y2 + ≤ 4x2 y2

2 [0, 6].

z = f(x, y). x y

(z) y = f(x)
(x, y) (x, y)

(x, y) z f

(x, y, z) z = f(x, y)

(x, y) z

z xy z

xy f

 Example : Graphing Functions of Two Variables3.2.2

g(x, y) = 9 − −x2 y2
− −−−−−−−−

√
f(x, y) = +x2 y2

3.2.2 g(x, y) = 9 − −x2 y2− −−−−−−−−
√ {(x, y) ∈ ∣ + ≤ 9}R2 x2 y2

{z ∈ ∣ 0 ≤ z ≤ 3}R2 + = 9x2 y2 g(x, y) = 0 3
xy z = 0 R3 + = 8x2 y2 g(x, y) = 1,

2 2
–

√ xy z = 1 R3 +x2 y2 z

3 + = 0x2 y2 g(x, y) = 3 xy +x2 y2

0 9 g(x, y) 0 3
3
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Figure : Graph of the hemisphere represented by the given function of two variables.

b. This function also contains the expression . Setting this expression equal to various values starting at zero, we obtain
circles of increasing radius. The minimum value of  is zero (attained when . When , the
function becomes , and when , then the function becomes . These are cross-sections of the graph, and are
parabolas. Recall from Introduction to Vectors in Space that the name of the graph of  is a paraboloid. The
graph of  appears in the following graph.

Figure : A paraboloid is the graph of the given function of two variables.

3.2.3

+x2 y2

f(x, y) = +x2 y2 x = y = 0. x = 0
z = y2 y = 0 z = x2

f(x, y) = +x2 y2

f

3.2.4
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A profit function for a hardware manufacturer is given by

where  is the number of nuts sold per month (measured in thousands) and  represents the number of bolts sold per month
(measured in thousands). Profit is measured in thousands of dollars. Sketch a graph of this function.

Solution

This function is a polynomial function in two variables. The domain of  consists of  coordinate pairs that yield a
nonnegative profit:

This is a disk of radius  centered at . A further restriction is that both  and  must be nonnegative. When  and 
 Note that it is possible for either value to be a noninteger; for example, it is possible to sell  thousand

nuts in a month. The domain, therefore, contains thousands of points, so we can consider all points within the disk. For any 
, we can solve the equation 

Since  we know that  so the previous equation describes a circle with radius  centered at the point 
. Therefore. the range of  is  The graph of  is also a paraboloid, and this paraboloid points

downward as shown.

Figure : The graph of the given function of two variables is also a paraboloid.

Level Curves

If hikers walk along rugged trails, they might use a topographical map that shows how steeply the trails change. A topographical
map contains curved lines called contour lines. Each contour line corresponds to the points on the map that have equal elevation
(Figure ). A level curve of a function of two variables  is completely analogous to a contour line on a topographical
map.

 Example : Nuts and Bolts3.2.3

f(x, y) = 16 −(x−3 −(y−2 ,)2 )2

x y

f (x, y)

16 −(x−3 −(y−2 ≥ 0)2 )2

(x−3 +(y−2 ≤ 16.)2 )2

4 (3, 2) x y x = 3
y = 2, f(x, y) = 16. 2.5

z < 16 f(x, y) = 16 :

16 −(x−3 −(y−2 = z)2 )2

(x−3 +(y−2 = 16 −z.)2 )2

z < 16, 16 −z > 0, 16 −z
− −−−−

√
(3, 2) f(x, y) {z ∈ R|z ≤ 16}. f(x, y)

3.2.5

3.2.6 f(x, y)
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Figure : (a) A topographical map of Devil’s Tower, Wyoming. Lines that are close together indicate very steep terrain. (b) A
perspective photo of Devil’s Tower shows just how steep its sides are. Notice the top of the tower has the same shape as the center
of the topographical map.

Given a function  and a number  in the range of , a level curve of a function of two variables for the value  is
defined to be the set of points satisfying the equation 

Returning to the function , we can determine the level curves of this function. The range of  is the
closed interval . First, we choose any number in this closed interval—say, . The level curve corresponding to  is
described by the equation

To simplify, square both sides of this equation:

Now, multiply both sides of the equation by  and add  to each side:

This equation describes a circle centered at the origin with radius . Using values of  between  and  yields other circles also
centered at the origin. If , then the circle has radius , so it consists solely of the origin. Figure  is a graph of the level
curves of this function corresponding to  and . Note that in the previous derivation it may be possible that we
introduced extra solutions by squaring both sides. This is not the case here because the range of the square root function is
nonnegative.

3.2.6

 Definition: level curves

f(x, y) c f c

f(x, y) = c.

g(x, y) = 9 − −x2 y2
− −−−−−−−−

√ g

[0, 3] c = 2 c = 2

= 2.9 − −x2 y2
− −−−−−−−−

√

9 − − = 4.x2 y2

−1 9

+ = 5.x2 y2

5
–

√ c 0 3
c = 3 0 3.2.7

c = 0, 1, 2, 3
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Figure : Level curves of the function , using  and  corresponds to the origin).

A graph of the various level curves of a function is called a contour map.

Given the function , find the level curve corresponding to . Then create a contour
map for this function. What are the domain and range of ?

Solution

To find the level curve for  we set  and solve. This gives

.

We then square both sides and multiply both sides of the equation by :

Now, we rearrange the terms, putting the  terms together and the  terms together, and add  to each side:

Next, we group the pairs of terms containing the same variable in parentheses, and factor  from the first pair:

Then we complete the square in each pair of parentheses and add the correct value to the right-hand side:

Next, we factor the left-hand side and simplify the right-hand side:

Last, we divide both sides by 

This equation describes an ellipse centered at  The graph of this ellipse appears in the following graph.

3.2.7 g(x,y) = 9 − −x2 y2− −−−−−−−−
√ c = 0, 1, 2, 3(c = 3

 Example : Making a Contour Map3.2.4

f(x, y) = 8 +8x−4y−4 −x2 y2− −−−−−−−−−−−−−−−−−
√ c = 0

f

c = 0, f(x, y) = 0

0 = 8 +8x−4y−4 −x2 y2− −−−−−−−−−−−−−−−−−
√

−1

4 + −8x+4y−8 = 0.x2 y2

x y 8

4 −8x+ +4y = 8.x2 y2

4

4( −2x) +( +4y) = 8.x2 y2

4( −2x+1) +( +4y+4) = 8 +4(1) +4.x2 y2

4(x−1 +(y+2 = 16.)2 )2

16 :

+ = 1.
(x−1)2

4

(y+2)2

16

(1, −2).
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Figure : Level curve of the function  corresponding to 

We can repeat the same derivation for values of  less than  Then, Equation  becomes

for an arbitrary value of . Figure  shows a contour map for  using the values  and . When  the
level curve is the point .

Figure : Contour map for the function  using the values  and .

Finding the Domain & Range

Since this is a square root function, the radicand must not be negative. So we have

Recognizing that the boundary of the domain is an ellipse, we repeat the steps we showed above to obtain

So the domain of  can be written: 

To find the range of  we need to consider the possible outputs of this square root function. We know the output cannot be
negative, so we need to next check if its output is ever  From the work we completed above to find the level curve for 

3.2.8 f(x,y) = 8 + 8x− 4y− 4 −x2 y2− −−−−−−−−−−−−−−−−−
√ c = 0

c 4. ???

+ = 1
4(x−1)2

16 −c2

(y+2)2

16 −c2

c 3.2.9 f(x, y) c = 0, 1, 2, 3 c = 4,
(−1, 2)

3.2.9 f(x,y) = 8 + 8x− 4y− 4 −x2 y2− −−−−−−−−−−−−−−−−−
√ c = 0, 1, 2, 3, 4

8 +8x−4y−4 − ≥ 0x2 y2

+ ≤ 1
(x−1)2

4

(y+2)2

16

f {(x, y) | + ≤ 1}.
(x−1)2

4

(y+2)2

16

f ,
0. c = 0,
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we know the value of  is  for any point on that level curve (on the ellipse, ). So we know the lower
bound of the range of this function is 

To determine the upper bound for the range of the function in this problem, it's easier if we first complete the square under the
radical.

Now that we have  in this form, we can see how large the radicand can be. Since we are subtracting two perfect squares from 
 we know that the value of the radicand cannot be greater than  At the point  we can see the radicand will be 16

(since we will be subtracting  from  at this point. This gives us the maximum value of , that is 

So the range of this function is 

Find and graph the level curve of the function  corresponding to 

Hint

First, set  and then complete the square.

Solution

The equation of the level curve can be written as  which is a circle with radius  centered at 

Another useful tool for understanding the graph of a function of two variables is called a vertical trace. Level curves are always
graphed in the , but as their name implies, vertical traces are graphed in the - or -planes.

f 0 + = 1
(x−1)

2

4

(y+2)
2

16

0.

f(x, y) = 8 +8x−4y−4 −x2 y2
− −−−−−−−−−−−−−−−−−

√

= 8 −4( −2x ) −( +4y )x2 y2
− −−−−−−−−−−−−−−−−−−−−−−−

√

= 8 −4( −2x+1 −1) −( +4y+4 −4)x2 y2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 8 −4( −2x+1) +4 −( +4y+4) +4x2 y2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 16 −4(x−1 −(y+2)2 )2
− −−−−−−−−−−−−−−−−−−−

√

f

16, 16. (1, −2),
0 16 f f(1, −2) = = 4.16

−−
√

[0, 4].

 Exercise 3.2.2

g(x, y) = + −6x+2yx2 y2 c = 15.

g(x, y) = 15

(x−3 +(y+1 = 25,)2 )2 5
(3, −1).

xy−plane xz yz
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Consider a function  with domain . A vertical trace of the function can be either the set of points that
solves the equation  for a given constant  or  for a given constant 

Find vertical traces for the function  corresponding to  and , and , and .

Solution

First set  in the equation 

This describes a cosine graph in the plane . The other values of z appear in the following table.

Vertical Traces Parallel to the  for the Function 

Vertical Trace for 

0

In a similar fashion, we can substitute the  in the equation  to obtain the traces in the  as listed
in the following table.

Vertical Traces Parallel to the  for the Function 

Vertical Trace for 

0

The three traces in the  are cosine functions; the three traces in the  are sine functions. These curves
appear in the intersections of the surface with the planes  and  as shown in the

following figure.

 Definition: vertical traces

z = f(x, y) D ⊆ R
2

f(a, y) = z x = a f(x, b) = z y = b.

 Example : Finding Vertical Traces3.2.5

f(x, y) = sinx cosy x = − , 0,
π

4

π

4
y = − , 0

π

4

π

4

x = −
π

4
z = sinx cosy :

z = sin(− ) cosy = − ≈ −0.7071 cosy.
π

4

cosy2
–

√

2

x = −
π

4
xz −Plane f(x,y) = sin x cos y

c x = c

−
π

4 z = −
cosy2

–
√

2

z = 0

π

4 z =
cosy2

–
√

2

y−values f(x, y) yz−plane,

yz −Plane f(x,y) = sin x cos y

d y = d

π

4 z =
sinx2

–
√

2

z = sinx

−
π

4 z =
sinx2

–
√

2

xz−plane yz−plane

x = − , x = 0, x =
π

4

π

4
y = − , y = 0, y =

π

4

π

4
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Figure : Vertical traces of the function  are cosine curves in the  (a) and sine curves in the 
 (b).

Determine the equation of the vertical trace of the function  corresponding to , and
describe its graph.

Hint

Set  in the equation  and complete the square.

Solution

. This function describes a parabola opening downward in the plane .

Functions of two variables can produce some striking-looking surfaces. Figure  shows two examples.

Figure : Examples of surfaces representing functions of two variables: (a) a combination of a power function and a sine
function and (b) a combination of trigonometric, exponential, and logarithmic functions.

Functions of More Than Two Variables

So far, we have examined only functions of two variables. However, it is useful to take a brief look at functions of more than two
variables. Two such examples are

3.2.10 f(x,y) xz −planes

yz −planes

 Exercise 3.2.3

g(x, y) = − − +2x+4y−1x2 y2 y = 3

y = 3 z = − − +2x+4y−1x2 y2

z = 3 −(x−1)2 y = 3

3.2.11

3.2.11

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64000?pdf


Access for free at OpenStax 3.2.12 https://math.libretexts.org/@go/page/64000

and

In the first function,  represents a point in space, and the function  maps each point in space to a fourth quantity, such as
temperature or wind speed. In the second function,  can represent a point in the plane, and  can represent time. The function
might map a point in the plane to a third quantity (for example, pressure) at a given time . The method for finding the domain of a
function of more than two variables is analogous to the method for functions of one or two variables.

Find the domain of each of the following functions:

a. 

b. 

Solution:

a. For the function  to be defined (and be a real value), two conditions must hold:

1. The denominator cannot be zero.
2. The radicand cannot be negative.

Combining these conditions leads to the inequality

Moving the variables to the other side and reversing the inequality gives the domain as

which describes a ball of radius  centered at the origin. (Note: The surface of the ball is not included in this domain.)

b. For the function  to be defined (and be a real value), two conditions must hold:

1. The radicand cannot be negative.
2. The denominator cannot be zero.

Since the radicand cannot be negative, this implies , and therefore that . Since the denominator cannot
be zero, , or , Which can be rewritten as , which are the equations of two lines passing
through the origin. Therefore, the domain of  is

Find the domain of the function .

Hint

Check for values that make radicands negative or denominators equal to zero.

Solution

f(x, y, z) = −2xy+ +3yz− +4x−2y+3x−6x2 y2 z2

  
a polynomial in three variables

g(x, y, t) = ( −4xy+ ) sin t−(3x+5y) cos t.x2 y2

(x, y, z) f

(x, y) t

t

 Example : Domains for Functions of Three Variables3.2.6

f(x, y, z) =
3x−4y+2z

9 − − −x2 y2 z2− −−−−−−−−−−−−
√

g(x, y, t) =
2t−4
− −−−−

√

−x2 y2

f(x, y, z) =
3x−4y+2z

9 − − −x2 y2 z2− −−−−−−−−−−−−√

9 − − − > 0.x2 y2 z2

domain(f) = {(x, y, z) ∈ ∣ + + < 9},R3 x2 y2 z2

3

g(x, y, t) =
2t−4
− −−−−

√

−x2 y2

2t−4 ≥ 0 t ≥ 2
− ≠ 0x2 y2 ≠x2 y2 y = ±x

g

domain(g) = {(x, y, t)|y ≠ ±x, t ≥ 2}.

 Exercise 3.2.4

h(x, y, t) = (3t−6) y−4 +4x2
− −−−−−−−−

√

domain(h) = {(x, y, t) ∈ ∣ y ≥ 4 −4}R
3 x2
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Functions of two variables have level curves, which are shown as curves in the  However, when the function has three
variables, the curves become surfaces, so we can define level surfaces for functions of three variables.

Given a function  and a number  in the range of , a level surface of a function of three variables is defined to be the
set of points satisfying the equation 

Find the level surface for the function  corresponding to .

Solution

The level surface is defined by the equation  This equation describes a hyperboloid of one sheet as shown
in Figure .

Figure : A hyperboloid of one sheet with some of its level surfaces.

xy−plane.

 Definition: level surface of a function of three variables

f(x, y, z) c f

f(x, y, z) = c.

 Example : Finding a Level Surface3.2.7

f(x, y, z) = 4 +9 −x2 y2 z2 c = 1

4 +9 − = 1.x2 y2 z2

3.2.12

3.2.12
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Find the equation of the level surface of the function

corresponding to  and describe the surface, if possible.

Hint

Set  and complete the square.

Solution

((x−1)^2+(y+2)^2+(z−3)^2=16\) describes a sphere of radius  centered at the point 

Summary
The graph of a function of two variables is a surface in  and can be studied using level curves and vertical traces.
A set of level curves is called a contour map.

Key Equations
Vertical trace

 for  or  for 

Level surface of a function of three variables

Glossary

contour map
a plot of the various level curves of a given function 

function of two variables
a function  that maps each ordered pair  in a subset  of  to a unique real number 

graph of a function of two variables
a set of ordered triples  that satisfies the equation  plotted in three-dimensional Cartesian space

level curve of a function of two variables
the set of points satisfying the equation  for some real number  in the range of 

level surface of a function of three variables
the set of points satisfying the equation  for some real number  in the range of 

surface
the graph of a function of two variables, 

vertical trace
the set of ordered triples  that solves the equation  for a given constant  or the set of ordered triples 

 that solves the equation  for a given constant 

This page titled 3.2: Functions of Several Variables is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

14.1: Functions of Several Variables by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

 Exercise 3.2.5

g(x, y, z) = + + −2x+4y−6zx2 y2 z2

c = 2,

g(x, y, z) = c

4 (1, −2, 3).

R
3

f(a, y) = z x = a f(x, b) = z y = b

f(x, y, z) = c

f(x, y)

z = f(x, y) (x, y) D R2 z

(x, y, z) z = f(x, y)

f(x, y) = c c f

f(x, y, z) = c c f

z = f(x, y)

(c, y, z) f(c, y) = z x = c

(x, d, z) f(x, d) = z y = d
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3.3: Limits and Continuity

Calculate the limit of a function of two variables.
Learn how a function of two variables can approach different values at a boundary point, depending on the path of
approach.
State the conditions for continuity of a function of two variables.
Verify the continuity of a function of two variables at a point.
Calculate the limit of a function of three or more variables and verify the continuity of the function at a point.

We have now examined functions of more than one variable and seen how to graph them. In this section, we see how to take the
limit of a function of more than one variable, and what it means for a function of more than one variable to be continuous at a point
in its domain. It turns out these concepts have aspects that just don’t occur with functions of one variable.

Limit of a Function of Two Variables
Recall from Section 2.5 that the definition of a limit of a function of one variable:

Let  be defined for all  in an open interval containing . Let  be a real number. Then

if for every  there exists a , such that if  for all  in the domain of , then

Before we can adapt this definition to define a limit of a function of two variables, we first need to see how to extend the idea of an
open interval in one variable to an open interval in two variables.

Consider a point  A  disk centered at point  is defined to be an open disk of radius  centered at point 
—that is,

as shown in Figure .

Figure : A  disk centered around the point .

The idea of a  disk appears in the definition of the limit of a function of two variables. If  is small, then all the points  in the
 disk are close to . This is completely analogous to x being close to a in the definition of a limit of a function of one variable.

In one dimension, we express this restriction as

In more than one dimension, we use a  disk.

 Learning Objectives

f(x) x ≠ a a L

f(x) = Llim
x→a

ε > 0, δ > 0 0 < |x −a| < δ x f

|f(x) −L| < ε.

 Definition:  Disksδ

(a, b) ∈ .R
2 δ (a, b) δ (a, b)

{(x, y) ∈ ∣ (x −a +(y −b < }R
2 )2 )2 δ2

3.3.1

3.3.1 δ (2, 1)

δ δ (x, y)
δ (a, b)

a −δ < x < a +δ.

δ

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64001?pdf
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/03%3A_Functions_of_Several_Variables/3.03%3A_Limits_and_Continuity


Access for free at OpenStax 3.3.2 https://math.libretexts.org/@go/page/64001

Let  be a function of two variables,  and . The limit of  as  approaches  is , written

if for each  there exists a small enough  such that for all points  in a  disk around , except possibly for 
 itself, the value of  is no more than  away from  (Figure ).

Using symbols, we write the following: For any , there exists a number  such that

whenever

Figure : The limit of a function involving two variables requires that  be within  of  whenever  is within  of 
. The smaller the value of , the smaller the value of .

Proving that a limit exists using the definition of a limit of a function of two variables can be challenging. Instead, we use the
following theorem, which gives us shortcuts to finding limits. The formulas in this theorem are an extension of the formulas in the
limit laws theorem in The Limit Laws.

Let  and  be defined for all  in a neighborhood around , and assume the neighborhood is
contained completely inside the domain of . Assume that  and  are real numbers such that

and

and let  be a constant. Then each of the following statements holds:

Constant Law:

 Definition: limit of a function of two variables

f x y f(x, y) (x, y) (a, b) L

f(x, y) = Llim
(x,y)→(a,b)

ε > 0 δ > 0 (x, y) δ (a, b)
(a, b) f(x, y) ε L 3.3.2

ε > 0 δ > 0

|f(x, y) −L| < ε

0 < < δ.(x −a +(y −b)2 )2
− −−−−−−−−−−−−−−

√

3.3.2 f(x, y) ε L (x, y) δ

(a, b) ε δ

 Limit laws for functions of two variables

f(x, y) g(x, y) (x, y) ≠ (a, b) (a, b)
f L M

f(x, y) = Llim
(x,y)→(a,b)

g(x, y) = M ,lim
(x,y)→(a,b)

c
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Identity Laws:

Sum Law:

Difference Law:

Constant Multiple Law:

Product Law:

Quotient Law:

Power Law:

for any positive integer .

Root Law:

for all  if  is odd and positive, and for  if n is even and positive.

The proofs of these properties are similar to those for the limits of functions of one variable. We can apply these laws to finding
limits of various functions.

Find each of the following limits:

a. 

b. 

Solution

a. First use the sum and difference laws to separate the terms:

c = clim
(x,y)→(a,b)

x = alim
(x,y)→(a,b)

y = blim
(x,y)→(a,b)

(f(x, y) +g(x, y)) = L +Mlim
(x,y)→(a,b)

(f(x, y) −g(x, y)) = L −Mlim
(x,y)→(a,b)

(cf(x, y)) = cLlim
(x,y)→(a,b)

(f(x, y)g(x, y)) = LMlim
(x,y)→(a,b)

=  for M ≠ 0lim
(x,y)→(a,b)

f(x, y)

g(x, y)

L

M

(f(x, y) =lim
(x,y)→(a,b)

)n Ln

n

=lim
(x,y)→(a,b)

f(x, y)
− −−−−

√n L
−−

√n

L n L ≥ 0

 Example : Finding the Limit of a Function of Two Variables3.3.1

( −2xy +3 −4x +3y −6)lim
(x,y)→(2,−1)

x2 y2

lim
(x,y)→(2,−1)

2x +3y

4x −3y
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Next, use the constant multiple law on the second, third, fourth, and fifth limits:

Now, use the power law on the first and third limits, and the product law on the second limit:

Last, use the identity laws on the first six limits and the constant law on the last limit:

b. Before applying the quotient law, we need to verify that the limit of the denominator is nonzero. Using the difference law,
constant multiple law, and identity law,

Since the limit of the denominator is nonzero, the quotient law applies. We now calculate the limit of the numerator
using the difference law, constant multiple law, and identity law:

Therefore, according to the quotient law we have

Evaluate the following limit:

( −2xy +3 −4x +3y −6)lim
(x,y)→(2,−1)

x2 y2

=( )−( 2xy)+( 3 )−( 4x)lim
(x,y)→(2,−1)

x2 lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

y2 lim
(x,y)→(2,−1)

+( 3y)−( 6) .lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

= ( ) −2( xy) +3( ) −4( x)lim
(x,y)→(2,−1)

x2 lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

y2 lim
(x,y)→(2,−1)

+3( y) − 6.lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

−2( x)( y)+3( x)lim
(x,y)→(2,−1)

2

lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

( y)lim
(x,y)→(2,−1)

2

−4( x)+3( y)− 6.lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

( −2xy +3 −4x +3y −6) = (2 −2(2)(−1) +3(−1 −4(2) +3(−1) −6lim
(x,y)→(2,−1)

x2 y2 )2 )2

= −6.

(4x −3y) = 4x − 3ylim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

= 4( x) −3( y)lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

= 4(2) −3(−1) = 11.

(2x +3y) = 2x + 3ylim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

= 2( x) +3( y)lim
(x,y)→(2,−1)

lim
(x,y)→(2,−1)

= 2(2) +3(−1) = 1.

=lim
(x,y)→(2,−1)

2x +3y

4x −3y

(2x +3y)lim
(x,y)→(2,−1)

(4x −3y)lim
(x,y)→(2,−1)

= .
1

11

 Exercise :3.3.1

.lim
(x,y)→(5,−2)

−yx2

+x −1y2

− −−−−−−−−

√3
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Hint

Use the limit laws.

Answer

Since we are taking the limit of a function of two variables, the point  is in , and it is possible to approach this point from
an infinite number of directions. Sometimes when calculating a limit, the answer varies depending on the path taken toward .
If this is the case, then the limit fails to exist. In other words, the limit must be unique, regardless of path taken.

Show that neither of the following limits exist:

a. 

b. 

Solution

a. The domain of the function  consists of all points in the -plane except for the point  (Figure 

). To show that the limit does not exist as  approaches , we note that it is impossible to satisfy the definition of
a limit of a function of two variables because of the fact that the function takes different values along different lines passing
through point . First, consider the line  in the -plane. Substituting  into  gives

for any value of . Therefore the value of  remains constant for any point on the -axis, and as  approaches zero, the
function remains fixed at zero.

Next, consider the line . Substituting  into  gives

This is true for any point on the line . If we let  approach zero while staying on this line, the value of the function
remains fixed at , regardless of how small  is.

Choose a value for ε that is less than —say, . Then, no matter how small a  disk we draw around , the values of 
 for points inside that  disk will include both  and . Therefore, the definition of limit at a point is never satisfied and

the limit fails to exist.

=lim
(x,y)→(5,−2)

−yx2

+x −1y2

− −−−−−−−−

√3
3

2

(a, b) R
2

(a, b)

 Example : Limits That Fail to Exist3.3.2

lim
(x,y)→(0,0)

2xy

3 +x2 y2

lim
(x,y)→(0,0)

4xy2

+3x2 y4

f(x, y) =
2xy

3 +x2 y2
xy (0, 0)

3.3.3 (x, y) (0, 0)

(0, 0) y = 0 xy y = 0 f(x, y)

f(x, 0) = = 0
2x(0)

3 +x2 02

x f x y

y = x y = x f(x, y)

f(x, x) = = = .
2x(x)

3 +x2 x2

2x2

4x2
1
2

y = x x
1
2

x

1/2 1/4 δ (0, 0)
f(x, y) δ 0 1

2
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Figure : Graph of the function  Along the line , the function is equal to zero; along the line 

, the function is equal to .

b. In a similar fashion to a., we can approach the origin along any straight line passing through the origin. If we try the -axis
(i.e., ), then the function remains fixed at zero. The same is true for the -axis. Suppose we approach the origin along a
straight line of slope . The equation of this line is . Then the limit becomes

regardless of the value of . It would seem that the limit is equal to zero. What if we chose a curve passing through the origin
instead? For example, we can consider the parabola given by the equation . Substituting  in place of  in 
gives

3.3.3 f(x, y) = .
2xy

3 +x2 y2
y = 0

y = x 1
2

x

y = 0 y

k y = kx

=lim
(x,y)→(0,0)

4xy2

+3x2 y4
lim

(x,y)→(0,0)

4x(kx)2

+3(kxx2 )4

= lim
(x,y)→(0,0)

4k2x3

+3x2 k4x4

= lim
(x,y)→(0,0)

4 xk2

1 +3k4x2

=

(4 x)lim
(x,y)→(0,0)

k2

(1 +3 )lim
(x,y)→(0,0)

k4x2

= 0.

k

x = y2 y2 x f(x, y)
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By the same logic in part a, it is impossible to find a δ disk around the origin that satisfies the definition of the limit for any
value of  Therefore,

does not exist.

Show that

does not exist.

Hint

Pick a line with slope  passing through point 

Answer

If  then . Since the answer depends on  the limit fails to

exist.

Interior Points and Boundary Points

To study continuity and differentiability of a function of two or more variables, we first need to learn some new terminology.

Let  be a subset of  (Figure ).

1. A point  is called an interior point of  if there is a  disk centered around  contained completely in .
2. A point  is called a boundary point of  if every  disk centered around  contains points both inside and outside .

=lim
(x,y)→(0,0)

4xy2

+3x2 y4
lim

(x,y)→(0,0)

4( )y2 y2

( +3y2)2 y4

= lim
(x,y)→(0,0)

4y4

+3y4 y4

= 1lim
(x,y)→(0,0)

= 1.

ε < 1.

lim
(x,y)→(0,0)

4xy2

+3x2 y4

 Exercise :3.3.2

lim
(x,y)→(2,1)

(x −2)(y −1)

(x −2 +(y −1)2 )2

k (2, 1).

y = k(x −2) +1, =lim(x,y)→(2,1)

(x −2)(y −1)

(x −2 +(y −1)2 )2

k

1 +k2
k,

 Definition: interior and boundary points

S R
2 3.3.4

P0 S δ P0 S

P0 S δ P0 S
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Figure : In the set  shown,  is an interior point and  is a boundary point.

Let  be a subset of  (Figure ).

1.  is called an open set if every point of  is an interior point.
2.  is called a closed set if it contains all its boundary points.

An example of an open set is a  disk. If we include the boundary of the disk, then it becomes a closed set. A set that contains
some, but not all, of its boundary points is neither open nor closed. For example if we include half the boundary of a  disk but not
the other half, then the set is neither open nor closed.

Let  be a subset of  (Figure ).

1. An open set  is a connected set if it cannot be represented as the union of two or more disjoint, nonempty open subsets.
2. A set  is a region if it is open, connected, and nonempty.

The definition of a limit of a function of two variables requires the  disk to be contained inside the domain of the function.
However, if we wish to find the limit of a function at a boundary point of the domain, the  disk is not contained inside the domain.
By definition, some of the points of the  disk are inside the domain and some are outside. Therefore, we need only consider points
that are inside both the  disk and the domain of the function. This leads to the definition of the limit of a function at a boundary
point.

Let  be a function of two variables,  and , and suppose  is on the boundary of the domain of . Then, the limit of 
 as  approaches  is , written

if for any  there exists a number  such that for any point  inside the domain of  and within a suitably small
distance positive  of  the value of  is no more than  away from  (Figure ). Using symbols, we can write:
For any , there exists a number  such that

3.3.4 S (−1, 1) (2, 3)

 Definition: Open and closed sets

S R
2 3.3.4

S S

S

δ

δ

 Definition: connected sets and Regions

S R
2 3.3.4

S

S

δ

δ

δ

δ

 Definition

f x y (a, b) f

f(x, y) (x, y) (a, b) L

f(x, y) = L,lim
(x,y)→(a,b)

ε > 0, δ > 0 (x, y) f

δ (a, b), f(x, y) ε L 3.3.2
ε > 0 δ > 0

|f(x, y) −L| < ε whenever 0 < < δ.(x −a +(y −b)2 )2
− −−−−−−−−−−−−−−

√
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Prove

Solution

The domain of the function  is , which is a circle of radius 
centered at the origin, along with its interior as shown in Figure .

Figure : Domain of the function .

We can use the limit laws, which apply to limits at the boundary of domains as well as interior points:

See the following graph.

Figure : Graph of the function .

 Example : Limit of a Function at a Boundary Point3.3.3

= 0.lim
(x,y)→(4,3)

25 − −x2 y2
− −−−−−−−−−

√

f(x, y) = 25 − −x2 y2− −−−−−−−−−
√ {(x, y) ∈ ∣ + ≤ 25}R

2 x2 y2 5
3.3.5

3.3.5 f(x, y) = 25 − −x2 y2− −−−−−−−−−
√

=lim
(x,y)→(4,3)

25 − −x2 y2
− −−−−−−−−−

√ (25 − − )lim
(x,y)→(4,3)

x2 y2
− −−−−−−−−−−−−−−−−−

√

= 25 − −lim
(x,y)→(4,3)

lim
(x,y)→(4,3)

x2 lim
(x,y)→(4,3)

y2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

= 25 − −42 32
− −−−−−−−−−

√

= 0

3.3.6 f(x, y) = 25 − −x2 y2− −−−−−−−−−
√
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Evaluate the following limit:

Hint

Determine the domain of .

Answer

Continuity of Functions of Two Variables

In Continuity, we defined the continuity of a function of one variable and saw how it relied on the limit of a function of one
variable. In particular, three conditions are necessary for  to be continuous at point 

1.  exists.
2.  exists.

3. 

These three conditions are necessary for continuity of a function of two variables as well.

A function  is continuous at a point  in its domain if the following conditions are satisfied:

1.  exists.
2.  exists.

3. 

Show that the function

is continuous at point 

Solution

There are three conditions to be satisfied, per the definition of continuity. In this example,  and 

1.  exists. This is true because the domain of the function f consists of those ordered pairs for which the denominator is
nonzero (i.e., ). Point  satisfies this condition. Furthermore,

2.  exists. This is also true:

 Exercise 3.3.3

.lim
(x,y)→(5,−2)

29 − −x2 y2
− −−−−−−−−−

√

f(x, y) = 29 − −x2 y2− −−−−−−−−−
√

lim
(x,y)→(5,−2)

29 − −x2 y2
− −−−−−−−−−

√

f(x) x = a

f(a)
f(x)lim

x→a

f(x) = f(a).lim
x→a

 Definition: continuous Functions

f(x, y) (a, b)

f(a, b)
f(x, y)lim

(x,y)→(a,b)

f(x, y) = f(a, b).lim
(x,y)→(a,b)

 Example : Demonstrating Continuity for a Function of Two Variables3.3.4

f(x, y) =
3x +2y

x +y +1

(5, −3).

a = 5 b = −3.

f(a, b)
x +y +1 ≠ 0 (5, −3)

f(a, b) = f(5, −3) = = = 3.
3(5) +2(−3)

5 +(−3) +1

15 −6

2 +1

f(x, y)lim
(x,y)→(a,b)
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3.  This is true because we have just shown that both sides of this equation equal three.

Show that the function

is continuous at point .

Hint

Use the three-part definition of continuity.

Answer

1. The domain of  contains the ordered pair  because 
2. 

3. 

Continuity of a function of any number of variables can also be defined in terms of delta and epsilon. A function of two variables is
continuous at a point  in its domain if for every  there exists a  such that, whenever 

 it is true,  This definition can be combined with the formal definition (that
is, the epsilon–delta definition) of continuity of a function of one variable to prove the following theorems:

If  is continuous at , and  is continuous at , then  is continuous at .

If  is continuous at  and  is continuous at , then  is continuous at 

Let  be a function of two variables from a domain  to a range  Suppose  is continuous at some point 
 and define . Let f be a function that maps  to  such that  is in the domain of . Last, assume 

 is continuous at . Then  is continuous at  as shown in Figure .

f(x, y) =lim
(x,y)→(a,b)

lim
(x,y)→(5,−3)

3x +2y

x +y +1

=

(3x +2y)lim
(x,y)→(5,−3)

(x +y +1)lim
(x,y)→(5,−3)

=
15 −6

5 −3 +1
= 3.

f(x, y) = f(a, b).lim
(x,y)→(a,b)

 Exercise 3.3.4

f(x, y) = 26 −2 −x2 y2
− −−−−−−−−−−

√

(2, −3)

f (2, −3) f(a, b) = f(2, −3) = = 316 −2(2 −(−3)2 )2− −−−−−−−−−−−−−−
√

f(x, y) = 3lim
(x,y)→(a,b)

f(x, y) = f(a, b) = 3lim
(x,y)→(a,b)

( , )x0 y0 ε > 0 δ > 0
< δ(x − +(y −x0)2 y0)2− −−−−−−−−−−−−−−−−

√ |f(x, y) −f(a, b)| < ε.

 The Sum of Continuous Functions Is Continuous

f(x, y) ( , )x0 y0 g(x, y) ( , )x0 y0 f(x, y) +g(x, y) ( , )x0 y0

 The Product of Continuous Functions Is Continuous

g(x) x0 h(y) y0 f(x, y) = g(x)h(y) ( , ).x0 y0

 The Composition of Continuous Functions Is Continuous

g D ⊆ R
2 R ⊆ R. g

( , ) ∈ Dx0 y0 = g( , )z0 x0 y0 R R z0 f

f z0 f ∘ g ( , )x0 y0 3.3.7
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Figure : The composition of two continuous functions is continuous.

Let’s now use the previous theorems to show continuity of functions in the following examples.

Show that the functions  and  are continuous everywhere.

Solution

The polynomials  and  are continuous at every real number, and therefore by the product of continuous
functions theorem,  is continuous at every point  in the -plane. Since  is continuous
at every point  in the -plane and  is continuous at every real number , the continuity of the composition
of functions tells us that  is continuous at every point  in the -plane.

Show that the functions  and  are continuous everywhere.

Hint

Use the continuity of the sum, product, and composition of two functions.

Answer

The polynomials  and  are continuous at every real number; therefore, by the product of continuous
functions theorem,  is continuous at every point  in the -plane. Furthermore, any constant
function is continuous everywhere, so  is continuous at every point  in the -plane. Therefore, 

 is continuous at every point  in the -plane. Last,  is continuous at every real
number , so by the continuity of composite functions theorem  is continuous at every point 
in the -plane.

Functions of Three or More Variables
The limit of a function of three or more variables occurs readily in applications. For example, suppose we have a function 

 that gives the temperature at a physical location  in three dimensions. Or perhaps a function  can
indicate air pressure at a location  at time . How can we take a limit at a point in ? What does it mean to be continuous
at a point in four dimensions?

The answers to these questions rely on extending the concept of a  disk into more than two dimensions. Then, the ideas of the
limit of a function of three or more variables and the continuity of a function of three or more variables are very similar to the
definitions given earlier for a function of two variables.

Let  be a point in . Then, a -ball in three dimensions consists of all points in  lying at a distance of less than 
 from  —that is,

3.3.7

 Example : More Examples of Continuity of a Function of Two Variables3.3.5

f(x, y) = 4x3y2 g(x, y) = cos(4 )x3y2

g(x) = 4x3 h(y) = y2

f(x, y) = 4x3y2 (x, y) xy f(x, y) = 4x3y2

(x, y) xy g(x) = cos x x

g(x, y) = cos(4 )x3y2 (x, y) xy

 Exercise 3.3.5

f(x, y) = 2 +3x2y3 g(x, y) = (2 +3x2y3 )4

g(x) = 2x2 h(y) = y3

f(x, y) = 2x2y3 (x, y) xy

g(x, y) = 3 (x, y) xy

f(x, y) = 2 +3x2y3 (x, y) xy h(x) = x4

x g(x, y) = (2 +3x2y3 )4 (x, y)
xy

f(x, y, z) (x, y, z) g(x, y, z, t)

(x, y, z) t R
3

δ

 Definition: -ballsδ

( , , )x0 y0 z0 R
3 δ R

3

δ ( , , )x0 y0 z0

{(x, y, z) ∈ ∣ < δ}.R
3 (x − +(y − +(z −x0)2 y0)2 z0)2

− −−−−−−−−−−−−−−−−−−−−−−−−−
√
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To define a -ball in higher dimensions, add additional terms under the radical to correspond to each additional dimension. For
example, given a point  in , a  ball around  can be described by

To show that a limit of a function of three variables exists at a point , it suffices to show that for any point in a  ball
centered at , the value of the function at that point is arbitrarily close to a fixed value (the limit value). All the limit laws
for functions of two variables hold for functions of more than two variables as well.

Find

Solution

Before we can apply the quotient law, we need to verify that the limit of the denominator is nonzero. Using the difference law,
the identity law, and the constant law,

Since this is nonzero, we next find the limit of the numerator. Using the product law, power law, difference law, constant
multiple law, and identity law,

Last, applying the quotient law:

Find

Hint

Use the limit laws and the continuity of the composition of functions.

Answer

δ

P = ( , , , )w0 x0 y0 z0 R
4 δ P

{(w, x, y, z) ∈ ∣ < δ}.R
4 (w − +(x − +(y − +(z −w0)2 x0)2 y0)2 z0)2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

( , , )x0 y0 z0 δ

( , , )x0 y0 z0

 Example : Finding the Limit of a Function of Three Variables3.3.6

.lim
(x,y,z)→(4,1,−3)

y −3zx2

2x +5y −z

(2x +5y −z) = 2( x) +5( y) −( z)lim
(x,y,z)→(4,1,−3)

lim
(x,y,z)→(4,1,−3)

lim
(x,y,z)→(4,1,−3)

lim
(x,y,z)→(4,1,−3)

= 2(4) +5(1) −(−3)

= 16.

( y −3z) = ( x ( y) −3 zlim
(x,y,z)→(4,1,−3)

x2 lim
(x,y,z)→(4,1,−3)

)2 lim
(x,y,z)→(4,1,−3)

lim
(x,y,z)→(4,1,−3)

= ( )(1) −3(−3)42

= 16 +9
= 25

= =lim
(x,y,z)→(4,1,−3)

y −3zx2

2x +5y −z

( y −3z)lim
(x,y,z)→(4,1,−3)

x2

(2x +5y −z)lim
(x,y,z)→(4,1,−3)

25

16

 Exercise 3.3.6

lim
(x,y,z)→(4,−1,3)

13 − −2 +x2 y2 z2
− −−−−−−−−−−−−−−

√

= 2lim
(x,y,z)→(4,−1,3)

13 − −2 +x2 y2 z2
− −−−−−−−−−−−−−−

√
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Key Concepts
To study limits and continuity for functions of two variables, we use a  disk centered around a given point.
A function of several variables has a limit if for any point in a  ball centered at a point , the value of the function at that point
is arbitrarily close to a fixed value (the limit value).
The limit laws established for a function of one variable have natural extensions to functions of more than one variable.
A function of two variables is continuous at a point if the limit exists at that point, the function exists at that point, and the limit
and function are equal at that point.

Glossary

boundary point
a point  of  is a boundary point if every  disk centered around  contains points both inside and outside 

closed set
a set  that contains all its boundary points

connected set
an open set  that cannot be represented as the union of two or more disjoint, nonempty open subsets

 disk
an open disk of radius  centered at point 

 ball
all points in  lying at a distance of less than  from 

interior point
a point  of  is a boundary point if there is a  disk centered around  contained completely in 

open set
a set  that contains none of its boundary points

region
an open, connected, nonempty subset of 

This page titled 3.3: Limits and Continuity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

14.2: Limits and Continuity by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

δ

δ P

P0 R δ P0 R

S

S

δ

δ (a, b)

δ

R
3 δ ( , , )x0 y0 z0

P0 R δ P0 R
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R
2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64001?pdf
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/03%3A_Functions_of_Several_Variables/3.03%3A_Limits_and_Continuity
https://creativecommons.org/licenses/by-nc-sa/4.0
https://openstax.org/
https://openstax.org/details/books/calculus-volume-1
https://math.libretexts.org/@go/page/2601
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


Access for free at OpenStax 3.4.1 https://math.libretexts.org/@go/page/64002

3.4: Partial Derivatives

Calculate the partial derivatives of a function of two variables.
Calculate the partial derivatives of a function of more than two variables.
Determine the higher-order derivatives of a function of two variables.
Explain the meaning of a partial differential equation and give an example.

Now that we have examined limits and continuity of functions of two variables, we can proceed to study derivatives. Finding
derivatives of functions of two variables is the key concept in this chapter, with as many applications in mathematics, science, and
engineering as differentiation of single-variable functions. However, we have already seen that limits and continuity of multivariable
functions have new issues and require new terminology and ideas to deal with them. This carries over into differentiation as well.

Derivatives of a Function of Two Variables
When studying derivatives of functions of one variable, we found that one interpretation of the derivative is an instantaneous rate of
change of  as a function of  Leibniz notation for the derivative is  which implies that  is the dependent variable and  is the
independent variable. For a function  of two variables,  and  are the independent variables and  is the dependent
variable. This raises two questions right away: How do we adapt Leibniz notation for functions of two variables? Also, what is an
interpretation of the derivative? The answer lies in partial derivatives.

Let  be a function of two variables. Then the partial derivative of  with respect to , written as , or  is defined as

The partial derivative of  with respect to , written as , or  is defined as

This definition shows two differences already. First, the notation changes, in the sense that we still use a version of Leibniz notation, but
the  in the original notation is replaced with the symbol . (This rounded  is usually called “partial,” so  is spoken as the
“partial of  with respect to .”) This is the first hint that we are dealing with partial derivatives. Second, we now have two different
derivatives we can take, since there are two different independent variables. Depending on which variable we choose, we can come up
with different partial derivatives altogether, and often do.

Use the definition of the partial derivative as a limit to calculate  and  for the function

Solution

First, calculate 

Next, substitute this into Equation  and simplify:

 Learning Objectives

y x. dy/dx, y x

z = f(x, y) x y z

 Definition: Partial Derivatives

f(x, y) f x ∂f/∂x, ,fx

= (x, y) =
∂f

∂x
fx lim

h→0

f(x+h, y) −f(x, y)

h
(3.4.1)

f y ∂f/∂y ,fy

= (x, y) = .
∂f

∂y
fy lim

k→0

f(x, y+k) −f(x, y)

k
(3.4.2)

d ∂ “d” ∂f/∂x
f x

 Example : Calculating Partial Derivatives from the Definition3.4.1

∂f/∂x ∂f/∂y

f(x, y) = −3xy+2 −4x+5y−12.x2 y2

f(x+h, y).

f(x+h, y) = (x+h −3(x+h)y+2 −4(x+h) +5y−12)2 y2

= +2xh+ −3xy−3hy+2 −4x−4h+5y−12.x2 h2 y2

3.4.1
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To calculate , first calculate 

Next, substitute this into Equation  and simplify:

Use the definition of the partial derivative as a limit to calculate  and  for the function

Hint

Use Equations  and  from the definition of partial derivatives.

Answer

The idea to keep in mind when calculating partial derivatives is to treat all independent variables, other than the variable with respect to
which we are differentiating, as constants. Then proceed to differentiate as with a function of a single variable. To see why this is true,
first fix  and define  as a function of . Then

∂f

∂x
= lim

h→0

f(x+h, y) −f(x, y)

h

= lim
h→0

( +2xh+ −3xy−3hy+2 −4x−4h+5y−12) −( −3xy+2 −4x+5y−12)x2 h2 y2 x2 y2

h

= lim
h→0

+2xh+ −3xy−3hy+2 −4x−4h+5y−12 − +3xy−2 +4x−5y+12x2 h2 y2 x2 y2

h

= lim
h→0

2xh+ −3hy−4hh2

h

= lim
h→0

h(2x+h−3y−4)

h

= (2x+h−3y−4)lim
h→0

= 2x−3y−4.

∂f

∂y
f(x, y+h) :

f(x+h, y) = −3x(y+h) +2(y+h −4x+5(y+h) −12x2 )2

= −3xy−3xh+2 +4yh+2 −4x+5y+5h−12.x2 y2 h2

3.4.2

∂f

∂y
= lim

h→0

f(x, y+h) −f(x, y)

h

= lim
h→0

( −3xy−3xh+2 +4yh+2 −4x+5y+5h−12) −( −3xy+2 −4x+5y−12)x2 y2 h2 x2 y2

h

= lim
h→0

−3xy−3xh+2 +4yh+2 −4x+5y+5h−12 − +3xy−2 +4x−5y+12x2 y2 h2 x2 y2

h

= lim
h→0

−3xh+4yh+2 +5hh2

h

= lim
h→0

h(−3x+4y+2h+5)

h
= (−3x+4y+2h+5)lim

h→0

= −3x+4y+5

 Exercise 3.4.1

∂f/∂x ∂f/∂y

f(x, y) = 4 +2xy− +3x−2y+5.x2 y2

3.4.1 3.4.2

= 8x+2y+3
∂f

∂x

= 2x−2y−2
∂f

∂y

y g(x) = f(x, y) x
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The same is true for calculating the partial derivative of  with respect to . This time, fix  and define  as a function of 
. Then

All differentiation rules apply.

Calculate  and  for the following functions by holding the opposite variable constant then differentiating:

a. 
b. 

Solution:

a. To calculate , treat the variable  as a constant. Then differentiate  with respect to  using the sum, difference, and
power rules:

The derivatives of the third, fifth, and sixth terms are all zero because they do not contain the variable , so they are treated as
constant terms. The derivative of the second term is equal to the coefficient of , which is . Calculating :

These are the same answers obtained in Example .

b. To calculate  treat the variable y as a constant. Then differentiate  with respect to  using the chain rule and power
rule:

g'(x) = lim
h→0

g(x+h) −g(x)

h

= lim
h→0

f(x+h, y) −f(x, y)

h

= .
∂f

∂x

f y x h(y) = f(x, y)
y

h'(x) = lim
k→0

h(x+k) −h(x)

k

= lim
k→0

f(x, y+k) −f(x, y)

k

= .
∂f

∂y

 Example : Calculating Partial Derivatives3.4.2

∂f/∂x ∂f/∂y

f(x, y) = −3xy+2 −4x+5y−12x2 y2

g(x, y) = sin( y−2x+4)x2

∂f/∂x y f(x, y) x

∂f

∂x
= [ −3xy+2 −4x+5y−12]

∂

∂x
x2 y2

= [ ] − [3xy] + [2 ] − [4x] + [5y] − [12]
∂

∂x
x2 ∂

∂x

∂

∂x
y2 ∂

∂x

∂

∂x

∂

∂x

= 2x−3y+0 −4 +0 −0

= 2x−3y−4.

x

x −3y ∂f/∂y

∂f

∂y
= [ −3xy+2 −4x+5y−12]

∂

∂y
x2 y2

= [ ] − [3xy] + [2 ] − [4x] + [5y] − [12]
∂

∂y
x2 ∂

∂y

∂

∂y
y2 ∂

∂y

∂

∂y

∂

∂y

= −3x+4y−0 +5 −0

= −3x+4y+5.

3.4.1

∂g/∂x, g(x, y) x
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To calculate  treat the variable  as a constant. Then differentiate  with respect to  using the chain rule and power
rule:

Calculate  and  for the function

by holding the opposite variable constant, then differentiating.

Hint

Use Equations  and  from the definition of partial derivatives.

Answer

How can we interpret these partial derivatives? Recall that the graph of a function of two variables is a surface in . If we remove the
limit from the definition of the partial derivative with respect to , the difference quotient remains:

This resembles the difference quotient for the derivative of a function of one variable, except for the presence of the  variable. Figure 
 illustrates a surface described by an arbitrary function 

Figure : Secant line passing through the points  and 

∂g

∂x
= [sin( y−2x+4)]

∂

∂x
x2

= cos( y−2x+4) [ y−2x+4]x2 ∂

∂x
x2

= (2xy−2) cos( y−2x+4).x2

∂g/∂y, x g(x, y) y

∂g

∂y
= [sin( y−2x+4)]

∂

∂y
x2

= cos( y−2x+4) [ y−2x+4]x2 ∂

∂y
x2

= cos( y−2x+4).x2 x2

 Exercise 3.4.2

∂f/∂x ∂f/∂y

f(x, y) = tan( −3 +2 )x3 x2y2 y4

3.4.1 3.4.1

= (3 −6x ) ( −3 +2 )
∂f

∂x
x2 y2 sec2 x3 x2y2 y4

= (−6 y+8 ) ( −3 +2 )
∂f

∂y
x2 y3 sec2 x3 x2y2 y4

R3

x

.
f(x+h, y) −f(x, y)

h

y

3.4.1 z = f(x, y).

3.4.1 (x,y,f(x,y)) (x+h,y,f(x+h,y)).
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In Figure , the value of  is positive. If we graph  and  for an arbitrary point  then the slope of the secant
line passing through these two points is given by

This line is parallel to the -axis. Therefore, the slope of the secant line represents an average rate of change of the function  as we
travel parallel to the -axis. As  approaches zero, the slope of the secant line approaches the slope of the tangent line.

If we choose to change  instead of  by the same incremental value , then the secant line is parallel to the -axis and so is the tangent
line. Therefore,  represents the slope of the tangent line passing through the point  parallel to the -axis and 
represents the slope of the tangent line passing through the point  parallel to the -axis. If we wish to find the slope of a
tangent line passing through the same point in any other direction, then we need what are called directional derivatives.

We now return to the idea of contour maps, which we introduced in Functions of Several Variables. We can use a contour map to
estimate partial derivatives of a function .

Use a contour map to estimate  at the point  for the function

Solution

Figure  represents a contour map for the function .

Figure : Contour map for the function , using  and  corresponds to the origin).

The inner circle on the contour map corresponds to  and the next circle out corresponds to . The first circle is given by
the equation ; the second circle is given by the equation . The first equation simplifies to 

 and the second equation simplifies to  The -intercept of the first circle is  and the -intercept of
the second circle is . We can estimate the value of  evaluated at the point  using the slope formula:

To calculate the exact value of  evaluated at the point , we start by finding  using the chain rule. First, we
rewrite the function as

and then differentiate with respect to  while holding  constant:

3.4.1 h f(x, y) f(x+h, y) (x, y),

.
f(x+h, y) −f(x, y)

h

x f

x h

y x h y

∂f/∂x (x, y, f(x, y)) x ∂f/∂y
(x, y, f(x, y)) y

g(x, y)

 Example : Partial Derivatives from a Contour Map3.4.3

∂g/∂x ( , 0)5
–

√

g(x, y) = .9 − −x2 y2
− −−−−−−−−

√

3.4.2 g(x, y)

3.4.2 g(x,y) = 9 − −x2 y2− −−−−−−−−
√ c = 0, 1, 2, 3(c = 3

c = 2 c = 1

2 = 9 − −x2 y2
− −−−−−−−−

√ 1 = 9 − −x2 y2
− −−−−−−−−

√
+ = 5x2 y2 + = 8.x2 y2 x ( , 0)5

–
√ x

(2 , 0)2
–

√ ∂g/∂x ( , 0)5
–

√

∂g

∂x

∣
∣
∣
(x,y)=( ,0)5√

≈
g( , 0) −g(2 , 0)5

–
√ 2

–
√

−25
–

√ 2
–

√

=
2 −1

−25
–

√ 2
–

√

= ≈ −1.688.
1

−25
–

√ 2
–

√

∂g/∂x ( , 0)5
–

√ ∂g/∂x

g(x, y) = = (9 − −9 − −x2 y2
− −−−−−−−−

√ x2 y2)1/2

x y
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Next, we evaluate this expression using  and :

The estimate for the partial derivative corresponds to the slope of the secant line passing through the points  and 
. It represents an approximation to the slope of the tangent line to the surface through the point 

 which is parallel to the -axis.

Use a contour map to estimate  at point  for the function

Compare this with the exact answer.

Hint

Create a contour map for  using values of  from  to . Which of these curves passes through point 

Answer

Using the curves corresponding to  and  we obtain

The exact answer is

Functions of More Than Two Variables
Suppose we have a function of three variables, such as  We can calculate partial derivatives of  with respect to any of
the independent variables, simply as extensions of the definitions for partial derivatives of functions of two variables.

Let  be a function of three variables. Then, the partial derivative of  with respect to , written as  or  is
defined to be

The partial derivative of  with respect to , written as , or , is defined to be

∂g

∂x
= (9 − − (−2x)

1

2
x2 y2)−1/2

= − .
x

9 − −x2 y2
− −−−−−−−−

√

x = 5
–

√ y = 0

∂g

∂x

∣
∣
∣
(x,y)=( ,0)5√

= −
5
–

√

9 −( −(05
–

√ )2 )2
− −−−−−−−−−−−−

√

= −
5
–

√

4
–

√

= − ≈ −1.118.
5
–

√

2

( , 0, g( , 0))5
–

√ 5
–

√
(2 , 0, g(2 , 0))2

–
√ 2

–
√

( , 0, g( , 0)),5
–

√ 5
–

√ x

 Exercise 3.4.3

∂f/∂y (0, )2
–

√

f(x, y) = − .x2 y2

f c −3 3 (0, )?2
–

√

c = −2 c = −3,

∂f

∂y

∣

∣
∣
(x,y)=(0, )2√

≈
f(0, ) −f(0, )3

–
√ 2

–
√

−3
–

√ 2
–

√

= ⋅
−3 −(−2)

−3
–

√ 2
–

√

+3
–

√ 2
–

√

+3
–

√ 2
–

√

= − − ≈ −3.146.3
–

√ 2
–

√

= (−2y = −2 ≈ −2.828.
∂f

∂y

∣

∣
∣
(x,y)=(0, )2√

|(x,y)=(0, )2√ 2
–

√

w = f(x, y, z). w

 Definition: Partial Derivatives

f(x, y, z) f x ∂f/∂x, ,fx

= (x, y, z) = .
∂f

∂x
fx lim

h→0

f(x+h, y, z) −f(x, y, z)

h
(3.4.3)

f y ∂f/∂y fy
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The partial derivative of  with respect to , written as , or , is defined to be

We can calculate a partial derivative of a function of three variables using the same idea we used for a function of two variables. For
example, if we have a function  of , and , and we wish to calculate , then we treat the other two independent variables as if
they are constants, then differentiate with respect to .

Use the limit definition of partial derivatives to calculate  for the function

Then, find  and  by setting the other two variables constant and differentiating accordingly.

Solution:

We first calculate  using Equation , then we calculate the other two partial derivatives by holding the remaining
variables constant. To use the equation to find , we first need to calculate 

and recall that  Next, we substitute these two expressions into the
equation:

Then we find  by holding  and  constant. Therefore, any term that does not include the variable  is constant, and its
derivative is zero. We can apply the sum, difference, and power rules for functions of one variable:

To calculate  we hold  and  constant and apply the sum, difference, and power rules for functions of one variable:

= (x, y, z) =
∂f

∂y
fy lim

k→0

f(x, y+k, z) −f(x, y, z)

k.
(3.4.4)

f z ∂f/∂z fz

= (x, y, z) = .
∂f

∂z
fz lim

m→0

f(x, y, z+m) −f(x, y, z)

m
(3.4.5)

f x, y z ∂f/∂x
x

 Example : Calculating Partial Derivatives for a Function of Three Variables3.4.4

∂f/∂x

f(x, y, z) = −3xy+2 −4xz+5y −12x+4y−3z.x2 y2 z2

∂f/∂y ∂f/∂z

∂f/∂x 3.4.3
∂f/∂x f(x+h, y, z) :

f(x+h, y, z) = (x+h −3(x+h)y+2 −4(x+h)z+5y −12(x+h) +4y−3z)2 y2 z2

= +2xh+ −3xy−3xh+2 −4xz−4hz+5y −12x−12h+4y−3zx2 h2 y2 z2

f(x, y, z) = −3xy+2 −4zx+5y −12x+4y−3z.x2 y2 z2

∂f

∂x
=

lim
h→0

⎡

⎣

⎢⎢⎢

+2xh+ −3xy−3hy+2 −4xz−4hz+5y −12x−12h+4y−3zh− −3xy+2 −4xz+5yx2 h2 y2 z2 x2 y2 z2

−12x+4y−3z

h

⎤

⎦

⎥⎥⎥

= [ ]lim
h→0

2xh+ −3hy−4hz−12hh2

h

= [ ]lim
h→0

h(2x+h−3y−4z−12)

h

= (2x+h−3y−4z−12)lim
h→0

= 2x−3y−4z−12.

∂f/∂y x z y

[ −3xy+2 −4xz+5y −12x+4y−3z]
∂

∂y
x2 y2 z2

= [ ] − [3xy] + [2 ] − [4xz] + [5y ] − [12x] + [4y] − [3z]
∂

∂y
x2 ∂

∂y

∂

∂y
y2 ∂

∂y

∂

∂y
z2 ∂

∂y

∂

∂y

∂

∂z

= 0 −3x+4y−0 +5 −0 +4 −0z2

= −3x+4y+5 +4.z2

∂f/∂z, x y
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Use the limit definition of partial derivatives to calculate  for the function

Then find  and  by setting the other two variables constant and differentiating accordingly.

Hint

Use the strategy in the preceding example.

Answer

Calculate the three partial derivatives of the following functions.

a. 
b. 

Solution

In each case, treat all variables as constants except the one whose partial derivative you are calculating.

a.

[ −3xy+2 −4xz+5y −12x+4y−3z]
∂

∂z
x2 y2 z2

= [ ] − [3xy] + [2 ] − [4xz] + [5y ] − [12x] + [4y] − [3z]
∂

∂z
x2 ∂

∂z

∂

∂z
y2 ∂

∂z

∂

∂z
z2 ∂

∂z

∂

∂z

∂

∂z

= 0 −0 +0 −4x+10yz−0 +0 −3

= −4x+10yz−3

 Exercise 3.4.4

∂f/∂x

f(x, y, z) = 2 −4 y+2 +5x −6x+3z−8.x2 x2 y2 z2

∂f/∂y ∂f/∂z

= 4x−8xy+5 −6, = −4 +4y, = 10xz+3
∂f

∂x
z2 ∂f

∂y
x2 ∂f

∂z

 Example : Calculating Partial Derivatives for a Function of Three Variables3.4.5

f(x, y, z) = y−4xz+ x−3yzx2 y2

g(x, y, z) = sin( y−z) +cos( −yz)x2 x2

∂f

∂x
= [ ]

∂

∂x

y−4xz+x2 y2

x−3yz

=
( y−4xz+ )(x−3yz) −( y−4xz+ ) (x−3yz)

∂

∂x
x2 y2 x2 y2 ∂

∂x
(x−3yz)2

=
(2xy−4z)(x−3yz) −( y−4xz+ )(1)x2 y2

(x−3yz)2

=
2 y−6x z−4xz+12y − y+4xz−x2 y2 z2 x2 y2

(x−3yz)2

=
y−6x z−4xz+12y +4xz−x2 y2 z2 y2

(x−3yz)2
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b.

Calculate  and  for the function

∂f

∂y
= [ ]

∂

∂y

y−4xz+x2 y2

x−3yz

=

( y−4xz+ )(x−3yz) −( y−4xz+ ) (x−3yz)
∂

∂y
x2 y2 x2 y2 ∂

∂y

(x−3yz)2

=
( +2y)(x−3yz) −( y−4xz+ )(−3z)x2 x2 y2

(x−3yz)2

=
−3 yz+2xy−6 z+3 yz−12x +3 zx3 x2 y2 x2 z2 y2

(x−3yz)2

=
+2xy−3 z−12xx3 y2 z2

(x−3yz)2

∂f

∂z
= [ ]

∂

∂z

y−4xz+x2 y2

x−3yz

=
( y−4xz+ )(x−3yz) −( y−4xz+ ) (x−3yz)

∂

∂z
x2 y2 x2 y2 ∂

∂z
(x−3yz)2

=
(−4x)(x−3yz) −( y−4xz+ )(−3y)x2 y2

(x−3yz)2

=
−4 +12xyz+3 −12xyz+3x2 x2y2 y3

(x−3yz)2

=
−4 +3 +3x2 x2y2 y3

(x−3yz)2

∂f

∂x
= [sin( y−z) +cos( −yz)]

∂

∂x
x2 x2

= (cos( y−z)) ( y−z) −(sin( −yz)) ( −yz)x2 ∂

∂x
x2 x2 ∂

∂x
x2

= 2xy cos( y−z) −2x sin( −yz)x2 x2

∂f

∂y
= [sin( y−z) +cos( −yz)]

∂

∂y
x2 x2

= (cos( y−z)) ( y−z) −(sin( −yz)) ( −yz)x2 ∂

∂y
x2 x2 ∂

∂y
x2

= cos( y−z) +z sin( −yz)x2 x2 x2

∂f

∂z
= [sin( y−z) +cos( −yz)]

∂

∂z
x2 x2

= (cos( y−z)) ( y−z) −(sin( −yz)) ( −yz)x2 ∂

∂z
x2 x2 ∂

∂z
x2

= −cos( y−z) +y sin( −yz)x2 x2

 Exercise 3.4.5

∂f/∂x, ∂f/∂y, ∂f/∂z

f(x, y, z) = sec( y) −tan( y ).x2 x3 z2
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Hint

Use the strategy in the preceding example.

Answer

Higher-Order Partial Derivatives

Consider the function

Its partial derivatives are

and

Each of these partial derivatives is a function of two variables, so we can calculate partial derivatives of these functions. Just as with
derivatives of single-variable functions, we can call these second-order derivatives, third-order derivatives, and so on. In general, they
are referred to as higher-order partial derivatives. There are four second-order partial derivatives for any function (provided they all
exist):

An alternative notation for each is  and , respectively. Higher-order partial derivatives calculated with respect to
different variables, such as  and , are commonly called mixed partial derivatives.

Calculate all four second partial derivatives for the function

Solution:

To calculate  and , we first calculate :

To calculate , differentiate  (Equation ) with respect to :

= 2xy sec( y) tan( y) −3 y ( y )
∂f

∂x
x2 x2 x2 z2 sec2 x3 z2

= sec( y) tan( y) − ( y )
∂f

∂y
x2 x2 x2 x3z2 sec2 x3 z2

= −2 yz ( y )
∂f

∂z
x3 sec2 x3 z2

f(x, y) = 2 −4x +5 −6xy+5x−4y+12.x3 y2 y3

= 6 −4 −6y+5
∂f

∂x
x2 y2

= −8xy+15 −6x−4.
∂f

∂y
y2

f∂2

∂x2

f∂2

∂y∂x

f∂2

∂x∂y

f∂2

∂y2

= [ ]
∂

∂x

∂f

∂x

= [ ]
∂

∂y

∂f

∂x

= [ ]
∂

∂x

∂f

∂y

= [ ] .
∂

∂y

∂f

∂y

, , ,fxx fxy fyx fyy
fxy fyx

 Example : Calculating Second Partial Derivatives3.4.6

f(x, y) = x +sin(2x−5y).e−3y (3.4.6)

f∂2

∂x2

f∂2

∂y∂x
∂f/∂x

= +2 cos(2x−5y).
∂f

∂x
e−3y (3.4.7)

f∂2

∂x2
∂f/∂x 3.4.7 x
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To calculate , differentiate  (Equation ) with respect to :

To calculate  and , first calculate :

To calculate , differentiate  (Equation ) with respect to :

To calculate , differentiate  (Equation ) with respect to :

Calculate all four second partial derivatives for the function

Hint

Follow the same steps as in the previous example.

Answer

f∂2

∂x2
= [ ]

∂

∂x

∂f

∂x

= [ +2 cos(2x−5y)]
∂

∂x
e−3y

= −4 sin(2x−5y).

f∂2

∂y∂x
∂f/∂x 3.4.7 y

f∂2

∂y ∂x
= [ ]

∂

∂y

∂f

∂x

= [ +2 cos(2x−5y)]
∂

∂y
e−3y

= −3 +10 sin(2x−5y).e−3y

f∂2

∂x∂y

f∂2

∂y2
∂f/∂y

= −3x −5 cos(2x−5y).
∂f

∂y
e−3y (3.4.8)

f∂2

∂x∂y
∂f/∂y 3.4.8 x

f∂2

∂x∂y
= [ ]

∂

∂x

∂f

∂y

= [−3x −5 cos(2x−5y)]
∂

∂x
e−3y

= −3 +10 sin(2x−5y).e−3y

f∂2

∂y2
∂f/∂y 3.4.8 y

f∂2

∂y2
= [ ]

∂

∂y

∂f

∂y

= [−3x −5 cos(2x−5y)]
∂

∂y
e−3y

= 9x −25 sin(2x−5y).e−3y

 Exercise 3.4.6

f(x, y) = sin(3x−2y) +cos(x+4y).

= −9 sin(3x−2y) −cos(x+4y)
f∂2

∂x2

= 6 sin(3x−2y) −4 cos(x+4y)
f∂2

∂y∂x
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At this point we should notice that, in both Example  and the checkpoint, it was true that . Under certain

conditions, this is always true. In fact, it is a direct consequence of the following theorem.

Suppose that  is defined on an open disk  that contains the point . If the functions  and  are continuous on ,
then .

Clairaut’s theorem guarantees that as long as mixed second-order derivatives are continuous, the order in which we choose to
differentiate the functions (i.e., which variable goes first, then second, and so on) does not matter. It can be extended to higher-order
derivatives as well. The proof of Clairaut’s theorem can be found in most advanced calculus books.

Two other second-order partial derivatives can be calculated for any function  The partial derivative  is equal to the
partial derivative of  with respect to , and  is equal to the partial derivative of  with respect to .

Partial Differential Equations
Previously, we studied differential equations in which the unknown function had one independent variable. A partial differential
equation is an equation that involves an unknown function of more than one independent variable and one or more of its partial
derivatives. Examples of partial differential equations are

In the heat and wave equations, the unknown function  has three independent variables: , , and  with  is an arbitrary constant. The
independent variables  and  are considered to be spatial variables, and the variable  represents time. In Laplace’s equation, the
unknown function  has two independent variables  and .

Verify that

is a solution to the wave equation

Solution

First, we calculate  and 

= 6 sin(3x−2y) −4 cos(x+4y)
f∂2

∂x∂y

= −4 sin(3x−2y) −16 cos(x+4y)
f∂2

∂y2

3.4.6 =
f∂2

∂y∂x

f∂2

∂x∂y

 Equality of Mixed Partial Derivatives (Clairaut’s Theorem)

f(x, y) D (a, b) fxy fyx D

(a, b) = (a, b)fxy fyx

f(x, y). fxx
fx x fyy fy y

= ( + )ut c2 uxx uyy
heat equation in two dimensions

= ( + )utt c2 uxx uyy
wave equation in two dimensions

+ = 0uxx uyy
Laplace’s equation in two dimensions

u t x y c

x y t

u x y

 Example : A Solution to the Wave Equation3.4.7

u(x, y, t) = 5 sin(3πx) sin(4πy) cos(10πt)

= 4( + ).utt uxx uyy (3.4.9)

, ,utt uxx :uyy
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Next, we substitute each of these into the right-hand side of Equation  and simplify:

This verifies the solution.

Verify that

is a solution to the heat equation

Hint

Calculate the partial derivatives and substitute into the right-hand side.

Answer

TBA

Since the solution to the two-dimensional heat equation is a function of three variables, it is not easy to create a visual representation of
the solution. We can graph the solution for fixed values of  which amounts to snapshots of the heat distributions at fixed times. These
snapshots show how the heat is distributed over a two-dimensional surface as time progresses. The graph of the preceding solution at
time  appears in Figure . As time progresses, the extremes level out, approaching zero as  approaches infinity.

(x, y, t)utt = [ ]
∂

∂t

∂u

∂t

= [5 sin(3πx) sin(4πy)(−10π sin(10πt))]
∂

∂t

= [−50π sin(3πx) sin(4πy) sin(10πt)]
∂

∂t

= −500 sin(3πx) sin(4πy) cos(10πt)π2

(x, y, t)uxx = [ ]
∂

∂x

∂u

∂x

= [15π cos(3πx) sin(4πy) cos(10πt)]
∂

∂x

= −45 sin(3πx) sin(4πy) cos(10πt)π2

(x, y, t)uyy = [ ]
∂

∂y

∂u

∂y

= [5 sin(3πx)(4π cos(4πy)) cos(10πt)]
∂

∂y

= [20π sin(3πx) cos(4πy) cos(10πt)]
∂

∂y

= −80 sin(3πx) sin(4πy) cos(10πt).π2

3.4.9

4( + )uxx uyy = 4(−45 sin(3πx) sin(4πy) cos(10πt) +−80 sin(3πx) sin(4πy) cos(10πt))π2 π2

= 4(−125 sin(3πx) sin(4πy) cos(10πt))π2

= −500 sin(3πx) sin(4πy) cos(10πt)π2

= .utt

 Exercise : A Solution to the Heat Equation3.4.7

u(x, y, t) = 2 sin( ) sin( )
x

3

y

4
e−25t/16

= 9( + ).ut uxx uyy

t,

t = 0 3.4.3 t
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Figure 

If we consider the heat equation in one dimension, then it is possible to graph the solution over time. The heat equation in one
dimension becomes

where  represents the thermal diffusivity of the material in question. A solution of this differential equation can be written in the form

where  is any positive integer. A graph of this solution using  appears in Figure , where the initial temperature distribution
over a wire of length  is given by  Notice that as time progresses, the wire cools off. This is seen because, from left to
right, the highest temperature (which occurs in the middle of the wire) decreases and changes color from red to blue.

Figure : Graph of a solution of the heat equation in one dimension over time.

During the late 1800s, the scientists of the new field of geology were coming to the conclusion that Earth must be “millions and
millions” of years old. At about the same time, Charles Darwin had published his treatise on evolution. Darwin’s view was that
evolution needed many millions of years to take place, and he made a bold claim that the Weald chalk fields, where important
fossils were found, were the result of  million years of erosion.

3.4.3

= ,ut c2uxx

c2

(x, t) = sin(mπx)um e− tπ2m2c2

m m = 1 3.4.4
1 u(x, 0) = sinπx.

3.4.4

 Lord Kelvin and the Age of Earth

300
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Figure : (a) William Thomson (Lord Kelvin), 1824-1907, was a British physicist and electrical engineer; (b) Kelvin used the
heat diffusion equation to estimate the age of Earth (credit: modification of work by NASA).

At that time, eminent physicist William Thomson (Lord Kelvin) used an important partial differential equation, known as the heat
diffusion equation, to estimate the age of Earth by determining how long it would take Earth to cool from molten rock to what we
had at that time. His conclusion was a range of 20 to 400 million years, but most likely about 50 million years. For many decades,
the proclamations of this irrefutable icon of science did not sit well with geologists or with Darwin.

Read Kelvin’s paper on estimating the age of the Earth.

Kelvin made reasonable assumptions based on what was known in his time, but he also made several assumptions that turned out to
be wrong. One incorrect assumption was that Earth is solid and that the cooling was therefore via conduction only, hence justifying
the use of the diffusion equation. But the most serious error was a forgivable one—omission of the fact that Earth contains
radioactive elements that continually supply heat beneath Earth’s mantle. The discovery of radioactivity came near the end of
Kelvin’s life and he acknowledged that his calculation would have to be modified.

Kelvin used the simple one-dimensional model applied only to Earth’s outer shell, and derived the age from graphs and the roughly
known temperature gradient near Earth’s surface. Let’s take a look at a more appropriate version of the diffusion equation in radial
coordinates, which has the form

.

Here,  is temperature as a function of  (measured from the center of Earth) and time  is the heat conductivity—for
molten rock, in this case. The standard method of solving such a partial differential equation is by separation of variables, where we
express the solution as the product of functions containing each variable separately. In this case, we would write the temperature as

1. Substitute this form into Equation  and, noting that  is constant with respect to distance  and  is constant with
respect to time , show that

2. This equation represents the separation of variables we want. The left-hand side is only a function of  and the right-hand side is
only a function of , and they must be equal for all values of  and . Therefore, they both must be equal to a constant. Let’s call
that constant . (The convenience of this choice is seen on substitution.) So, we have

3.4.5

= K[ + ]
∂T

∂t

T∂2

r∂2

2

r

∂T

∂r
(3.4.10)

T (r, t) r t.K

T (r, t) = R(r)f(t).

3.4.10 f(t) (r) R(r)
(t)

= [ + ] .
1

f

∂f

∂t

K

R

R∂2

∂r2

2

r

∂R

∂r

t

r r t

−λ2

= − and [ + ] = − .
1

f

∂f

∂t
λ2 K

R

R∂2

∂r2

2

r

∂R

∂r
λ2
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3. Now, we can verify through direct substitution for each equation that the solutions are  and 

, where . Note that  is also a valid solution, so we could have

chosen for our constant. Can you see why it would not be valid for this case as time increases?
4. Let’s now apply boundary conditions.

a. The temperature must be finite at the center of Earth, . Which of the two constants,  or , must therefore be zero to
keep  finite at ? (Recall that  as , but  behaves very differently.)

b. Kelvin argued that when magma reaches Earth’s surface, it cools very rapidly. A person can often touch the surface within
weeks of the flow. Therefore, the surface reached a moderate temperature very early and remained nearly constant at a
surface temperature . For simplicity, let’s set  at  and find α such that this is the temperature there for all
time . (Kelvin took the value to be . We can add this  constant to our solution later.) For this to be true,
the sine argument must be zero at . Note that α has an infinite series of values that satisfies this condition. Each value
of  represents a valid solution (each with its own value for ). The total or general solution is the sum of all these
solutions.

c. At  we assume that all of Earth was at an initial hot temperature  (Kelvin took this to be about .) The
application of this boundary condition involves the more advanced application of Fourier coefficients. As noted in part b.
each value of  represents a valid solution, and the general solution is a sum of all these solutions. This results in a series
solution:

where .

Note how the values of  come from the boundary condition applied in part b. The term  is the constant  for each term

in the series, determined from applying the Fourier method. Letting , examine the first few terms of this solution shown

here and note how  in the exponential causes the higher terms to decrease quickly as time progresses:

Near time  many terms of the solution are needed for accuracy. Inserting values for the conductivity  and  for
time approaching merely thousands of years, only the first few terms make a significant contribution. Kelvin only needed to look at
the solution near Earth’s surface (Figure ) and, after a long time, determine what time best yielded the estimated temperature
gradient known during his era (  increase per ). He simply chose a range of times with a gradient close to this value. In
Figure , the solutions are plotted and scaled, with the  surface temperature added. Note that the center of Earth would
be relatively cool. At the time, it was thought Earth must be solid.
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Figure : Temperature versus radial distance from the center of Earth. (a) Kelvin’s results, plotted to scale. (b) A close-up of the
results at a depth of  miles below Earth’s surface.

Epilog

On May 20, 1904, physicist Ernest Rutherford spoke at the Royal Institution to announce a revised calculation that included the
contribution of radioactivity as a source of Earth’s heat. In Rutherford’s own words:

“I came into the room, which was half-dark, and presently spotted Lord Kelvin in the audience, and realized that I was in for
trouble at the last part of my speech dealing with the age of the Earth, where my views conflicted with his. To my relief,
Kelvin fell fast asleep, but as I came to the important point, I saw the old bird sit up, open an eye and cock a baleful glance at
me.

Then a sudden inspiration came, and I said Lord Kelvin had limited the age of the Earth, provided no new source [of heat]
was discovered. That prophetic utterance referred to what we are now considering tonight, radium! Behold! The old boy
beamed upon me.”

Rutherford calculated an age for Earth of about 500 million years. Today’s accepted value of Earth’s age is about 4.6 billion years.

Key Concepts
A partial derivative is a derivative involving a function of more than one independent variable.
To calculate a partial derivative with respect to a given variable, treat all the other variables as constants and use the usual
differentiation rules.
Higher-order partial derivatives can be calculated in the same way as higher-order derivatives.

Key Equations
Partial derivative of  with respect to 

Partial derivative of  with respect to 

Glossary

higher-order partial derivatives
second-order or higher partial derivatives, regardless of whether they are mixed partial derivatives

mixed partial derivatives
second-order or higher partial derivatives, in which at least two of the differentiations are with respect to different variables

3.4.6
4.0

f x

=
∂f

∂x
lim
h→0

f(x+h, y) −f(x, y)

h

f y

=
∂f

∂y
lim
k→0

f(x, y+k) −f(x, y)

k
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partial derivative
a derivative of a function of more than one independent variable in which all the variables but one are held constant

partial differential equation
an equation that involves an unknown function of more than one independent variable and one or more of its partial derivatives

This page titled 3.4: Partial Derivatives is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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3.5: Tangent Planes and Linear Approximations

Determine the equation of a plane tangent to a given surface at a point.
Use the tangent plane to approximate a function of two variables at a point.
Explain when a function of two variables is differentiable.
Use the total differential to approximate the change in a function of two variables.

In this section, we consider the problem of finding the tangent plane to a surface, which is analogous to finding the equation of a
tangent line to a curve when the curve is defined by the graph of a function of one variable, . The slope of the tangent line
at the point  is given by ; what is the slope of a tangent plane? We learned about the equation of a plane in
Equations of Lines and Planes in Space; in this section, we see how it can be applied to the problem at hand.

Tangent Planes
Intuitively, it seems clear that, in a plane, only one line can be tangent to a curve at a point. However, in three-dimensional space,
many lines can be tangent to a given point. If these lines lie in the same plane, they determine the tangent plane at that point. A
more intuitive way to think of a tangent plane is to assume the surface is smooth at that point (no corners). Then, a tangent line to
the surface at that point in any direction does not have any abrupt changes in slope because the direction changes smoothly.
Therefore, in a small-enough neighborhood around the point, a tangent plane touches the surface at that point only.

Let  be a point on a surface , and let  be any curve passing through  and lying entirely in . If the
tangent lines to all such curves  at  lie in the same plane, then this plane is called the tangent plane to  at  (Figure 

).

Figure : The tangent plane to a surface  at a point  contains all the tangent lines to curves in  that pass through .

For a tangent plane to a surface to exist at a point on that surface, it is sufficient for the function that defines the surface to be
differentiable at that point. We define the term tangent plane here and then explore the idea intuitively.

 Learning Objectives

y = f(x)
x = a m = f '(a)

 Definition: tangent lines

= ( , , )P0 x0 y0 z0 S C P0 S

C P0 S P0

3.5.1

3.5.1 S P0 S P0
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Let  be a surface defined by a differentiable function  and let  be a point in the domain of . Then,
the equation of the tangent plane to  at  is given by

To see why this formula is correct, let’s first find two tangent lines to the surface . The equation of the tangent line to the curve
that is represented by the intersection of  with the vertical trace given by  is .
Similarly, the equation of the tangent line to the curve that is represented by the intersection of  with the vertical trace given by 

 is . A parallel vector to the first tangent line is ; a parallel vector
to the second tangent line is . We can take the cross product of these two vectors:

This vector is perpendicular to both lines and is therefore perpendicular to the tangent plane. We can use this vector as a normal
vector to the tangent plane, along with the point  in the equation for a plane:

Solving this equation for  gives Equation .

Find the equation of the tangent plane to the surface defined by the function  at
point 

Solution

First, we must calculate  and , then use Equation with  and :

Then Equation  becomes

(See the following figure).

 Definition: tangent planes

S z = f(x, y), = ( , )P0 x0 y0 f

S P0

z = f( , ) + ( , )(x− ) + ( , )(y− ).x0 y0 fx x0 y0 x0 fy x0 y0 y0 (3.5.1)

S

S x = x0 z = f( , ) + ( , )(y− )x0 y0 fy x0 y0 y0

S

y = y0 z = f( , ) + ( , )(x− )x0 y0 fx x0 y0 x0 = + ( , )a⇀ ĵ fy x0 y0 k̂

= + ( , )b
⇀

î fx x0 y0 k̂

×a⇀ b
⇀

= ( + ( , ) ) ×( + ( , ) )ĵ fy x0 y0 k̂ î fx x0 y0 k̂

=

∣

∣

∣
∣
∣
∣

î

0

1

ĵ

1

0

k̂

( , )fy x0 y0

( , )fx x0 y0

∣

∣

∣
∣
∣
∣

= ( , ) + ( , ) − .fx x0 y0 î fy x0 y0 ĵ k̂

= ( , , f( , ))P0 x0 y0 x0 y0

⋅ ((x− ) +(y− ) +(z−f( , )) )n⇀ x0 î y0 ĵ x0 y0 k̂

( ( , ) + ( , ) − ) ⋅ ((x− ) +(y− ) +(z−f( , )) )fx x0 y0 î fy x0 y0 ĵ k̂ x0 î y0 ĵ x0 y0 k̂

( , )(x− ) + ( , )(y− ) −(z−f( , ))fx x0 y0 x0 fy x0 y0 y0 x0 y0

= 0

= 0

= 0.

z 3.5.1

 Example : Finding a Tangent Plane3.5.1

f(x, y) = 2 −3xy+8 +2x−4y+4x2 y2

(2, −1).

(x, y)fx (x, y)fy = 2x0 = −1y0

(x, y)fx

(x, y)fy

f(2, −1)

(2, −1)fx

(2, −1)fy

= 4x−3y+2

= −3x+16y−4

= 2(2 −3(2)(−1) +8(−1 +2(2) −4(−1) +4 = 34)2 )2

= 4(2) −3(−1) +2 = 13

= −3(2) +16(−1) −4 = −26.

3.5.1

z

z

z

z

= f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

= 34 +13(x−2) −26(y−(−1))

= 34 +13x−26 −26y−26

= 13x−26y−18.
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Figure : Calculating the equation of a tangent plane to a given surface at a given point.

Find the equation of the tangent plane to the surface defined by the function  at point 
.

Hint

First, calculate  and , then use Equation .

Answer

Find the equation of the tangent plane to the surface defined by the function  at the point 

Solution

First, calculate  and , then use Equation  with  and :

Then Equation  becomes

3.5.2

 Exercise 3.5.1

f(x, y) = − y+ −2x+3y−2x3 x2 y2

(−1, 3)

(x, y)fx (x, y)fy 3.5.1

z = 7x+8y−3

 Example : Finding Another Tangent Plane3.5.2

f(x, y) = sin(2x) cos(3y)
(π/3, π/4).

(x, y)fx (x, y)fy 3.5.1 = π/3x0 = π/4y0

(x, y)fx

(x, y)fy

f ( , )
π

3

π

4

( , )fx
π

3

π

4

( , )fy
π

3

π

4

= 2 cos(2x) cos(3y)

= −3 sin(2x) sin(3y)

= sin(2( )) cos(3( )) =( )(− ) = −
π

3

π

4

3
–

√

2

2
–

√

2

6
–

√

4

= 2 cos(2( )) cos(3( )) = 2(− )(− ) =
π

3

π

4

1

2

2
–

√

2

2
–

√

2

= −3 sin(2( )) sin(3( )) = −3( )( ) = − .
π

3

π

4

3
–

√

2

2
–

√

2

3 6
–

√

4

3.5.1
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A tangent plane to a surface does not always exist at every point on the surface. Consider the piecewise function

The graph of this function follows.

Figure : Graph of a function that does not have a tangent plane at the origin. Dynamic figure powered by CalcPlot3D.

If either  or , then  so the value of the function does not change on either the - or -axis. Therefore, 
, so as either  or  approach zero, these partial derivatives stay equal to zero. Substituting them into

Equation gives  as the equation of the tangent line. However, if we approach the origin from a different direction, we get a
different story. For example, suppose we approach the origin along the line . If we put  into the original function, it
becomes

z = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

= − + (x− )− (y− )
6
–

√

4

2
–

√

2

π

3

3 6
–

√

4

π

4

= x− y− − +
2
–

√

2

3 6
–

√

4

6
–

√

4

π 2
–

√

6

3π 6
–

√

16

f(x, y) = .

⎧

⎩
⎨
⎪

⎪

,
xy

+x2 y2
− −−−−−

√

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)

(3.5.2)

3.5.3

x = 0 y = 0 f(x, y) = 0, x y

(x, 0) = (0, y) = 0fx fy x y

z = 0
y = x y = x

f(x, x) = = = .
x(x)

+(xx2 )2− −−−−−−−√

x2

2x2−−−
√

|x|

2
–

√
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When  the slope of this curve is equal to ; when , the slope of this curve is equal to  This presents a
problem. In the definition of tangent plane, we presumed that all tangent lines through point  (in this case, the origin) lay in the
same plane. This is clearly not the case here. When we study differentiable functions, we will see that this function is not
differentiable at the origin.

Linear Approximations
Recall from Linear Approximations and Differentials that the formula for the linear approximation of a function  at the point 

 is given by

The diagram for the linear approximation of a function of one variable appears in the following graph.

Figure : Linear approximation of a function in one variable.

The tangent line can be used as an approximation to the function  for values of  reasonably close to . When working
with a function of two variables, the tangent line is replaced by a tangent plane, but the approximation idea is much the same.

Given a function  with continuous partial derivatives that exist at the point , the linear approximation of 
at the point  is given by the equation

Notice that this equation also represents the tangent plane to the surface defined by  at the point . The idea
behind using a linear approximation is that, if there is a point  at which the precise value of  is known, then for
values of  reasonably close to , the linear approximation (i.e., tangent plane) yields a value that is also reasonably
close to the exact value of  (Figure). Furthermore the plane that is used to find the linear approximation is also the tangent
plane to the surface at the point 

x > 0, /22
–

√ x < 0 −( /2).2
–

√
P

f(x)
x = a

y ≈ f(a) + (a)(x−a).f ′

3.5.4

f(x) x x = a

 Definition: Linear Approximation

z = f(x, y) ( , )x0 y0 f

( , )x0 y0

L(x, y) = f( , ) + ( , )(x− ) + ( , )(y− ).x0 y0 fx x0 y0 x0 fy x0 y0 y0 (3.5.3)

z = f(x, y) ( , )x0 y0

( , )x0 y0 f(x, y)
(x, y) ( , )x0 y0

f(x, y)
( , ).x0 y0
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Figure : Using a tangent plane for linear approximation at a point.

Given the function , approximate  using point  for  What is the
approximate value of  to four decimal places?

Solution

To apply Equation , we first must calculate  and  using  and 

Now we substitute these values into Equation :

Last, we substitute  and  into 

The approximate value of  to four decimal places is

which corresponds to a  error in approximation.

3.5.5

 Example : Using a Tangent Plane Approximation3.5.3

f(x, y) = 41 −4 −x2 y2− −−−−−−−−−−
√ f(2.1, 2.9) (2, 3) ( , ).x0 y0

f(2.1, 2.9)

3.5.3 f( , ), ( , ),x0 y0 fx x0 y0 ( , )fy x0 y0 = 2x0 = 3 :y0

f( , )x0 y0

(x, y)fx

(x, y)fy

= f(2, 3) = = = = 441 −4(2 −(3)2 )2
− −−−−−−−−−−−−−

√ 41 −16 −9
− −−−−−−−−

√ 16
−−

√

= −  so ( , ) = − = −2
4x

41 −4 −x2 y2− −−−−−−−−−−
√

fx x0 y0
4(2)

41 −4(2 −(3)2 )2− −−−−−−−−−−−−−
√

= −  so ( , ) = − = − .
y

41 −4 −x2 y2− −−−−−−−−−−
√

fy x0 y0
3

41 −4(2 −(3)2 )2− −−−−−−−−−−−−−
√

3

4

3.5.3

L(x, y) = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

= 4 −2(x−2) − (y−3)
3

4

= −2x− y.
41

4

3

4

x = 2.1 y = 2.9 L(x, y) :

L(2.1, 2.9) = −2(2.1) − (2.9) = 10.25 −4.2 −2.175 = 3.875.
41

4

3

4

f(2.1, 2.9)

f(2.1, 2.9) = = ≈ 3.8665,41 −4(2.1 −(2.9)2 )2
− −−−−−−−−−−−−−−−

√ 14.95
− −−−

√

0.2
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Given the function  approximate  using point  for . What is the approximate value
of  to four decimal places?

Hint

First calculate  and  using  and , then use Equation .

Answer

 so  

Differentiability
When working with a function  of one variable, the function is said to be differentiable at a point  if  exists.
Furthermore, if a function of one variable is differentiable at a point, the graph is “smooth” at that point (i.e., no corners exist) and
a tangent line is well-defined at that point.

The idea behind differentiability of a function of two variables is connected to the idea of smoothness at that point. In this case, a
surface is considered to be smooth at point  if a tangent plane to the surface exists at that point. If a function is differentiable at a
point, then a tangent plane to the surface exists at that point. Recall the formula (Equation ) for a tangent plane at a point 

 is given by

For a tangent plane to exist at the point  the partial derivatives must therefore exist at that point. However, this is not a
sufficient condition for smoothness, as was illustrated in Figure. In that case, the partial derivatives existed at the origin, but the
function also had a corner on the graph at the origin.

A function  is differentiable at a point  if, for all points  in a  disk around , we can write

where the error term  satisfies

The last term in Equation  is to as the error term and it represents how closely the tangent plane comes to the surface in a
small neighborhood (  disk) of point . For the function  to be differentiable at , the function must be smooth—that is, the
graph of  must be close to the tangent plane for points near .

Show that the function  is differentiable at point 

Solution

First, we calculate  and  using  and  then we use Equation :

Therefore  and  and Equation  becomes

 Exercise 3.5.2

f(x, y) = ,e5−2x+3y f(4.1, 0.9) (4, 1) ( , )x0 y0

f(4.1, 0.9)

f( , ), ( , ),x0 y0 fx x0 y0 ( , )fy x0 y0 = 4x0 = 1y0 3.5.3

L(x, y) = 6 −2x+3y, L(4.1, 0.9) = 6 −2(4.1) +3(0.9) = 0.5 f(4.1, 0.9) = = ≈ 0.6065.e5−2(4.1)+3(0.9) e−0.5

y = f(x) x = a f '(a)

P

3.5.1
( , )x0 y0

z = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

( , ),x0 y0

 Definition: differentiable Functions

f(x, y) P ( , )x0 y0 (x, y) δ P

f(x, y) = f( , ) + ( , )(x− ) + ( , )(y− ) +E(x, y),x0 y0 fx x0 y0 x0 fy x0 y0 y0 (3.5.4)

E

= 0.lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

(3.5.5)

3.5.4
δ P f P

f P

 Example : Demonstrating Differentiability3.5.4

f(x, y) = 2 −4yx2 (2, −3).

f( , ), ( , ),x0 y0 fx x0 y0 ( , )fy x0 y0 = 2x0 = −3,y0 3.5.4

f(2, −3)

(2, −3)fx

(2, −3)fy

= 2(2 −4(−3) = 8 +12 = 20)2

= 4(2) = 8

= −4.

= 8m1 = −4,m2 3.5.4
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Next, we calculate the limit in Equation :

Since  for any value of  or , the original limit must be equal to zero. Therefore,  is
differentiable at point .

Show that the function  is differentiable at point .

Hint

First, calculate  and  using  and , then use Equation  to find .
Last, calculate the limit.

Answer

This function from (Equation )

f(x, y)

2 −4yx2

2 −4yx2

2 −4yx2

E(x, y)

= f(2, −3) + (2, −3)(x−2) + (2, −3)(y+3) +E(x, y)fx fy

= 20 +8(x−2) −4(y+3) +E(x, y)

= 20 +8x−16 −4y−12 +E(x, y)

= 8x−4y−8 +E(x, y)

= 2 −8x+8.x2

3.5.5

lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

= lim
(x,y)→(2,−3)

2 −8x+8x2

(x−2 +(y+3)2 )2− −−−−−−−−−−−−−−
√

= lim
(x,y)→(2,−3)

2( −4x+4)x2

(x−2 +(y+3)2 )2− −−−−−−−−−−−−−−√

= lim
(x,y)→(2,−3)

2(x−2)2

(x−2 +(y+3)2 )2− −−−−−−−−−−−−−−√

≤ lim
(x,y)→(2,−3)

2((x−2 +(y+3 ))2 )2

(x−2 +(y+3)2 )2
− −−−−−−−−−−−−−−

√

= 2lim
(x,y)→(2,−3)

(x−2 +(y+3)2 )2
− −−−−−−−−−−−−−−

√

= 0.

E(x, y) ≥ 0 x y f(x, y) = 2 −4yx2

(2, −3)

 Exercise 3.5.3

f(x, y) = 3x−4y2 (−1, 2)

f( , ), ( , ),x0 y0 fx x0 y0 ( , )fy x0 y0 = −1x0 = 2y0 3.5.5 E(x, y)

f(−1, 2)

lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

= −19, (−1, 2) = 3, (−1, 2) = −16, E(x, y) = −4(y−2 .fx fy )2

= lim
(x,y)→(−1,2)

−4(y−2)2

(x+1 +(y−2)2 )2− −−−−−−−−−−−−−−
√

≤ lim
(x,y)→(−1,2)

−4((x+1 +(y−2 ))2 )2

(x+1 +(y−2)2 )2− −−−−−−−−−−−−−−√

= −4lim
(x,y)→(2,−3)

(x+1 +(y−2)2 )2
− −−−−−−−−−−−−−−

√

= 0.

3.5.2

f(x, y) =
⎧

⎩
⎨
⎪

⎪

,
xy

+x2 y2− −−−−−
√

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)
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is not differentiable at the origin (Figure ). We can see this by calculating the partial derivatives. This function appeared
earlier in the section, where we showed that . Substituting this information into Equations  and 
using  and , we get

Calculating

gives

Depending on the path taken toward the origin, this limit takes different values. Therefore, the limit does not exist and the function 
 is not differentiable at the origin as shown in the following figure.

Figure : This function  (Equation ) is not differentiable at the origin.

Differentiability and continuity for functions of two or more variables are connected, the same as for functions of one variable. In
fact, with some adjustments of notation, the basic theorem is the same.

Let  be a function of two variables with  in the domain of . If  is differentiable at , then 
 is continuous at 

Note shows that if a function is differentiable at a point, then it is continuous there. However, if a function is continuous at a point,
then it is not necessarily differentiable at that point. For example, the function discussed above (Equation )

3.5.3
(0, 0) = (0, 0) = 0fx fy 3.5.4 3.5.5

= 0x0 = 0y0

f(x, y)

E(x, y)

= f(0, 0) + (0, 0)(x−0) + (0, 0)(y−0) +E(x, y)fx fy

= .
xy

+x2 y2− −−−−−
√

lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−√

lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

= lim
(x,y)→(0,0)

xy

+x2 y2− −−−−−
√

+x2 y2− −−−−−
√

= .lim
(x,y)→(0,0)

xy

+x2 y2

f

3.5.6 f(x,y) 3.5.2

 THEOREM: Differentiability Implies Continuity

z = f(x, y) ( , )x0 y0 f f(x, y) ( , )x0 y0

f(x, y) ( , ).x0 y0

3.5.2
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is continuous at the origin, but it is not differentiable at the origin. This observation is also similar to the situation in single-variable
calculus.

We can further explores the connection between continuity and differentiability at a point. This next theorem says that if the
function and its partial derivatives are continuous at a point, the function is differentiable.

Let  be a function of two variables with  in the domain of . If , , and  all exist in a
neighborhood of  and are continuous at , then  is differentiable there.

Recall that earlier we showed that the function in Equation  was not differentiable at the origin. Let’s calculate the partial
derivatives  and :

and

The contrapositive of the preceding theorem states that if a function is not differentiable, then at least one of the hypotheses must
be false. Let’s explore the condition that  must be continuous. For this to be true, it must be true that

therefor

Let . Then

If , then this expression equals ; if , then it equals . In either case, the value depends on 
, so the limit fails to exist.

Differentials
In Linear Approximations and Differentials we first studied the concept of differentials. The differential of , written , is defined
as . The differential is used to approximate , where . Extending this idea to the linear
approximation of a function of two variables at the point  yields the formula for the total differential for a function of two
variables.

f(x, y) =
⎧

⎩
⎨
⎪

⎪

,
xy

+x2 y2− −−−−−
√

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)

 Theorem: Continuity of First Partials Implies Differentiability

z = f(x, y) ( , )x0 y0 f f(x, y) (x, y)fx (x, y)fy
( , )x0 y0 ( , )x0 y0 f(x, y)

3.5.2
fx fy

=
∂f

∂x

y3

( +x2 y2)3/2

= .
∂f

∂y

x3

( +x2 y2)3/2

(0, 0)fx

(x, y) = (0, 0)lim
(x,y)→(0,0)

fx fx

(x, y) = .lim
(x,y)→(0,0)

fx lim
(x,y)→(0,0)

y3

( +x2 y2)3/2

x = ky

lim
(x,y)→(0,0)

y3

( +x2 y2)3/2
= lim

y→0

y3

((ky +)2 y2)3/2

= lim
y→0

y3

( +k2y2 y2)3/2

= lim
y→0

y3

|y ( +1|
3
k2 )3/2

= .
1

( +1k2 )3/2
lim
y→0

|y|

y

y > 0 1/( +1k2 )3/2 y < 0 −(1/( +1 )k2 )3/2

k

y dy

f '(x)dx Δy = f(x+Δx) −f(x) Δx = dx

( , )x0 y0
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Let  be a function of two variables with  in the domain of , and let  and  be chosen so that 
 is also in the domain of . If  is differentiable at the point , then the differentials  and  are

defined as

and

The differential , also called the total differential of  at , is defined as

Notice that the symbol  is not used to denote the total differential; rather,  appears in front of . Now, let’s define 
 We use  to approximate , so

Therefore, the differential is used to approximate the change in the function  at the point  for given values of 
 and . Since , this can be used further to approximate 

See the following figure.

Figure : The linear approximation is calculated via the formula 

One such application of this idea is to determine error propagation. For example, if we are manufacturing a gadget and are off by a
certain amount in measuring a given quantity, the differential can be used to estimate the error in the total volume of the gadget.

Find the differential  of the function  and use it to approximate  at point  Use 
 and  What is the exact value of ?

Solution

First, we must calculate  and  using  and 

 Definition: Total Differential

z = f(x, y) ( , )x0 y0 f Δx Δy

( +Δx, +Δy)x0 y0 f f ( , )x0 y0 dx dy

dx = Δx

dy = Δy.

dz z = f(x, y) ( , )x0 y0

dz = ( , )dx+ ( , )dy.fx x0 y0 fy x0 y0 (3.5.6)

∂ d z

Δz = f(x+Δx, y+Δy) −f(x, y). dz Δz

Δz ≈ dz = ( , )dx+ ( , )dy.fx x0 y0 fy x0 y0

z = f( , )x0 y0 ( , )x0 y0

Δx Δy Δz = f(x+Δx, y+Δy) −f(x, y) f(x+Δx, y+Δy) :

f(x+Δx, y+Δy) = f(x, y) +Δz ≈ f(x, y) +fx( , )Δx+ ( , )Δy.x0 y0 fy x0 y0

3.5.7
f(x+ Δx,y+ Δy) ≈ f(x,y) + ( , )Δx+ ( , )Δy.fx x0 y0 fy x0 y0

 Example : Approximation by Differentials3.5.5

dz f(x, y) = 3 −2xy+x2 y2 Δz (2, −3).
Δx = 0.1 Δy = −0.05. Δz

f( , ), ( , ),x0 y0 fx x0 y0 ( , )fy x0 y0 = 2x0 = −3 :y0
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Then, we substitute these quantities into Equation :

This is the approximation to  The exact value of  is given by

Find the differential  of the function  and use it to approximate  at point . Use 
 and . What is the exact value of ?

Hint

First, calculate  and  using  and , then use Equation .

Answer

Differentiability of a Function of Three Variables
All of the preceding results for differentiability of functions of two variables can be generalized to functions of three variables.
First, the definition:

A function  is differentiable at a point  if for all points  in a  disk around  we can write

where the error term E satisfies

If a function of three variables is differentiable at a point , then it is continuous there. Furthermore, continuity of first
partial derivatives at that point guarantees differentiability.

f( , )x0 y0

(x, y)fx

(x, y)fy

( , )fx x0 y0

( , )fy x0 y0

= f(2, −3) = 3(2 −2(2)(−3) +(−3 = 12 +12 +9 = 33)2 )2

= 6x−2y

= −2x+2y

= fx(2, −3)

= 6(2) −2(−3) = 12 +6 = 18

= (2, −3)fy

= −2(2) +2(−3)

= −4 −6 = −10.

3.5.6

dz

dz

= ( , )dx+ ( , )dyfx x0 y0 fy x0 y0

= 18(0.1) −10(−0.05) = 1.8 +0.5 = 2.3.

Δz = f( +Δx, +Δy) −f( , ).x0 y0 x0 y0 Δz

Δz = f( +Δx, +Δy) −f( , )x0 y0 x0 y0

= f(2 +0.1, −3 −0.05) −f(2, −3)

= f(2.1, −3.05) −f(2, −3)

= 2.3425.

 Exercise 3.5.4

dz f(x, y) = 4 + y−2xyy2 x2 Δz (1, −1)
Δx = 0.03 Δy = −0.02 Δz

( , )fx x0 y0 ( , )fy x0 y0 = 1x0 = −1y0 3.5.6

dz = 0.18

Δz = f(1.03, −1.02) −f(1, −1) = 0.180682

 Definition: Differentiability at a point

f(x, y, z) P ( , , )x0 y0 z0 (x, y, z) δ P

f(x, y) = f( , , ) + ( , , )(x− ) + ( , , )(y− ) + ( , , )(z− ) +E(x, y, z),x0 y0 z0 fx x0 y0 z0 x0 fy x0 y0 z0 y0 fz x0 y0 z0 z0

= 0.lim
(x,y,z)→( , , )x0 y0 z0

E(x, y, z)

(x− +(y− +(z−x0)2 y0)2 z0)2− −−−−−−−−−−−−−−−−−−−−−−−−−
√

( , , )x0 y0 z0
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Key Concepts
The analog of a tangent line to a curve is a tangent plane to a surface for functions of two variables.
Tangent planes can be used to approximate values of functions near known values.
A function is differentiable at a point if it is ”smooth” at that point (i.e., no corners or discontinuities exist at that point).
The total differential can be used to approximate the change in a function  at the point  for given values of

 and .

Key Equations
Tangent plane

Linear approximation

Total differential

.

Differentiability (two variables)

where the error term  satisfies

.

Differentiability (three variables)

where the error term  satisfies

.

Glossary

differentiable

a function  is differentiable at  if  can be expressed in the form 

where the error term  satisfies 

linear approximation
given a function  and a tangent plane to the function at a point , we can approximate  for points near 

 using the tangent plane formula

tangent plane
given a function  that is differentiable at a point , the equation of the tangent plane to the surface  is
given by 

total differential
the total differential of the function  at  is given by the formula 

This page titled 3.5: Tangent Planes and Linear Approximations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

z = f( , )x0 y0 ( , )x0 y0

Δx Δy

z = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

L(x, y) = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

dz = ( , )dx+ ( , )dyfx x0 y0 fy x0 y0

f(x, y) = f( , ) + ( , )(x− ) + ( , )(y− ) +E(x, y),x0 y0 fx x0 y0 x0 fy x0 y0 y0

E

= 0lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

f(x, y) = f( , , ) + ( , , )(x− ) + ( , , )(y− ) + ( , , )(z− ) +E(x, y, z),x0 y0 z0 fx x0 y0 z0 x0 fy x0 y0 z0 y0 fz x0 y0 z0 z0

E

= 0lim
(x,y,z)→( , , )x0 y0 z0

E(x, y, z)

(x− +(y− +(z−x0)2 y0)2 z0)2− −−−−−−−−−−−−−−−−−−−−−−−−−
√

f(x, y) ( , )x0 y0 f(x, y)
f(x, y) = f( , ) + ( , )(x− ) + ( , )(y− ) +E(x, y),x0 y0 fx x0 y0 x0 fy x0 y0 y0

E(x, y) = 0lim(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

f(x, y) ( , )x0 y0 f(x, y)
( , )x0 y0

f(x, y) ( , )x0 y0 z = f(x, y)
z = f( , ) + ( , )(x− ) + ( , )(y− )x0 y0 fx x0 y0 x0 fy x0 y0 y0

f(x, y) ( , )x0 y0 dz = ( , )dx+fy( , )dyfx x0 y0 x0 y0
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3.6: The Chain Rule for Multivariable Functions

State the chain rules for one or two independent variables.
Use tree diagrams as an aid to understanding the chain rule for several independent and intermediate variables.
Perform implicit differentiation of a function of two or more variables.

In single-variable calculus, we found that one of the most useful differentiation rules is the chain rule, which allows us to find the
derivative of the composition of two functions. The same thing is true for multivariable calculus, but this time we have to deal with
more than one form of the chain rule. In this section, we study extensions of the chain rule and learn how to take derivatives of
compositions of functions of more than one variable.

Chain Rules for One or Two Independent Variables
Recall that the chain rule for the derivative of a composite of two functions can be written in the form

In this equation, both  and  are functions of one variable. Now suppose that  is a function of two variables and  is a
function of one variable. Or perhaps they are both functions of two variables, or even more. How would we calculate the derivative
in these cases? The following theorem gives us the answer for the case of one independent variable.

Suppose that  and  are differentiable functions of  and  is a differentiable function of  and .
Then  is a differentiable function of  and

where the ordinary derivatives are evaluated at  and the partial derivatives are evaluated at .

The proof of this theorem uses the definition of differentiability of a function of two variables. Suppose that  is differentiable
at the point  where  and  for a fixed value of . We wish to prove that  is
differentiable at  and that Equation  holds at that point as well.

Since  is differentiable at , we know that

where

We then subtract  from both sides of this equation:

Next, we divide both sides by :

Then we take the limit as  approaches :

 Learning Objectives

(f(g(x))) = f '(g(x))g'(x).
d

dx

f(x) g(x) f g

 Chain Rule for One Independent Variable

x = g(t) y = h(t) t z = f(x, y) x y

z = f(x(t), y(t)) t

= ⋅ + ⋅ ,
dz

dt

∂z

∂x

dx

dt

∂z

∂y

dy

dt
(3.6.1)

t (x, y)

 Proof

f

P ( , ),x0 y0 = g( )x0 t0 = h( )y0 t0 t0 z = f(x(t), y(t))
t = t0 3.6.1

f P

z(t) = f(x, y) = f( , ) + ( , )(x− ) + ( , )(y− ) +E(x, y),x0 y0 fx x0 y0 x0 fy x0 y0 y0

= 0.lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

= f( , )z0 x0 y0

z(t) −z( )t0 = f(x(t), y(t)) −f(x( ), y( ))t0 t0

= ( , )(x(t) −x( )) + ( , )(y(t) −y( )) +E(x(t), y(t)).fx x0 y0 t0 fy x0 y0 t0

t− t0

= ( , ) + ( , ) + .
z(t) −z( )t0

t− t0
fx x0 y0

x(t) −x( )t0

t− t0
fy x0 y0

y(t) −y( )t0

t− t0

E(x(t), y(t))

t− t0

t t0
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The left-hand side of this equation is equal to , which leads to

The last term can be rewritten as

As  approaches  approaches  so we can rewrite the last product as

Since the first limit is equal to zero, we need only show that the second limit is finite:

Since  and  are both differentiable functions of , both limits inside the last radical exist. Therefore, this value is finite.
This proves the chain rule at ; the rest of the theorem follows from the assumption that all functions are differentiable
over their entire domains.

□

Closer examination of Equation  reveals an interesting pattern. The first term in the equation is  and the second term

is . Recall that when multiplying fractions, cancelation can be used. If we treat these derivatives as fractions, then each

product “simplifies” to something resembling . The variables  and  that disappear in this simplification are often called
intermediate variables: they are independent variables for the function , but are dependent variables for the variable . Two
terms appear on the right-hand side of the formula, and  is a function of two variables. This pattern works with functions of more
than two variables as well, as we see later in this section.

Calculate  for each of the following functions:

a. 
b. 

lim
t→t0

z(t) −z( )t0

t− t0
= ( , ) ( )fx x0 y0 lim

t→t0

x(t) −x( )t0

t− t0

+ ( , ) ( )fy x0 y0 lim
t→t0

y(t) −y( )t0

t− t0

+ .lim
t→t0

E(x(t), y(t))

t− t0

dz/dt

= ( , ) + ( , ) + .
dz

dt
fx x0 y0

dx

dt
fy x0 y0

dy

dt
lim
t→t0

E(x(t), y(t))

t− t0

lim
t→t0

E(x(t), y(t))

t− t0
= )lim

t→t0

E(x, y)

(x− +(y−x0)2 y0)2
− −−−−−−−−−−−−−−−−

√

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

t− t0

= ( ) ( ) .lim
t→t0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−
√

lim
t→t0

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−√

t− t0

t , (x(t), y(t))t0 (x( ), y( )),t0 t0

( ) .lim
(x,y)→( , )x0 y0

E(x, y)

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−√
lim

(x,y)→( , )x0 y0

(x− +(y−x0)2 y0)2
− −−−−−−−−−−−−−−−−

√

t− t0

=lim
(x,y)→( , )x0 y0

(x− +(y−x0)2 y0)2− −−−−−−−−−−−−−−−−√

t− t0
lim

(x,y)→( , )x0 y0

(x− +(y−x0)2 y0)2

(t− t0)2

− −−−−−−−−−−−−−−−−

√

= lim
(x,y)→( , )x0 y0

+( )
x−x0

t− t0

2

( )
y−y0

t− t0

2
− −−−−−−−−−−−−−−−−−−−

√

= .+[ ( )]lim
(x,y)→( , )x0 y0

x−x0

t− t0

2

[ ( )]lim
(x,y)→( , )x0 y0

y−y0

t− t0

2
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

x(t) y(t) t

t = t0

3.6.1 ⋅
∂f

∂x

dx

dt

⋅
∂f

∂y

dy

dt

∂f/dt x y

f t

f

 Example : Using the Chain Rule3.6.1

dz/dt

z = f(x, y) = 4 +3 , x = x(t) = sin t, y = y(t) = cos tx2 y2

z = f(x, y) = , x = x(t) = , y = y(t) =−x2 y2− −−−−−
√ e2t e−t
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Solution

a. To use the chain rule, we need four quantities— , and :

Now, we substitute each of these into Equation :

This answer has three variables in it. To reduce it to one variable, use the fact that  and  We obtain

This derivative can also be calculated by first substituting  and  into  then differentiating with respect to :

Then

which is the same solution. However, it may not always be this easy to differentiate in this form.

b. To use the chain rule, we again need four quantities—  and 

We substitute each of these into Equation :

∂z/∂x, ∂z/∂y, dx/dt dy/dt

= 8x
∂z

∂x

= cos t
dx

dt

= 6y
∂z

∂y

= −sin t
dy

dt

3.6.1

dz

dt
= ⋅ + ⋅

∂z

∂x

dx

dt

∂z

∂y

dy

dt

= (8x)(cos t) +(6y)(−sin t)

= 8x cos t−6y sin t.

x(t) = sin t y(t) = cos t.

dz

dt
= 8x cos t−6y sin t

= 8(sin t) cos t−6(cos t) sin t

= 2 sin t cos t.

x(t) y(t) f(x, y), t

z = f(x, y) = f(x(t), y(t))

= 4(x(t) +3(y(t))2 )2

= 4 t+3 t.sin2 cos2

dz

dt
= 2(4 sin t)(cos t) +2(3 cos t)(−sin t)

= 8 sin t cos t−6 sin t cos t

= 2 sin t cos t,

∂z/∂x, ∂z/dy, dx/dt, dy/dt :

=
∂z

∂x

x

−x2 y2
− −−−−−

√

= 2
dx

dt
e2t

=
∂z

∂y

−y

−x2 y2− −−−−−
√

= − .
dx

dt
e−t

3.6.1
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To reduce this to one variable, we use the fact that  and . Therefore,

To eliminate negative exponents, we multiply the top by  and the bottom by :

Again, this derivative can also be calculated by first substituting  and  into  then differentiating with respect to 
:

Then

This is the same solution.

dz

dt
= ⋅ + ⋅

∂z

∂x

dx

dt

∂z

∂y

dy

dt

=( ) (2 ) +( ) (− )
x

−x2 y2
− −−−−−

√
e2t −y

−x2 y2
− −−−−−

√
e−t

= .
2x −ye2t e−t

−x2 y2
− −−−−−

√

x(t) = e2t y(t) = e−t

dz

dt
=

2x t+ye2 e−t

−x2 y2− −−−−−√

=
2( ) +( )e2t e2t e−t e−t

−e4t e−2t
− −−−−−−−

√

= .
2 +e4t e−2t

−e4t e−2t
− −−−−−−−

√

e2t e4t
−−

√

dz

dt
= ⋅

2 +e4t e−2t

−e4t e−2t
− −−−−−−−

√

e2t

e4t−−
√

=
2 +1e6t

−e8t e2t
− −−−−−−

√

=
2 +1e6t

( −1)e2t e6t− −−−−−−−−√

= .
2 +1e6t

et −1e6t
− −−−−−

√

x(t) y(t) f(x, y),
t

z = f(x, y)

= f(x(t), y(t))

= (x(t) −(y(t))2 )2
− −−−−−−−−−−−−

√

= −e4t e−2t
− −−−−−−−

√

= ( − .e4t e−2t)1/2

dz

dt
= ( − (4 +2 )

1

2
e4t e−2t)−1/2 e4t e−2t

= .
2 +e4t e−2t

−e4t e−2t
− −−−−−−−

√
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Calculate  given the following functions. Express the final answer in terms of .

Hint

Calculate  and , then use Equation .

Answer

It is often useful to create a visual representation of Equation  for the chain rule. This is called a tree diagram for the chain
rule for functions of one variable and it provides a way to remember the formula (Figure ). This diagram can be expanded for
functions of more than one variable, as we shall see very shortly.

Figure : Tree diagram for the case 

In this diagram, the leftmost corner corresponds to . Since  has two independent variables, there are two lines
coming from this corner. The upper branch corresponds to the variable  and the lower branch corresponds to the variable . Since
each of these variables is then dependent on one variable , one branch then comes from  and one branch comes from . Last,
each of the branches on the far right has a label that represents the path traveled to reach that branch. The top branch is reached by
following the  branch, then the t branch; therefore, it is labeled  The bottom branch is similar: first the 
branch, then the  branch. This branch is labeled . To get the formula for  add all the terms that appear
on the rightmost side of the diagram. This gives us Equation.

In Chain Rule for Two Independent Variables,  is a function of  and , and both  and  are
functions of the independent variables  and .

Suppose  and  are differentiable functions of  and , and  is a differentiable function of 
and . Then,  is a differentiable function of  and , and

 Exercise 3.6.1

dz/dt t

z = f(x, y)

x = x(t)

y = y(t)

= −3xy+2 ,x2 y2

= 3 sin2t,

= 4 cos 2t

∂z/∂x, ∂z/dy, dx/dt, dy/dt 3.6.1

dz

dt
= +

∂f

∂x

dx

dt

∂f

∂y

dy

dt

= (2x−3y)(6 cos 2t) +(−3x+4y)(−8 sin2t)

= −92 sin2t cos 2t−72( 2t− 2t)cos2 sin2

= −46 sin4t−72 cos 4t.

3.6.1
3.6.1

3.6.1 = ⋅ + ⋅ .
dz

dt

∂z

∂x

dx

dt

∂z

∂y

dy

dt

z = f(x, y) f

x y

t x y

x (∂z/∂x) ×(dx/dt). y

t (∂z/∂y) ×(dy/dt) dz/dt,

z = f(x, y) x y x = g(u, v) y = h(u, v)
u v

 Chain Rule for Two Independent Variables

x = g(u, v) y = h(u, v) u v z = f(x, y) x

y z = f(g(u, v),h(u, v)) u v

= +
∂z

∂u

∂z

∂x

∂x

∂u

∂z

∂y

∂y

∂u
(3.6.2)
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and

We can draw a tree diagram for each of these formulas as well as follows.

Figure : Tree diagram for  and .

To derive the formula for , start from the left side of the diagram, then follow only the branches that end with  and add the
terms that appear at the end of those branches. For the formula for , follow only the branches that end with  and add the
terms that appear at the end of those branches.

There is an important difference between these two chain rule theorems. In Chain Rule for One Independent Variable, the left-hand
side of the formula for the derivative is not a partial derivative, but in Chain Rule for Two Independent Variables it is. The reason is
that, in Chain Rule for One Independent Variable,  is ultimately a function of  alone, whereas in Chain Rule for Two Independent
Variables,  is a function of both  and .

Calculate  and  using the following functions:

Solution

To implement the chain rule for two variables, we need six partial derivatives—  and 
:

To find  we use Equation :

Next, we substitute  and 

= + .
∂z

∂v

∂z

∂x

∂x

∂v

∂z

∂y

∂y

∂v
(3.6.3)

3.6.2 = ⋅ + ⋅
∂z

∂u

∂z

∂x

∂x

∂u

∂z

∂y

∂y

∂u
= ⋅ + ⋅

∂z

∂v

∂z

∂x

∂x

∂v

∂z

∂y

∂y

∂v

∂z/∂u u

∂z/∂v v

z t

z u v

 Example : Using the Chain Rule for Two Variables3.6.2

∂z/∂u ∂z/∂v

z = f(x, y) = 3 −2xy+ , x = x(u, v) = 3u+2v, y = y(u, v) = 4u−v.x2 y2

∂z/∂x, ∂z/∂y, ∂x/∂u, ∂x/∂v, ∂y/∂u,
∂y/∂v

∂z

∂x

∂x

∂u

∂y

∂u

= 6x−2y

= 3

= 4

= −2x+2y
∂z

∂y

= 2
∂x

∂v

= −1.
∂y

∂v

∂z/∂u, 3.6.2

∂z

∂u
= ⋅ + ⋅

∂z

∂x

∂x

∂u

∂z

∂y

∂y

∂u

= 3(6x−2y) +4(−2x+2y)

= 10x+2y.

x(u, v) = 3u+2v y(u, v) = 4u−v :
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To find  we use Equation :

Then we substitute  and 

Calculate  and  given the following functions:

Hint

Calculate  and , then use Equation  and Equation .

Answer

The Generalized Chain Rule
Now that we’ve see how to extend the original chain rule to functions of two variables, it is natural to ask: Can we extend the rule
to more than two variables? The answer is yes, as the generalized chain rule states.

Let  be a differentiable function of  independent variables, and for each  let 
 be a differentiable function of  independent variables. Then

for any 

In the next example we calculate the derivative of a function of three independent variables in which each of the three variables is
dependent on two other variables.

Calculate  and  using the following functions:

∂z

∂u
= 10x+2y

= 10(3u+2v) +2(4u−v)

= 38u+18v.

∂z/∂v, 3.6.3

∂z

∂v
= +

∂z

∂x

∂x

∂v

∂z

∂y

∂y

∂v

= 2(6x−2y) +(−1)(−2x+2y)

= 14x−6y.

x(u, v) = 3u+2v y(u, v) = 4u−v :

∂z

∂v
= 14x−6y

= 14(3u+2v) −6(4u−v)

= 18u+34v

 Exercise 3.6.2

∂z/∂u ∂z/∂v

z = f(x, y) = , x(u, v) = cos 3v, y(u, v) = sin3v.
2x−y

x+3y
e2u e2u

∂z/∂x, ∂z/∂y, ∂x/∂u, ∂x/∂v, ∂y/∂u, ∂y/∂v 3.6.2 3.6.3

= 0, =
∂z

∂u

∂z

∂v

−21

(3 sin3v+cos 3v)2

 Generalized Chain Rule

w = f( , , … , )x1 x2 xm m i ∈ 1, … ,m,
= ( , , … , )xi xi t1 t2 tn n

= + +⋯ +
∂w

∂tj

∂w

∂x1

∂x1

∂tj

∂w

∂x2

∂x2

∂tj

∂w

∂xm

∂xm
∂tj

j∈ 1, 2, … ,n.

 Example : Using the Generalized Chain Rule3.6.3

∂w/∂u ∂w/∂v
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Solution

The formulas for  and  are

Therefore, there are nine different partial derivatives that need to be calculated and substituted. We need to calculate each of
them:

Now, we substitute each of them into the first formula to calculate :

then substitute  and  into this equation:

Next, we calculate :

then we substitute  and  into this equation:

w

x

y

z

= f(x, y, z) = 3 −2xy+4x2 z2

= x(u, v) = sinveu

= y(u, v) = cosveu

= z(u, v) = .eu

∂w/∂u ∂w/∂v

= ⋅ + ⋅ + ⋅
∂w

∂u

∂w

∂x

∂x

∂u

∂w

∂y

∂y

∂u

∂w

∂z

∂z

∂u

= ⋅ + ⋅ + ⋅ .
∂w

∂v

∂w

∂x

∂x

∂v

∂w

∂y

∂y

∂v

∂w

∂z

∂z

∂v

∂w

∂x

∂x

∂u

∂x

∂v

= 6x−2y = −2x = 8z
∂w

∂y

∂w

∂z

= sinv = cosv =eu
∂y

∂u
eu

∂z

∂u
eu

= cosv = − sinv = 0.eu
∂y

∂v
eu

∂z

∂v

∂w/∂u

∂w

∂u
= ⋅ + ⋅ + ⋅

∂w

∂x

∂x

∂u

∂w

∂y

∂y

∂u

∂w

∂z

∂z

∂u

= (6x−2y) sinv−2x cosv+8z ,eu eu eu

x(u, v) = sinv, y(u, v) = cosv,eu eu z(u, v) = eu

∂w

∂u
= (6x−2y) sinv−2x cosv+8zeu eu eu

= (6 sinv−2eu cosv) sinv−2( sinv) cosv+8eu eu eu eu e2u

= 6 v−4 sinvcosv+8e2u sin2 e2u e2u

= 2 (3 v−2 sinvcosv+4).e2u sin2

∂w/∂v

∂w

∂v
= ⋅ + ⋅ + ⋅

∂w

∂x

∂x

∂v

∂w

∂y

∂y

∂v

∂w

∂z

∂z

∂v

= (6x−2y) cosv−2x(− sinv) +8z(0),eu eu

x(u, v) = sinv, y(u, v) = cosv,eu eu z(u, v) = eu

∂w

∂v
= (6x−2y) cosv−2x(− sinv)eu eu

= (6 sinv−2 cosv) cosv+2( sinv)( sinv)eu eu eu eu eu

= 2 v+6 sinvcosv−2 ve2u sin2 e2u e2u cos2

= 2 ( v+sinvcosv− v).e2u sin2 cos2
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Calculate  and  given the following functions:

Hint

Calculate nine partial derivatives, then use the same formulas from Example .

Answer

Create a tree diagram for the case when

and write out the formulas for the three partial derivatives of .

Solution

Starting from the left, the function  has three independent variables: , and . Therefore, three branches must be emanating
from the first node. Each of these three branches also has three branches, for each of the variables  and .

Figure : Tree diagram for a function of three variables, each of which is a function of three independent variables.

The three formulas are

 Exercise 3.6.3

∂w/∂u ∂w/∂v

w

x

y

z

= f(x, y, z) =
x+2y−4z

2x−y+3z

= x(u, v) = cos 3ve2u

= y(u, v) = sin3ve2u

= z(u, v) = .e2u

3.6.3

= 0
∂w

∂u

=
∂w

∂v

15 −33 sin3v+6 cos 3v

(3 +2 cos 3v−sin3v)2

 Example : Drawing a Tree Diagram3.6.4

w = f(x, y, z), x = x(t, u, v), y = y(t, u, v), z = z(t, u, v)

w

f x, y z

t, u, v

3.6.3
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Create a tree diagram for the case when

and write out the formulas for the three partial derivatives of 

Hint

Determine the number of branches that emanate from each node in the tree.

Answer

Implicit Differentiation
Recall from implicit differentiation provides a method for finding  when  is defined implicitly as a function of . The
method involves differentiating both sides of the equation defining the function with respect to , then solving for  Partial
derivatives provide an alternative to this method.

Consider the ellipse defined by the equation  as follows.

∂w

∂t

∂w

∂u

∂w

∂v

= + +
∂w

∂x

∂x

∂t

∂w

∂y

∂y

∂t

∂w

∂z

∂z

∂t

= + +
∂w

∂x

∂x

∂u

∂w

∂y

∂y

∂u

∂w

∂z

∂z

∂u

= + + .
∂w

∂x

∂x

∂v

∂w

∂y

∂y

∂v

∂w

∂z

∂z

∂v

 Exercise 3.6.4

w = f(x, y), x = x(t, u, v), y = y(t, u, v)

w.

∂w

∂t

∂w

∂u

∂w

∂v

= +
∂w

∂x

∂x

∂t

∂w

∂y

∂y

∂t

= +
∂w

∂x

∂x

∂u

∂w

∂y

∂y

∂u

= +
∂w

∂x

∂x

∂v

∂w

∂y

∂y

∂v

dy/dx y x

x dy/dx.

+3 +4y−4 = 0x2 y2
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Figure : Graph of the ellipse defined by .

This equation implicitly defines  as a function of . As such, we can find the derivative  using the method of implicit
differentiation:

We can also define a function  by using the left-hand side of the equation defining the ellipse. Then 
 The ellipse  can then be described by the equation . Using this

function and the following theorem gives us an alternative approach to calculating 

Suppose the function  defines  implicitly as a function  of  via the equation  Then

provided 

If the equation  defines  implicitly as a differentiable function of  and , then

as long as 

Equation  is a direct consequence of Equation . In particular, if we assume that  is defined implicitly as a function of 
via the equation , we can apply the chain rule to find 

Solving this equation for  gives Equation . Equation  can be derived in a similar fashion.

Let’s now return to the problem that we started before the previous theorem. Using Note and the function 
 we obtain

3.6.4 + 3 + 4y− 4 = 0x2 y2

y x dy/dx

( +3 +4y−4)
d

dx
x2 y2

2x+6y +4
dy

dx

dy

dx

(6y+4)
dy

dx

dy

dx

= (0)
d

dx

= 0

= −2x

= −
x

3y+2

z = f(x, y)
f(x, y) = +3 +4y−4.x2 y2 +3 +4y−4 = 0x2 y2 f(x, y) = 0

dy/dx.

 Theorem: Implicit Differentiation of a Function of Two or More Variables

z = f(x, y) y y = g(x) x f(x, y) = 0.

= −
dy

dx

∂f/∂x

∂f/∂y
(3.6.4)

(x, y) ≠ 0.fy

f(x, y, z) = 0 z x y

= − and = −
dz

dx

∂f/∂x

∂f/∂z

dz

dy

∂f/∂y

∂f/∂z
(3.6.5)

(x, y, z) ≠ 0.fz

3.6.4 3.6.2 y x

f(x, y) = 0 dy/dx :

f(x, y)
d

dx

⋅ + ⋅
∂f

∂x

dx

dx

∂f

∂y

dy

dx

+ ⋅
∂f

∂x

∂f

∂y

dy

dx

= (0)
d

dx

= 0

= 0.

dy/dx 3.6.4 3.6.4

f(x, y) = +3 +4y−4,x2 y2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64004?pdf


Access for free at OpenStax 3.6.12 https://math.libretexts.org/@go/page/64004

Then Equation  gives

which is the same result obtained by the earlier use of implicit differentiation.

a. Calculate  if  is defined implicitly as a function of  via the equation . What
is the equation of the tangent line to the graph of this curve at point ?

b. Calculate  and  given 

Solution

a. Set  then calculate  and  and 

The derivative is given by

The slope of the tangent line at point  is given by

To find the equation of the tangent line, we use the point-slope form (Figure ):

Figure : Graph of the rotated ellipse defined by .

∂f

∂x

∂f

∂y

= 2x

= 6y+4.

3.6.4

= − = − = − ,
dy

dx

∂f/∂x

∂f/∂y

2x

6y+4

x

3y+2

 Example : Implicit Differentiation by Partial Derivatives3.6.5

dy/dx y x 3 −2xy+ +4x−6y−11 = 0x2 y2

(2, 1)
∂z/∂x ∂z/∂y, −yz = 0.x2ey ex

f(x, y) = 3 −2xy+ +4x−6y−11 = 0,x2 y2 fx : (x, y) = 6x−2y+4fy fx
(x, y) = −2x+2y−6.fy

= − = = .
dy

dx

∂f/∂x

∂f/∂y

6x−2y+4

−2x+2y−6

3x−y+2

x−y+3

(2, 1)

= =
dy

dx

∣

∣
∣
(x,y)=(2,1)

3(2) −1 +2

2 −1 +3

7

4

3.6.5

y−y0

y−1

y

y

= m(x− )x0

= (x−2)
7

4

= x− +1
7

4

7

2

= x− .
7

4

5

2

3.6.5 3 − 2xy+ + 4x− 6y− 11 = 0x2 y2
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b. We have  Therefore,

Using Equation ,

Find  if  is defined implicitly as a function of  by the equation . What is the
equation of the tangent line to the graph of this curve at point ?

Hint

Calculate  and , then use Equation .

Solution

Equation of the tangent line: 

Key Concepts
The chain rule for functions of more than one variable involves the partial derivatives with respect to all the independent
variables.
Tree diagrams are useful for deriving formulas for the chain rule for functions of more than one variable, where each
independent variable also depends on other variables.

Key Equations
Chain rule, one independent variable

Chain rule, two independent variables

Generalized chain rule

f(x, y, z) = −yz .x2ey ex

∂f

∂x

∂f

∂y

∂f

∂z

= 2x −yzey ex

= −zx2ey ex

= −yex

3.6.5

∂z

∂x
= −

∂f/∂x

∂f/∂y

= −
2x −yzey ex

−yex

=
2x −yzey ex

yex

and = −
∂z

∂y

∂f/∂y

∂f/∂z

= −
−zx2ey ex

−yex

=
−zx2ey ex

yex

 Exercise 3.6.5

dy/dx y x +xy− +7x−3y−26 = 0x2 y2

(3, −2)

∂f/dx ∂f/dy 3.6.4

= = = −
dy

dx

2x+y+7

2y−x+3

∣
∣
∣
(3,−2)

2(3) +(−2) +7

2(−2) −(3) +3

11

4

y = − x+
11

4

25

4

= ⋅ + ⋅
dz

dt

∂z

∂x

dx

dt

∂z

∂y

dy

dt

= ⋅ + ⋅ = ⋅ + ⋅
dz

du

∂z

∂x

∂x

∂u

∂z

∂y

∂y

∂u

dz

dv

∂z

∂x

∂x

∂v

∂z

∂y

∂y

∂v

= + +⋯ +
∂w

∂tj

∂w

∂x1

∂x1

∂tj

∂w

∂x2

∂x1

∂tj

∂w

∂xm

∂xm
∂tj
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Glossary

generalized chain rule
the chain rule extended to functions of more than one independent variable, in which each independent variable may depend on
one or more other variables

intermediate variable
given a composition of functions (e.g., , the intermediate variables are the variables that are independent in the
outer function but dependent on other variables as well; in the function  the variables  and  are examples of
intermediate variables

tree diagram
illustrates and derives formulas for the generalized chain rule, in which each independent variable is accounted for

This page titled 3.6: The Chain Rule for Multivariable Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

14.5: The Chain Rule for Multivariable Functions by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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3.7: Directional Derivatives and the Gradient

Determine the directional derivative in a given direction for a function of two variables.
Determine the gradient vector of a given real-valued function.
Explain the significance of the gradient vector with regard to direction of change along a surface.
Use the gradient to find the tangent to a level curve of a given function.
Calculate directional derivatives and gradients in three dimensions.

A function  has two partial derivatives:  and . These derivatives correspond to each of the independent variables
and can be interpreted as instantaneous rates of change (that is, as slopes of a tangent line). For example,  represents the slope of a
tangent line passing through a given point on the surface defined by  assuming the tangent line is parallel to the -axis.
Similarly,  represents the slope of the tangent line parallel to the -axis. Now we consider the possibility of a tangent line parallel to
neither axis.

Directional Derivatives
We start with the graph of a surface defined by the equation . Given a point  in the domain of , we choose a direction to
travel from that point. We measure the direction using an angle , which is measured counterclockwise in the -plane, starting at zero
from the positive -axis (Figure ). The distance we travel is  and the direction we travel is given by the unit vector 

 Therefore, the -coordinate of the second point on the graph is given by 

Figure : Finding the directional derivative at a point on the graph of . The slope of the blue arrow on the graph indicates
the value of the directional derivative at that point.

We can calculate the slope of the secant line by dividing the difference in -values by the length of the line segment connecting the two
points in the domain. The length of the line segment is . Therefore, the slope of the secant line is

To find the slope of the tangent line in the same direction, we take the limit as  approaches zero.

Suppose  is a function of two variables with a domain of . Let  and define . Then
the directional derivative of  in the direction of  is given by

provided the limit exists.

 Learning Objectives

z = f(x, y) ∂z/∂x ∂z/∂y
∂z/∂x

z = f(x, y), x

∂z/∂y y

z = f(x, y) (a, b) f

θ xy

x 3.7.1 h

= (cosθ) +(sinθ) .u⇀ î ĵ z z = f(a+h cosθ, b+h sinθ).

3.7.1 z = f(x,y)

z

h

=msec

f(a+h cosθ, b+h sinθ) −f(a, b)

h

h

 Definition: Directional Derivatives

z = f(x, y) D (a, b) ∈ D = (cosθ) +(sinθ)u⇀ î ĵ

f u⇀

f(a, b) =Du⇀ lim
h→0

f(a+h cosθ, b+h sinθ) −f(a, b)

h
(3.7.1)
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Equation  provides a formal definition of the directional derivative that can be used in many cases to calculate a directional
derivative.

Note that since the point  is chosen randomly from the domain  of the function , we can use this definition to find the directional
derivative as a function of  and .

That is,

Let  Find the directional derivative  of  in the direction of 
.

Then determine .

Solution

First of all, since  and  is acute, this implies

Using  we first calculate :

We substitute this expression into Equation  with  and :

To calculate  we substitute  and  into this answer (Figure ):

3.7.1

(a, b) D f

x y

f(x, y) =Du⇀ lim
h→0

f(x+h cosθ, y+h sinθ) −f(x, y)

h
(3.7.2)

 Example : Finding a Directional Derivative from the Definition3.7.1

θ = arccos(3/5). f(x, y)Du⇀ f(x, y) = −xy+3x2 y2

= (cosθ) +(sinθ)u⇀ î ĵ

f(−1, 2)Du⇀

cosθ = 3/5 θ

sinθ = = = .1 −( )
3

5

2− −−−−−−−

√
16

25

−−−
√

4

5

f(x, y) = −xy+3 ,x2 y2 f(x+h cosθ, y+h sinθ)

f(x+h cosθ, y+h sinθ) = (x+h cosθ −(x+h cosθ)(y+h sinθ) +3(y+h sinθ)2 )2

= +2xh cosθ+ θ−xy−xh sinθ−yh cosθ− sinθcosθ+3 +6yh sinθ+3 θx2 h2 cos2 h2 y2 h2 sin2

= +2xh( ) + −xy− − − +3 +6yh( ) +3 ( )x2 3

5

9h2

25

4xh

5

3yh

5

12h2

25
y2 4

5
h2 16

25

= −xy+3 + + + .x2 y2 2xh

5

9h2

5

21yh

5

3.7.1 a = x b = y

f(x, y)Du⇀ = lim
h→0

f(x+h cosθ, y+h sinθ) −f(x, y)

h

= lim
h→0

( −xy+3 + + + ) −( −xy+3 )x2 y2 2xh
5

9h2

5

21yh

5 x2 y2

h

= lim
h→0

+ +2xh
5

9h2

5

21yh

5

h

= + +lim
h→0

2x

5

9h

5

21y

5

= .
2x+21y

5

f(−1, 2),Du⇀ x = −1 y = 2 3.7.2

f(−1, 2) = = = 8.Du⇀
2(−1) +21(2)

5

−2 +42

5
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Figure : Finding the directional derivative in a given direction  at a given point on a surface. The plane is tangent to the surface
at the given point 

An easier approach to calculating directional derivatives that involves partial derivatives is outlined in the following theorem.

Let  be a function of two variables  and , and assume that  and  exist. Then the directional derivative of  in the
direction of  is given by

Applying the definition of a directional derivative stated above in Equation , the directional derivative of  in the direction of 
 at a point  in the domain of  can be written

Let  and  and define . Since  and  both exist, we can use the chain rule for
functions of two variables to calculate :

If  then  and  so

By the definition of  it is also true that

Therefore, .

Since the point  is an arbitrary point from the domain of , this result holds for all points in the domain of  for which the
partials  and  exist.

Therefore,

□

3.7.2 u
⇀

(−1, 2, 15).

 Directional Derivative of a Function of Two Variables

z = f(x, y) x y fx fy f

= (cosθ) +(sinθ)u
⇀

î ĵ

f(x, y) = (x, y) cosθ+ (x, y) sinθ.Du⇀ fx fy (3.7.3)

 Proof

3.7.1 f

= (cosθ) +(sinθ)u⇀ î ĵ ( , )x0 y0 f

f(( , )) = .Du⇀ x0 y0 lim
t→0

f( + t cosθ, + t sinθ) −f( , )x0 y0 x0 y0

t

x = + t cosθx0 y = + t sinθ,y0 g(t) = f(x, y) fx fy
g'(t)

g'(t) = + = (x, y) cosθ+ (x, y) sinθ.
∂f

∂x

dx

dt

∂f

∂y

dy

dt
fx fy

t = 0, x = x0 y = ,y0

g'(0) = ( , ) cosθ+ ( , ) sinθfx x0 y0 fy x0 y0

g'(t),

g'(0) = = .lim
t→0

g(t) −g(0)

t
lim
t→0

f( + t cosθ, + t sinθ) −f( , )x0 y0 x0 y0

t

f( , ) = ( , ) cosθ+ ( , ) sinθDu⇀ x0 y0 fx x0 y0 fy x0 y0

( , )x0 y0 f f

fx fy

f(x, y) = (x, y) cosθ+ (x, y) sinθ.Du⇀ fx fy
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Let  Find the directional derivative  of  in the direction of 
.

Then determine .

Solution

First, we must calculate the partial derivatives of :

Then we use Equation  with :

To calculate  let  and :

This is the same answer obtained in Example .

Find the directional derivative  of  in the direction of 

using Equation .

What is ?

Hint

Calculate the partial derivatives and determine the value of .

Answer

If the vector that is given for the direction of the derivative is not a unit vector, then it is only necessary to divide by the norm of the
vector. For example, if we wished to find the directional derivative of the function in Example  in the direction of the vector 

, we would first divide by its magnitude to get . This gives us .

Then

Gradient
The right-hand side of Equation  is equal to , which can be written as the dot product of two vectors.
Define the first vector as  and the second vector as . Then the right-hand

 Example : Finding a Directional Derivative: Alternative Method3.7.2

θ = arccos(3/5). f(x, y)D
u⇀ f(x, y) = −xy+3x2 y2

= (cosθ) +(sinθ)u⇀ î ĵ

f(−1, 2)Du⇀

f

(x, y)fx

(x, y)fy

= 2x−y

= −x+6y,

3.7.3 θ = arccos(3/5)

f(x, y)Du⇀ = (x, y) cosθ+ (x, y) sinθfx fy

= (2x−y) +(−x+6y)
3

5

4

5

= − − +
6x

5

3y

5

4x

5

24y

5

= .
2x+21y

5

f(−1, 2),Du⇀ x = −1 y = 2

f(−1, 2) = = = 8.Du⇀
2(−1) +21(2)

5

−2 +42

5

3.7.1

 Exercise :3.7.1

f(x, y)Du⇀ f(x, y) = 3 y−4x +3 −4xx2 y3 y2 = (cos ) +(sin )u
⇀ π

3
î

π

3
ĵ

3.7.3

f(3, 4)Du⇀

θ

f(x, y) = +D
u⇀

(6xy−4 −4)(1)y3

2

(3 −12x +6y)x2 y2 3–√

2

f(3, 4) = + = −94 −Du⇀
72 −256 −4

2

(27 −576 +24) 3
–√

2

525 3
–√

2

3.7.2

⟨−5, 12⟩ u
⇀ = ⟨− , ⟩u

⇀ 5
13

12
13

f(x, y)Du⇀ = (x, y) cosθ+ (x, y) sinθfx fy

= − (2x−y) + (−x+6y)
5

13

12

13

= − x+ y
22

13

17

13

3.7.3 (x, y) cosθ+ (x, y) sinθfx fy

f(x, y) = (x, y) + (x, y)∇
⇀

fx î fy ĵ = (cosθ) +(sinθ)u
⇀

î ĵ
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side of the equation can be written as the dot product of these two vectors:

The first vector in Equation  has a special name: the gradient of the function . The symbol  is called nabla and the vector  is
read “del .”

Let  be a function of  and  such that  and  exist. The vector  is called the gradient of  and is defined as

The vector  is also written as “grad .”

Find the gradient  of each of the following functions:

a. 
b. 

Solution

For both parts a. and b., we first calculate the partial derivatives  and , then use Equation .

a.  and , so

b.  and , so

Find the gradient  of .

Hint

Calculate the partial derivatives, then use Equation .

Answer

The gradient has some important properties. We have already seen one formula that uses the gradient: the formula for the directional
derivative. Recall from The Dot Product that if the angle between two vectors  and  is , then  Therefore, if
the angle between  and  is , we have

The  disappears because  is a unit vector. Therefore, the directional derivative is equal to the magnitude of the gradient evaluated at 
 multiplied by . Recall that  ranges from  to .

If  then  and  and  both point in the same direction.

If , then  and  and  point in opposite directions.

In the first case, the value of  is maximized; in the second case, the value of  is minimized.

f(x, y) = f(x, y) ⋅ .Du⇀ ∇
⇀

u⇀ (3.7.4)

3.7.4 f ∇ f∇
⇀

f

 Definition: The Gradient

z = f(x, y) x y fx fy f(x, y)∇
⇀

f

f(x, y) = (x, y) + (x, y) .∇
⇀

fx î fy ĵ (3.7.5)

f(x, y)∇
⇀

f

 Example : Finding Gradients3.7.3

f(x, y)∇
⇀

f(x, y) = −xy+3x2 y2

f(x, y) = sin3x cos 3y

fx fy 3.7.5

(x, y) = 2x−yfx (x, y) = −x+6yfy

f(x, y)∇
⇀

= (x, y) + (x, y)fx î fy ĵ

= (2x−y) +(−x+6y) .î ĵ

(x, y) = 3 cos 3x cos 3yfx (x, y) = −3 sin3x sin3yfy

f(x, y)∇
⇀

= (x, y) + (x, y)fx î fy ĵ

= (3 cos 3x cos 3y) −(3 sin3x sin3y) .î ĵ

 Exercise 3.7.2

f(x, y)∇
⇀

f(x, y) =
−3x2 y2

2x+y

3.7.5

f(x, y) = −∇
⇀ 2 +2xy+6x2 y2

(2x+y)2
î

+12xy+3x2 y2

(2x+y)2
ĵ

a⇀ b
⇀

φ ⋅ = ∥ ∥∥ ∥ cosφ.a⇀ b
⇀

a⇀ b
⇀

f( , )∇
⇀

x0 y0 = (cosθ) +(sinθ)u
⇀

î ĵ φ

f( , ) = f( , ) ⋅ = ∥ f( , )∥∥ ∥ cosφ = ∥ f( , )∥ cosφ.Du⇀ x0 y0 ∇
⇀

x0 y0 u
⇀

∇
⇀

x0 y0 u
⇀

∇
⇀

x0 y0

∥ ∥u
⇀

u
⇀

( , )x0 y0 cosφ cosφ −1 1

φ = 0, cosφ = 1 f( , )∇
⇀

x0 y0 u
⇀

φ = π cosφ = −1 f( , )∇
⇀

x0 y0 u⇀

f( , )Du⇀ x0 y0 f( , )Du⇀ x0 y0
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We can also see that if , then

for any vector . These three cases are outlined in the following theorem.

Suppose the function  is differentiable at  (Figure ).

i. If , then  for any unit vector .
ii. If , then  is maximized when  points in the same direction as . The maximum value

of  is .
iii. If , then  is minimized when  points in the opposite direction from . The minimum

value of  is .

Figure : The gradient indicates the maximum and minimum values of the directional derivative at a point.

Find the direction for which the directional derivative of  at  is a maximum. What is the maximum
value?

Solution

The maximum value of the directional derivative occurs when  and the unit vector point in the same direction. Therefore, we start
by calculating ):

so

Next, we evaluate the gradient at :

f( , ) =∇
⇀

x0 y0 0
⇀

f( , ) = f( , ) ⋅ = 0Du⇀ x0 y0 ∇
⇀

x0 y0 u
⇀

u
⇀

 Properties of the Gradient

z = f(x, y) ( , )x0 y0 3.7.3

f( , ) =∇
⇀

x0 y0 0
⇀

f( , ) = 0Du⇀ x0 y0 u
⇀

f( , ) ≠∇
⇀

x0 y0 0
⇀

f( , )Du⇀ x0 y0 u⇀ f( , )∇
⇀

x0 y0

f( , )Du⇀ x0 y0 ∥ f( , )∥∇
⇀

x0 y0

f( , ) ≠∇
⇀

x0 y0 0
⇀

f( , )Du⇀ x0 y0 u
⇀ f( , )∇

⇀
x0 y0

f( , )Du⇀ x0 y0 −∥ f( , )∥∇
⇀

x0 y0

3.7.3

 Example : Finding a Maximum Directional Derivative3.7.4

f(x, y) = 3 −4xy+2x2 y2 (−2, 3)

f∇
⇀

f(x, y∇
⇀

(x, y) = 6x−4y and (x, y) = −4x+4yfx fy

f(x, y) = (x, y) + (x, y) = (6x−4y) +(−4x+4y) .∇
⇀

fx î fy ĵ î ĵ

(−2, 3)

f(−2, 3) = (6(−2) −4(3)) +(−4(−2) +4(3)) = −24 +20 .∇
⇀

î ĵ î ĵ
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We need to find a unit vector that points in the same direction as  so the next step is to divide  by its
magnitude, which is . Therefore,

This is the unit vector that points in the same direction as  To find the angle corresponding to this unit vector, we solve the
equations

for . Since cosine is negative and sine is positive, the angle must be in the second quadrant. Therefore, 
 rad.

The maximum value of the directional derivative at  is  (Figure ).

Figure : The maximum value of the directional derivative at  is in the direction of the gradient.

Find the direction for which the directional derivative of  at  is a maximum. What is the maximum
value?

Hint

Evaluate the gradient of  at point .

Answer

The gradient of  at  is . The unit vector that points in the same direction as  is

which gives an angle of  rad.

The maximum value of the directional derivative is .

Figure  shows a portion of the graph of the function . Given a point  in the domain of , the maximum
value of the directional derivative at that point is given by . This would equal the rate of greatest ascent if the surface
represented a topographical map. If we went in the opposite direction, it would be the rate of greatest descent.

f(−2, 3),∇
⇀

f(−2, 3)∇
⇀

= = 4(−24 +(20)2 )2− −−−−−−−−−−−√ 976
−−−√ 61

−−√

= i+ j= − + .
f(−2, 3)∇

⇀

∥ f(−2, 3)∥∇
⇀

−24

4 61
−−√

20

4 61
−−√

6 61
−−√

61
î

5 61
−−√

61
ĵ

f(−2, 3).∇
⇀

cosθ = and sinθ =
−6 61−−√

61

5 61−−√

61

θ

θ = π−arcsin((5 )/61) ≈ 2.4561−−√

(−2, 3) ∥ f(−2, 3)∥ = 4∇
⇀

61−−√ 3.7.4

3.7.4 (−2, 3)

 Exercise 3.7.3

g(x, y) = 4x−xy+2y2 (−2, 3)

g (−2, 3)

g (−2, 3) g(−2, 3) = +14∇
⇀

î ĵ g(−2, 3)∇
⇀

= + = + ,
g(−2, 3)∇

⇀

∥ g(−2, 3)∥∇
⇀

1

197
−−−√

î
14

197
−−−√

ĵ
197−−−√

197
î

14 197−−−√

197
ĵ

θ = arcsin((14 )/197) ≈ 1.499197
−−−√

∥ g(−2, 3)∥ =∇
⇀

197−−−√

3.7.5 f(x, y) = 3 +sinx siny (a, b) f

∥ f(a, b)∥∇
⇀
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Figure : A typical surface in . Given a point on the surface, the directional derivative can be calculated using the gradient.

When using a topographical map, the steepest slope is always in the direction where the contour lines are closest together (Figure ).
This is analogous to the contour map of a function, assuming the level curves are obtained for equally spaced values throughout the range
of that function.

Figure : Contour map for the function  using level values between  and .

Gradients and Level Curves

Recall that if a curve is defined parametrically by the function pair  then the vector  is tangent to the curve for
every value of  in the domain. Now let’s assume  is a differentiable function of  and , and  is in its domain. Let’s
suppose further that  and  for some value of , and consider the level curve . Define 

 and calculate  on the level curve. By the chain Rule,

But  because  for all . Therefore, on the one hand,

on the other hand,

Therefore,

3.7.5 R
3

3.7.6

3.7.6 f(x,y) = −x2 y2 −5 5

(x(t), y(t)), x'(t) +y'(t)î ĵ

t z = f(x, y) x y ( , )x0 y0

= x( )x0 t0 = y( )y0 t0 t f(x, y) = k

g(t) = f(x(t), y(t)) g'(t)

g'(t) = (x(t), y(t))x'(t) + (x(t), y(t))y'(t).fx fy

g'(t) = 0 g(t) = k t

(x(t), y(t))x'(t) + (x(t), y(t))y'(t) = 0;fx fy

(x(t), y(t))x'(t) + (x(t), y(t))y'(t) = f(x, y) ⋅ ⟨x'(t), y'(t)⟩.fx fy ∇
⇀

f(x, y) ⋅ ⟨x'(t), y'(t)⟩ = 0.∇
⇀
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Thus, the dot product of these vectors is equal to zero, which implies they are orthogonal. However, the second vector is tangent to the
level curve, which implies the gradient must be normal to the level curve, which gives rise to the following theorem.

Suppose the function  has continuous first-order partial derivatives in an open disk centered at a point . If 
, then  is normal to the level curve of  at 

We can use this theorem to find tangent and normal vectors to level curves of a function.

For the function  find a tangent vector to the level curve at point . Graph the level
curve corresponding to  and draw in  and a tangent vector.

Solution

First, we must calculate 

Next, we evaluate  at 

This vector is orthogonal to the curve at point . We can obtain a tangent vector by reversing the components and multiplying
either one by . Thus, for example,  is a tangent vector (Figure ).

Figure : Tangent and normal vectors to  at point .

For the function , find the tangent to the level curve at point . Draw the graph of the
level curve corresponding to  and draw  and a tangent vector.

Hint

Calculate the gradient at point .

Answer

Tangent vector:  or 

 Gradient Is Normal to the Level Curve

z = f(x, y) ( , )x0 y0

f( , ) ≠ 0∇
⇀

x0 y0 f( , )∇
⇀

x0 y0 f ( , ).x0 y0

 Example : Finding Tangents to Level Curves3.7.5

f(x, y) = 2 −3xy+8 +2x−4y+4,x2 y2 (−2, 1)

f(x, y) = 18 f(−2, 1)∇
⇀

f(x, y) :∇
⇀

(x, y) = 4x−3y+2 and = −3x+16y−4 so f(x, y) = (4x−3y+2) +(−3x+16y−4) .fx fy ∇
⇀

î ĵ

f(x, y)∇
⇀

(−2, 1) :

f(−2, 1) = (4(−2) −3(1) +2) +(−3(−2) +16(1) −4) = −9 +18 .∇
⇀

î ĵ î ĵ

(−2, 1)

−1 −18 −9î ĵ 3.7.7

3.7.7 2 − 3xy+ 8 + 2x− 4y+ 4 = 18x2 y2 (−2, 1)

 Exercise 3.7.4

f(x, y) = −2xy+5 +3x−2y+3x2 y2 (1, 1)

f(x, y) = 8 f(1, 1)∇
⇀

(1, 1)

f(x, y) = (2x−2y+3) +(−2x+10y−2)∇
⇀

î ĵ

f(1, 1) = 3 +6∇
⇀

î ĵ

6 −3î ĵ −6 +3î ĵ
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Three-Dimensional Gradients and Directional Derivatives
The definition of a gradient can be extended to functions of more than two variables.

Let  be a function of three variables such that , and  exist. The vector  is called the gradient of 
and is defined as

 can also be written as grad 

Calculating the gradient of a function in three variables is very similar to calculating the gradient of a function in two variables. First, we
calculate the partial derivatives  and , and then we use Equation .

Find the gradient  of each of the following functions:

a. 
b. 

Solution

For both parts a. and b., we first calculate the partial derivatives  and , then use Equation .

a. , , and , so

b. , , and , so

Find the gradient  of 

Answer

 Definition: Gradients in 3D

w = f(x, y, z) ,fx fy fz f(x, y, z)∇
⇀

f

f(x, y, z) = (x, y, z) + (x, y, z) + (x, y, z) .∇
⇀

fx î fy ĵ fz k̂ (3.7.6)

f(x, y, z)∇
⇀

f(x, y, z).

, ,fx fy fz 3.7.6

 Example : Finding Gradients in Three Dimensions3.7.6

f(x, y, z)∇
⇀

f(x, y, z) = 5 −2xy+ −4yz+ +3xzx2 y2 z2

f(x, y, z) = sin2x cos 2ye−2z

, ,fx fy fz 3.7.6

(x, y, z) = 10x−2y+3zfx (x, y, z) = −2x+2y−4zfy (x, y, z) = 3x−4y+2zfz

f(x, y, z)∇
⇀

= (x, y, z) + (x, y, z) + (x, y, z)fx î fy ĵ fz k̂

= (10x−2y+3z) +(−2x+2y−4z) +(3x−4y+2z) .î ĵ k̂

(x, y, z) = 2 cos 2x cos 2yfx e−2z (x, y, z) = −2 sin2x sin2yfy e−2z (x, y, z) = −2 sin2x cos 2yfz e−2z

f(x, y, z)∇
⇀

= (x, y, z) + (x, y, z) + (x, y, z)fx î fy ĵ fz k̂

= (2 cos 2x cos 2y) +(−2 sin2x sin2y) +(−2 sin2x cos 2y)e−2z
î e−2z

ĵ e−2z
k̂

= 2 (cos 2x cos 2y −sin2x sin2y −sin2x cos 2y ).e−2z î ĵ k̂

 Exercise :3.7.5

f(x, y, z)∇
⇀

f(x, y, z) =
−3 +x2 y2 z2

2x+y−4z.

f(x, y, z) = − +∇
⇀ 2 +2xy+6 −8xz−2x2 y2 z2

(2x+y−4z)2
î

+12xy+3 −24yz+x2 y2 z2

(2x+y−4z)2
ĵ

4 −12 −4 +4xz+2yzx2 y2 z2

(2x+y−4z)2
k̂
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The directional derivative can also be generalized to functions of three variables. To determine a direction in three dimensions, a vector
with three components is needed. This vector is a unit vector, and the components of the unit vector are called directional cosines. Given a
three-dimensional unit vector  in standard form (i.e., the initial point is at the origin), this vector forms three different angles with the
positive -, -, and -axes. Let’s call these angles  and . Then the directional cosines are given by  and . These are
the components of the unit vector ; since  is a unit vector, it is true that 

Suppose  is a function of three variables with a domain of . Let  and let 
 be a unit vector. Then, the directional derivative of  in the direction of  is given by

provided the limit exists.

We can calculate the directional derivative of a function of three variables by using the gradient, leading to a formula that is analogous to
Equation .

Let  be a differentiable function of three variables and let  be a unit vector. Then, the
directional derivative of  in the direction of  is given by

The three angles  and  determine the unit vector . In practice, we can use an arbitrary (nonunit) vector, then divide by its
magnitude to obtain a unit vector in the desired direction.

Calculate  in the direction of  for the function

Solution:

First, we find the magnitude of :

Therefore,  is a unit vector in the direction of , so  and 

. Next, we calculate the partial derivatives of :

then substitute them into Equation :

Last, to find  we substitute , and 

u
⇀

x y z α, β, γ cosα, cosβ, cosγ
u
⇀

u
⇀ α+ β+ γ = 1.cos2 cos2 cos2

 Definition: Directional Derivative of a Function of Three variables

w = f(x, y, z) D ( , , ) ∈ Dx0 y0 z0

= cosα +cosβ +cosγu
⇀

î ĵ k̂ f u

f( , , ) =Du⇀ x0 y0 z0 lim
t→0

f( + t cosα, + t cosβ, + t cosγ) −f( , , )x0 y0 z0 x0 y0 z0

t

3.7.3

 Directional Derivative of a Function of Three Variables

f(x, y, z) = cosα +cosβ +cosγu
⇀

î ĵ k̂

f u
⇀

f(x, y, z) = f(x, y, z) ⋅ = (x, y, z) cosα+ (x, y, z) cosβ+ (x, y, z) cosγ.Du⇀ ∇
⇀

u
⇀ fx fy fz (3.7.7)

α, β, γ u
⇀

 Example : Finding a Directional Derivative in Three Dimensions3.7.7

f(1, −2, 3)D v⇀ = − +2 +2v
⇀

î ĵ k̂

f(x, y, z) = 5 −2xy+ −4yz+ +3xz.x2 y2 z2

v

∥ ∥ = = = 3.v
⇀ (−1 +(2 +(2)2 )2 )2

− −−−−−−−−−−−−−−
√ 9–√

= = − + +
v
⇀

∥ ∥v
⇀

− +2 +2î ĵ k̂

3

1

3
î

2

3
ĵ

2

3
k̂ v

⇀ cosα = − , cosβ = ,
1

3

2

3

cosγ =
2

3
f

(x, y, z)fx

(x, y, z)fy

(x, y, z)fz

= 10x−2y+3z

= −2x+2y−4z

= −4y+2z+3x,

3.7.7

f(x, y, z)D v⇀ = (x, y, z) cosα+ (x, y, z) cosβ+ (x, y, z) cosγfx fy fz

= (10x−2y+3z)(− ) +(−2x+2y−4z)( ) +(−4y+2z+3x)( )
1

3

2

3

2

3

= − + − − + − − + +
10x

3

2y

3

3z

3

4x

3

4y

3

8z

3

8y

3

4z

3

6x

3

= − − − .
8x

3

2y

3

7z

3

f(1, −2, 3),D v⇀ x = 1, y = −2 z = 3 :
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Calculate  and  in the direction of  for the function

Hint

First, divide  by its magnitude, calculate the partial derivatives of , then use Equation .

Answer

Summary
A directional derivative represents a rate of change of a function in any given direction.
The gradient can be used in a formula to calculate the directional derivative.
The gradient indicates the direction of greatest change of a function of more than one variable.

Key Equations
directional derivative (two dimensions)

or

gradient (two dimensions)

gradient (three dimensions)

directional derivative (three dimensions)

Glossary

directional derivative

the derivative of a function in the direction of a given unit vector

gradient

the gradient of the function  is defined to be  which can be generalized to a function of
any number of independent variables

This page titled 3.7: Directional Derivatives and the Gradient is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

f(1, −2, 3)D v⇀ = − − −
8(1)

3

2(−2)

3

7(3)

3

= − + −
8

3

4

3

21

3

= − .
25

3

 Exercise :3.7.6

f(x, y, z)D v⇀ f(0, −2, 5)D v⇀ = −3 +12 −4v
⇀

î ĵ k̂

f(x, y, z) = 3 +xy−2 +4yz− +2xz.x2 y2 z2

v
⇀ f 3.7.7

f(x, y, z) = − (6x+y+2z) + (x−4y+4z) − (2x+4y−2z)D
v
⇀

3

13

12

13

4

13

f(0, −2, 5) =D v⇀
384

13

f(a, b) =Du⇀ lim
h→0

f(a+h cosθ, b+h sinθ) −f(a, b)

h

f(x, y) = (x, y) cosθ+ (x, y) sinθDu⇀ fx fy

f(x, y) = (x, y) + (x, y)∇
⇀

fx î fy ĵ

f(x, y, z) = (x, y, z) + (x, y, z) + (x, y, z)∇
⇀

fx î fy ĵ fz k̂

f(x, y, z) = f(x, y, z) ⋅ = (x, y, z) cosα+ (x, y, z) cosβ+ (x, y, z) cosγDu⇀ ∇
⇀

u
⇀ fx fy fx

f(x, y) f(x, y) = (∂f/∂x) +(∂f/∂y) ,∇
⇀

î ĵ
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3.8: Maxima/Minima Problems

Use partial derivatives to locate critical points for a function of two variables.
Apply a second derivative test to identify a critical point as a local maximum, local minimum, or saddle point for a function
of two variables.
Examine critical points and boundary points to find absolute maximum and minimum values for a function of two
variables.

One of the most useful applications for derivatives of a function of one variable is the determination of maximum and/or minimum
values. This application is also important for functions of two or more variables, but as we have seen in earlier sections of this
chapter, the introduction of more independent variables leads to more possible outcomes for the calculations. The main ideas of
finding critical points and using derivative tests are still valid, but new wrinkles appear when assessing the results.

Critical Points
For functions of a single variable, we defined critical points as the values of the variable at which the function's derivative equals
zero or does not exist. For functions of two or more variables, the concept is essentially the same, except for the fact that we are
now working with partial derivatives.

Let  be a function of two variables that is differentiable on an open set containing the point . The point 
 is called a critical point of a function of two variables  if one of the two following conditions holds:

1. 
2. Either  does not exist.

Find the critical points of each of the following functions:

a. 
b. 

Solution

a. First, we calculate 

Next, we set each of these expressions equal to zero:

 Learning Objectives

 Definition: Critical Points

z = f(x, y) ( , )x0 y0

( , )x0 y0 f

( , ) = ( , ) = 0fx x0 y0 fy x0 y0

( , ) or ( , )fx x0 y0 fy x0 y0

 Example : Finding Critical Points3.8.1

f(x, y) = 4 −9 +24y +36x +36y2 x2
− −−−−−−−−−−−−−−−−−−−−−

√
g(x, y) = +2xy −4 +4x −6y +4x2 y2

(x, y) and (x, y) :fx fy

(x, y)fx = (−18x +36)(4 −9 +24y +36x +36
1

2
y2 x2 )−1/2

=
−9x +18

4 −9 +24y +36x +36y2 x2
− −−−−−−−−−−−−−−−−−−−−−

√

.

(x, y)fy = (8y +24)(4 −9 +24y +36x +36
1

2
y2 x2 )−1/2

=
4y +12

4 −9 +24y +36x +36y2 x2− −−−−−−−−−−−−−−−−−−−−−
√

−9x +18

4 −9 +24y +36x +36y2 x2− −−−−−−−−−−−−−−−−−−−−−
√

4y +12

4 −9 +24y +36x +36y2 x2
− −−−−−−−−−−−−−−−−−−−−−

√

= 0

= 0.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64006?pdf
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/03%3A_Functions_of_Several_Variables/3.08%3A_Maxima_Minima_Problems


Access for free at OpenStax 3.8.2 https://math.libretexts.org/@go/page/64006

Then, multiply each equation by its common denominator:

Therefore,  and  so  is a critical point of .

We must also check for the possibility that the denominator of each partial derivative can equal zero, thus causing the partial
derivative not to exist. Since the denominator is the same in each partial derivative, we need only do this once:

Equation  represents a hyperbola. We should also note that the domain of  consists of points satisfying the inequality

Therefore, any points on the hyperbola are not only critical points, they are also on the boundary of the domain. To put the
hyperbola in standard form, we use the method of completing the square:

Dividing both sides by  puts the equation in standard form:

Notice that point  is the center of the hyperbola.

Thus, the critical points of the function  are  and all points on the hyperbola, .

b. First, we calculate  and :

Next, we set each of these expressions equal to zero, which gives a system of equations in  and :

Subtracting the second equation from the first gives , so . Substituting this into the first equation gives 
, so .

Therefore  is a critical point of . There are no points in  that make either partial derivative not exist.

Figure  shows the behavior of the surface at the critical point.

−9x +18

4y +12

= 0

= 0.

x = 2 y = −3, (2, −3) f

4 −9 +24y +36x +36 = 0.y2 x2 (3.8.1)

3.8.1 f

4 −9 +24y +36x +36 ≥ 0.y2 x2

4 −9 +24y +36x +36y2 x2

4 −9 +24y +36xy2 x2

4 +24y −9 +36xy2 x2

4( +6y) −9( −4x)y2 x2

4( +6y +9) −9( −4x +4)y2 x2

4(y +3 −9(x −2)2 )2

= 0

= −36

= −36

= −36

= −36 −36 +36

= −36.

−36

−
4(y +3)2

−36

9(x −2)2

−36

−
(x −2)2

4

(y +3)2

9

= 1

= 1.

(2, −3)

f (2, −3) − = 1
(x −2)2

4

(y +3)2

9

(x, y)gx (x, y)gy

(x, y)gx

(x, y)gy

= 2x +2y +4

= 2x −8y −6.

x y

2x +2y +4

2x −8y −6

= 0

= 0.

10y +10 = 0 y = −1
2x +2(−1) +4 = 0 x = −1

(−1, −1) g R
2

3.8.1
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Figure : The function  has a critical point at .

Find the critical point of the function 

Hint

Calculate  and , then set them equal to zero.

Answer

The only critical point of  is .

The main purpose for determining critical points is to locate relative maxima and minima, as in single-variable calculus. When
working with a function of one variable, the definition of a local extremum involves finding an interval around the critical point
such that the function value is either greater than or less than all the other function values in that interval. When working with a
function of two or more variables, we work with an open disk around the point.

Let  be a function of two variables that is defined and continuous on an open set containing the point 
Then  has a local maximum at  if

for all points  within some disk centered at . The number  is called a local maximum value. If the
preceding inequality holds for every point  in the domain of , then  has a global maximum (also called an absolute
maximum) at 

The function  has a local minimum at  if

for all points  within some disk centered at . The number  is called a local minimum value. If the
preceding inequality holds for every point  in the domain of , then  has a global minimum (also called an absolute
minimum) at .

If  is either a local maximum or local minimum value, then it is called a local extremum (see the following figure).

3.8.1 g(x, y) (−1, −1, 5)

 Exercise 3.8.1

f(x, y) = +2xy −2x −4y.x3

(x, y)fx (x, y)fy

f (2, −5)

 Definition: Global and Local Extrema

z = f(x, y) ( , ).x0 y0

f ( , )x0 y0

f( , ) ≥ f(x, y)x0 y0

(x, y) ( , )x0 y0 f( , )x0 y0

(x, y) f f

( , ).x0 y0

f ( , )x0 y0

f( , ) ≤ f(x, y)x0 y0

(x, y) ( , )x0 y0 f( , )x0 y0

(x, y) f f

( , )x0 y0

f( , )x0 y0
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Figure : The graph of  has a maximum value when . It attains its minimum value at the
boundary of its domain, which is the circle 

In Calculus 1, we showed that extrema of functions of one variable occur at critical points. The same is true for functions of more
than one variable, as stated in the following theorem.

Let  be a function of two variables that is defined and continuous on an open set containing the point .
Suppose  and  each exist at . If f has a local extremum at , then  is a critical point of .

Second Derivative Test
Consider the function  This function has a critical point at , since . However,  does not have
an extreme value at . Therefore, the existence of a critical value at  does not guarantee a local extremum at .
The same is true for a function of two or more variables. One way this can happen is at a saddle point. An example of a saddle
point appears in the following figure.

Figure 14.7.3

Figure : Graph of the function . This graph has a saddle point at the origin.

In this graph, the origin is a saddle point. This is because the first partial derivatives of f  are both equal to zero at
this point, but it is neither a maximum nor a minimum for the function. Furthermore the vertical trace corresponding to  is 

 (a parabola opening upward), but the vertical trace corresponding to  is  (a parabola opening downward).
Therefore, it is both a global maximum for one trace and a global minimum for another.

Given the function  the point  is a saddle point if both  and , but 
 does not have a local extremum at 

The second derivative test for a function of one variable provides a method for determining whether an extremum occurs at a
critical point of a function. When extending this result to a function of two variables, an issue arises related to the fact that there
are, in fact, four different second-order partial derivatives, although equality of mixed partials reduces this to three. The second
derivative test for a function of two variables, stated in the following theorem, uses a discriminant  that replaces  in the
second derivative test for a function of one variable.

3.8.2 z = 16 − −x2 y2− −−−−−−−−−
√ (x, y) = (0, 0)

+ = 16.x2 y2

 Fermat’s Theorem for Functions of Two Variables

z = f(x, y) ( , )x0 y0

fx fy ( , )x0 y0 ( , )x0 y0 ( , )x0 y0 f

f(x) = .x3 x = 0 (0) = 3(0 = 0f ′ )2 f

x = 0 x = x0 x = x0

3.8.3 z = −x2 y2

(x, y) = −x2 y2

y = 0
z = x2 x = 0 z = −y2

 Definition: Saddle Point

z = f(x, y), ( , , f( , ))x0 y0 x0 y0 ( , ) = 0fx x0 y0 ( , ) = 0fy x0 y0

f ( , ).x0 y0

D ( )f ′′ x0
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Let  be a function of two variables for which the first- and second-order partial derivatives are continuous on some
disk containing the point . Suppose  and  Define the quantity

Then:

i. If  and , then f has a local minimum at .
ii. If  and , then f has a local maximum at .

iii. If , then  has a saddle point at .
iv. If , then the test is inconclusive.

See Figure .

Figure : The second derivative test can often determine whether a function of two variables has local minima (a), local
maxima (b), or a saddle point (c).

To apply the second derivative test, it is necessary that we first find the critical points of the function. There are several steps
involved in the entire procedure, which are outlined in a problem-solving strategy.

Let  be a function of two variables for which the first- and second-order partial derivatives are continuous on some
disk containing the point  To apply the second derivative test to find local extrema, use the following steps:

1. Determine the critical points  of the function  where  Discard any points where at
least one of the partial derivatives does not exist.

2. Calculate the discriminant  for each critical point of .
3. Apply the four cases of the test to determine whether each critical point is a local maximum, local minimum, or saddle

point, or whether the theorem is inconclusive.

Find the critical points for each of the following functions, and use the second derivative test to find the local extrema:

a. 

b. 

Solution

a. Step 1 of the problem-solving strategy involves finding the critical points of . To do this, we first calculate  and 
, then set each of them equal to zero:

 Second Derivative Test

z = f(x, y)
( , )x0 y0 ( , ) = 0fx x0 y0 ( , ) = 0.fy x0 y0

D = ( , ) ( , ) −( ( , ) .fxx x0 y0 fyy x0 y0 fxy x0 y0 )
2

D > 0 ( , ) > 0fxx x0 y0 ( , )x0 y0

D > 0 ( , ) < 0fxx x0 y0 ( , )x0 y0

D < 0 f ( , )x0 y0

D = 0

3.8.4

3.8.4

 Problem-Solving Strategy: Using the Second Derivative Test for Functions of Two Variables

z = f(x, y)
( , ).x0 y0

( , )x0 y0 f ( , ) = ( , ) = 0.fx x0 y0 fy x0 y0

D = ( , ) ( , ) −( ( , )fxx x0 y0 fyy x0 y0 fxy x0 y0 )
2

f

 Example : Using the Second Derivative Test3.8.2

f(x, y) = 4 +9 +8x −36y +24x2 y2

g(x, y) = + +2xy −6x −3y +4
1

3
x3 y2

f (x, y)fx

(x, y)fy
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Setting them equal to zero yields the system of equations

The solution to this system is  and . Therefore  is a critical point of .

Step 2 of the problem-solving strategy involves calculating  To do this, we first calculate the second partial derivatives of 

Therefore, 

Step 3 states to apply the four cases of the test to classify the function's behavior at this critical point.

Since  and  this corresponds to case 1. Therefore,  has a local minimum at  as shown in the
following figure.

Figure 14.7.5

Figure : The function  has a local minimum at  Note the scale on the -axis in this plot is in
thousands.

b. For step 1, we first calculate  and , then set each of them equal to zero:

Setting them equal to zero yields the system of equations

To solve this system, first solve the second equation for . This gives . Substituting this into the first equation

gives

Therefore,  or . Substituting these values into the equation  yields the critical points  and 

.

Step 2 involves calculating the second partial derivatives of :

Then, we find a general formula for :

(x, y)fx

(x, y)fy

= 8x +8

= 18y −36.

8x +8

18y −36

= 0

= 0.

x = −1 y = 2 (−1, 2) f

D.
f :

(x, y)fxx

(x, y)fxy

(x, y)fyy

= 8

= 0

= 18.

D = (−1, 2) (−1, 2) −( (−1, 2) = (8)(18) −(0 = 144.fxx fyy fxy )
2

)2

D > 0 (−1, 2) > 0,fxx f (−1, 2)

3.8.5 f(x, y) (−1, 2, −16). y

(x, y)gx (x, y)gy

(x, y)gx

(x, y)gy

= +2y −6x2

= 2y +2x −3.

+2y −6x2

2y +2x −3

= 0

= 0.

y y =
3 −2x

2

+3 −2x −6x2

−2x −3x2

(x −3)(x +1)

= 0

= 0

= 0.

x = −1 x = 3 y =
3 −2x

2
(−1, )5

2

(3, − )3
2

g

(x, y)gxx

(x, y)gxy

(x, y)gyy

= 2x

= 2

= 2.

D
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Next, we substitute each critical point into this formula:

In step 3, we note that, applying Note to point  leads to case , which means that  is a saddle point. Applying
the theorem to point  leads to case , which means that  corresponds to a local minimum as shown in the
following figure.

Figure : The function  has a local minimum and a saddle point.

Use the second derivative test to find the local extrema of the function

Hint

Follow the problem-solving strategy for applying the second derivative test.

Answer

 is a saddle point,  is a local maximum.

Absolute Maxima and Minima
When finding global extrema of functions of one variable on a closed interval, we start by checking the critical values over that
interval and then evaluate the function at the endpoints of the interval. When working with a function of two variables, the closed
interval is replaced by a closed, bounded set. A set is bounded if all the points in that set can be contained within a ball (or disk) of
finite radius. First, we need to find the critical points inside the set and calculate the corresponding critical values. Then, it is
necessary to find the maximum and minimum value of the function on the boundary of the set. When we have all these values, the
largest function value corresponds to the global maximum and the smallest function value corresponds to the absolute minimum.
First, however, we need to be assured that such values exist. The following theorem does this.

D( , )x0 y0 = ( , ) ( , ) −( ( , )gxx x0 y0 gyy x0 y0 gxy x0 y0 )
2

= (2 )(2) −x0 22

= 4 −4.x0

D (−1, )5
2

D (3, − )3
2

= (2(−1))(2) −(2 = −4 −4 = −8)2

= (2(3))(2) −(2 = 12 −4 = 8.)2

(−1, )5
2

3 (−1, )5
2

(3, − )3
2

1 (3, − )3
2

3.8.6 g(x, y)

 Exercise 3.8.2

f(x, y) = +2xy −6x −4 .x3 y2

( , )4
3

1
3

(− , − )3
2

3
8
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A continuous function  on a closed and bounded set  in the plane attains an absolute maximum value at some point of 
 and an absolute minimum value at some point of .

Now that we know any continuous function  defined on a closed, bounded set attains its extreme values, we need to know how to
find them.

Assume  is a differentiable function of two variables defined on a closed, bounded set . Then  will attain the
absolute maximum value and the absolute minimum value, which are, respectively, the largest and smallest values found
among the following:

1. The values of  at the critical points of  in .
2. The values of  on the boundary of .

The proof of this theorem is a direct consequence of the extreme value theorem and Fermat’s theorem. In particular, if either
extremum is not located on the boundary of , then it is located at an interior point of . But an interior point  of  that’s
an absolute extremum is also a local extremum; hence,  is a critical point of  by Fermat’s theorem. Therefore the only
possible values for the global extrema of  on  are the extreme values of  on the interior or boundary of .

Let  be a continuous function of two variables defined on a closed, bounded set , and assume  is differentiable
on . To find the absolute maximum and minimum values of  on , do the following:

1. Determine the critical points of  in .
2. Calculate  at each of these critical points.
3. Determine the maximum and minimum values of  on the boundary of its domain.
4. The maximum and minimum values of  will occur at one of the values obtained in steps  and .

Finding the maximum and minimum values of  on the boundary of  can be challenging. If the boundary is a rectangle or set of
straight lines, then it is possible to parameterize the line segments and determine the maxima on each of these segments, as seen in
Example . The same approach can be used for other shapes such as circles and ellipses.

If the boundary of the set  is a more complicated curve defined by a function  for some constant , and the first-order
partial derivatives of  exist, then the method of Lagrange multipliers can prove useful for determining the extrema of  on the
boundary which is introduced in Lagrange Multipliers.

Use the problem-solving strategy for finding absolute extrema of a function to determine the absolute extrema of each of the
following functions:

a.  on the domain defined by  and 
b.  on the domain defined by 

Solution

a. Using the problem-solving strategy, step  involves finding the critical points of  on its domain. Therefore, we first
calculate  and , then set them each equal to zero:

Setting them equal to zero yields the system of equations

 Extreme Value Theorem

f(x, y) D

D D

f

 Finding Extreme Values of a Function of Two Variables

z = f(x, y) D f

f f D

f D

D D ( , )x0 y0 D

( , )x0 y0 f

f D f D

 Problem-Solving Strategy: Finding Absolute Maximum and Minimum Values

z = f(x, y) D f

D f D

f D

f

f

f 2 3

f D

3.8.3

D g(x, y) = c c

g f

 Example : Finding Absolute Extrema3.8.3

f(x, y) = −2xy +4 −4x −2y +24x2 y2 0 ≤ x ≤ 4 0 ≤ y ≤ 2
g(x, y) = + +4x −6yx2 y2 + ≤ 16x2 y2

1 f

(x, y)fx (x, y)fy

(x, y)fx

(x, y)fy

= 2x −2y −4

= −2x +8y −2.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64006?pdf


Access for free at OpenStax 3.8.9 https://math.libretexts.org/@go/page/64006

The solution to this system is  and . Therefore  is a critical point of . Calculating  gives 

The next step involves finding the extrema of  on the boundary of its domain. The boundary of its domain consists of four
line segments as shown in the following graph:

Figure : Graph of the domain of the function 

 is the line segment connecting  and , and it can be parameterized by the equations  for 
. Define . This gives . Differentiating  leads to  Therefore,

 has a critical value at , which corresponds to the point . Calculating  gives the -value .

 is the line segment connecting  and , and it can be parameterized by the equations  for 
 Again, define  This gives  Then, . g has a critical

value at , which corresponds to the point  Calculating  gives the -value .

 is the line segment connecting  and , and it can be parameterized by the equations  for 
 Again, define  This gives  The critical value corresponds to the point 

 So, calculating  gives the -value .

 is the line segment connecting  and , and it can be parameterized by the equations  for 
 This time,  and the critical value  correspond to the point . Calculating 

gives the -value 

We also need to find the values of  at the corners of its domain. These corners are located at  and 
:

The absolute maximum value is , which occurs at , and the global minimum value is , which occurs at both 
and  as shown in the following figure.

2x −2y −4

−2x +8y −2

= 0

= 0.

x = 3 y = 1 (3, 1) f f(3, 1) f(3, 1) = 17.

f

3.8.7 f(x, y) = − 2xy + 4 − 4x − 2y + 24.x2 y2

L1 (0, 0) (4, 0) x(t) = t, y(t) = 0
0 ≤ t ≤ 4 g(t) = f(x(t), y(t)) g(t) = −4t +24t2 g g'(t) = 2t −4.
g t = 2 (2, 0) f(2, 0) z 20

L2 (4, 0) (4, 2) x(t) = 4, y(t) = t

0 ≤ t ≤ 2. g(t) = f(x(t), y(t)). g(t) = 4 −10t +24.t2 g'(t) = 8t −10

t = 5
4

(0, ) .5
4

f (0, )5
4

z 27.75

L3 (0, 2) (4, 2) x(t) = t, y(t) = 2
0 ≤ t ≤ 4. g(t) = f(x(t), y(t)). g(t) = −8t +36.t2

(4, 2). f(4, 2) z 20

L4 (0, 0) (0, 2) x(t) = 0, y(t) = t

0 ≤ t ≤ 2. g(t) = 4 −2t +24t2 t = 1
4

(0, )1
4

f (0, )1
4

z 23.75.

f(x, y) (0, 0), (4, 0), (4, 2)
(0, 2)

f(0, 0)

f(4, 0)

f(4, 2)

f(0, 2)

= (0 −2(0)(0) +4(0 −4(0) −2(0) +24 = 24)2 )2

= (4 −2(4)(0) +4(0 −4(4) −2(0) +24 = 24)2 )2

= (4 −2(4)(2) +4(2 −4(4) −2(2) +24 = 20)2 )2

= (0 −2(0)(2) +4(2 −4(0) −2(2) +24 = 36.)2 )2

36 (0, 2) 20 (4, 2)
(2, 0)
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Figure : The function  has two global minima and one global maximum over its domain.

b. Using the problem-solving strategy, step  involves finding the critical points of  on its domain. Therefore, we first
calculate  and , then set them each equal to zero:

Setting them equal to zero yields the system of equations

The solution to this system is  and . Therefore,  is a critical point of . Calculating  we get

The next step involves finding the extrema of g on the boundary of its domain. The boundary of its domain consists of a circle
of radius  centered at the origin as shown in the following graph.

3.8.8 f(x, y)

1 g

(x, y)gx (x, y)gy

(x, y)gx

(x, y)gy

= 2x +4

= 2y −6.

2x +4

2y −6

= 0

= 0.

x = −2 y = 3 (−2, 3) g g(−2, 3),

g(−2, 3) = (−2 + +4(−2) −6(3) = 4 +9 −8 −18 = −13.)2 32

4
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Figure : Graph of the restricted domain of the function .

The boundary of the domain of  can be parameterized using the functions  for .
Define 

Setting  leads to

This equation has two solutions over the interval . One is  and the other is 
. For the first angle,

Therefore,  and , so  is a critical point on the boundary and

For the second angle,

3.8.9 g(x, y) = + + 4x − 6yx2 y2

g x(t) = 4 cos t, y(t) = 4 sin t 0 ≤ t ≤ 2π

h(t) = g(x(t), y(t)) :

h(t) = g(x(t), y(t))

= (4 cos t +(4 sin t +4(4 cos t) −6(4 sin t))2 )2

= 16 t +16 t +16 cos t −24 sin tcos2 sin2

= 16 +16 cos t −24 sin t.

h'(t) = 0

−16 sin t −24 cos t

−16 sin t

−16 sin t

−16 cos t

tan t

= 0

= 24 cos t

=
24 cos t

−16 cos t

= − .
3

2

0 ≤ t ≤ 2π t = π −arctan( )3
2

t = 2π −arctan( )3
2

sin t

cos t

= sin(π −arctan( )) = sin(arctan( )) =3
2

3
2

3 13
−−

√

13

= cos(π −arctan( )) = −cos(arctan( )) = − .3
2

3
2

2 13
−−

√

13

x(t) = 4 cos t = −
8 13√

13
y(t) = 4 sin t =

12 13√

13
(− , )

8 13√

13

12 13√

13

g(− , )
8 13√

13

12 13√

13
= + +4(− )−6( )(− )

8 13√

13

2
( )

12 13√

13

2 8 13√

13

12 13√

13

= + − −
144

13

64

13

32 13
−−

√

13

72 13
−−

√

13

= ≈ −12.844.
208 −104 13

−−
√

13
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Therefore,  and , so  is a critical point on the boundary and

The absolute minimum of  is  which is attained at the point , which is an interior point of . The absolute

maximum of  is approximately equal to 44.844, which is attained at the boundary point . These are the

absolute extrema of  on  as shown in the following figure.

Figure 14.7.10
Figure : The function  has a local minimum and a local maximum.

Use the problem-solving strategy for finding absolute extrema of a function to find the absolute extrema of the function

on the domain defined by  and 

Hint

Calculate  and , and set them equal to zero. Then, calculate  for each critical point and find the extrema of
 on the boundary of .

Answer

The absolute minimum occurs at 

The absolute maximum occurs at 

Pro-  company has developed a profit model that depends on the number  of golf balls sold per month (measured in
thousands), and the number of hours per month of advertising , according to the function

where  is measured in thousands of dollars. The maximum number of golf balls that can be produced and sold is , and
the maximum number of hours of advertising that can be purchased is . Find the values of  and  that maximize profit, and
find the maximum profit.

sin t

cos t

= sin(2π −arctan( )) = −sin(arctan( )) = −3
2

3
2

3 13
−−

√

13

= cos(2π −arctan( )) = cos(arctan( )) = .3
2

3
2

2 13
−−

√

13

x(t) = 4 cos t =
8 13√

13
y(t) = 4 sin t = −

12 13√
13

( , − )8 13√
13

12 13√
13

g( , − )8 13√
13

12 13√
13

= + +4( )−6(− )( )8 13√
13

2
(− )12 13√

13

2
8 13√

13
12 13√

13

= + + +
144

13

64

13

32 13
−−

√

13

72 13
−−

√

13

= ≈ 44.844.
208 +104 13

−−
√

13

g −13, (−2, 3) D

g ( , − )8 13√
13

12 13√
13

g D

3.8.10 f(x, y)

 Exercise :3.8.3

f(x, y) = 4 −2xy +6 −8x +2y +3x2 y2

0 ≤ x ≤ 2 −1 ≤ y ≤ 3.

(x, y)fx (x, y)fy f

f D

(1, 0) : f(1, 0) = −1.

(0, 3) : f(0, 3) = 63.

 Example : Profitable Golf Balls3.8.4

T x

y

z = f(x, y) = 48x +96y − −2xy −9 ,x2 y2

z 50, 000
25 x y
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Figure : (credit: modification of work by oatsy40, Flickr)

Solution

Using the problem-solving strategy, step  involves finding the critical points of  on its domain. Therefore, we first calculate 
 and  then set them each equal to zero:

Setting them equal to zero yields the system of equations

The solution to this system is  and . Therefore  is a critical point of . Calculating  gives 

The domain of this function is  and  as shown in the following graph.

Figure : Graph of the domain of the function 

 is the line segment connecting  and  and it can be parameterized by the equations  for 
 We then define 

Setting  yields the critical point  which corresponds to the point  in the domain of . Calculating 
 gives 

 is the line segment connecting  and , and it can be parameterized by the equations  for 
. Once again, we define 

3.8.11

1 f

(x, y)fx (x, y),fy

(x, y)fx

(x, y)fy

= 48 −2x −2y

= 96 −2x −18y.

48 −2x −2y

96 −2x −18y

= 0

= 0.

x = 21 y = 3 (21, 3) f f(21, 3)

f(21, 3) = 48(21) +96(3) − −2(21)(3) −9(3 = 648.212 )2

0 ≤ x ≤ 50 0 ≤ y ≤ 25

3.8.12 f(x, y) = 48x + 96y − − 2xy − 9 .x2 y2

L1 (0, 0) (50, 0), x(t) = t, y(t) = 0
0 ≤ t ≤ 50. g(t) = f(x(t), y(t)) :

g(t) = f(x(t), y(t))

= f(t, 0)

= 48t +96(0) − −2(t)(0) −9(0y2 )2

= 48t − .t2

g'(t) = 0 t = 24, (24, 0) f

f(24, 0) 576.

L2 (50, 0) (50, 25) x(t) = 50, y(t) = t

0 ≤ t ≤ 25 g(t) = f(x(t), y(t)) :
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This function has a critical point at , which corresponds to the point . This point is not in the domain of .

 is the line segment connecting  and , and it can be parameterized by the equations  for 
. We define :

This function has a critical point at , which corresponds to the point  which is not in the domain.

 is the line segment connecting  to , and it can be parameterized by the equations  for 
. We define :

This function has a critical point at , which corresponds to the point , which is on the boundary of the domain.
Calculating  gives .

We also need to find the values of  at the corners of its domain. These corners are located at  and 
:

The maximum value is , which occurs at . Therefore, a maximum profit of  is realized when  golf
balls are sold and  hours of advertising are purchased per month as shown in the following figure.

g(t) = f(x(t), y(t))

= f(50, t)

= 48(50) +96t − −2(50)t −9502 t2

= −9 −4t −100.t2

t = − 2
9

(50, −29) f

L3 (0, 25) (50, 25) x(t) = t, y(t) = 25
0 ≤ t ≤ 50 g(t) = f(x(t), y(t))

g(t) = f(x(t), y(t))

= f(t, 25)

= 48t +96(25) − −2t(25) −9( )t2 252

= − −2t −3225.t2

t = −1 (−1, 25),

L4 (0, 0) (0, 25) x(t) = 0, y(t) = t

0 ≤ t ≤ 25 g(t) = f(x(t), y(t))

g(t) = f(x(t), y(t))

= f(0, t)

= 48(0) +96t −(0 −2(0)t −9)2 t2

= 96t −9 .t2

t = 16
3

(0, )16
3

f (0, )16
3

256

f(x, y) (0, 0), (50, 0), (50, 25)
(0, 25)

f(0, 0)

f(50, 0)

f(50, 25)

f(0, 25)

= 48(0) +96(0) −(0 −2(0)(0) −9(0 = 0)2 )2

= 48(50) +96(0) −(50 −2(50)(0) −9(0 = −100)2 )2

= 48(50) +96(25) −(50 −2(50)(25) −9(25 = −5825)2 )2

= 48(0) +96(25) −(0 −2(0)(25) −9(25 = −3225.)2 )2

648 (21, 3) $648, 000 21, 000
3
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Figure : The profit function  has a maximum at .

Key Concepts
A critical point of the function  is any point  where either , or at least one of 

 and  do not exist.
A saddle point is a point  where , but  is neither a maximum nor a minimum at
that point.
To find extrema of functions of two variables, first find the critical points, then calculate the discriminant and apply the second
derivative test.

Key Equations
Discriminant

Glossary

critical point of a function of two variables

the point  is called a critical point of  if one of the two following conditions holds:

1. 

2. At least one of  and  do not exist

discriminant
the discriminant of the function  is given by the formula 

saddle point
given the function  the point  is a saddle point if both  and , but 
does not have a local extremum at 
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( , )x0 y0 f(x, y)
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3.9: Lagrange Multipliers

Use the method of Lagrange multipliers to solve optimization problems with one constraint.
Use the method of Lagrange multipliers to solve optimization problems with two constraints.

Solving optimization problems for functions of two or more variables can be similar to solving such problems in single-variable
calculus. However, techniques for dealing with multiple variables allow us to solve more varied optimization problems for which
we need to deal with additional conditions or constraints. In this section, we examine one of the more common and useful methods
for solving optimization problems with constraints.

Lagrange Multipliers
In the previous section, an applied situation was explored involving maximizing a profit function, subject to certain constraints. In
that example, the constraints involved a maximum number of golf balls that could be produced and sold in  month  and a
maximum number of advertising hours that could be purchased per month . Suppose these were combined into a single
budgetary constraint, such as , that took into account both the cost of producing the golf balls and the number of
advertising hours purchased per month. The goal is still to maximize profit, but now there is a different type of constraint on the
values of  and . This constraint and the corresponding profit function

is an example of an optimization problem, and the function  is called the objective function. A graph of various level
curves of the function  follows.

Figure : Graph showing level curves of the function  corresponding to 
 and 

In Figure , the value  represents different profit levels (i.e., values of the function ). As the value of  increases, the curve
shifts to the right. Since our goal is to maximize profit, we want to choose a curve as far to the right as possible. If there were no
restrictions on the number of golf balls the company could produce or the number of units of advertising available, then we could
produce as many golf balls as we want, and advertise as much as we want, and there would be not be a maximum profit for the
company. Unfortunately, we have a budgetary constraint that is modeled by the inequality  To see how this
constraint interacts with the profit function, Figure  shows the graph of the line  superimposed on the
previous graph.

 Learning Objectives

1 (x),
(y)

20x+4y ≤ 216

x y

f(x, y) = 48x+96y− −2xy−9x2 y2

f(x, y)
f(x, y)

3.9.1 f(x,y) = 48x+ 96y− − 2xy− 9x2 y2

c = 150, 250, 350, 400.

3.9.1 c f c

20x+4y ≤ 216.
3.9.2 20x+4y = 216
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Figure : Graph of level curves of the function  corresponding to 
and . The red graph is the constraint function.

As mentioned previously, the maximum profit occurs when the level curve is as far to the right as possible. However, the level of
production corresponding to this maximum profit must also satisfy the budgetary constraint, so the point at which this profit occurs
must also lie on (or to the left of) the red line in Figure . Inspection of this graph reveals that this point exists where the line is
tangent to the level curve of . Trial and error reveals that this profit level seems to be around , when  and  are both just less
than . We return to the solution of this problem later in this section. From a theoretical standpoint, at the point where the profit
curve is tangent to the constraint line, the gradient of both of the functions evaluated at that point must point in the same (or
opposite) direction. Recall that the gradient of a function of more than one variable is a vector. If two vectors point in the same (or
opposite) directions, then one must be a constant multiple of the other. This idea is the basis of the method of Lagrange
multipliers.

Theorem : Let  and  be functions of two variables with continuous partial derivatives at every point of some open set
containing the smooth curve  Suppose that , when restricted to points on the curve , has a local
extremum at the point  and that . Then there is a number  called a Lagrange multiplier, for which

Assume that a constrained extremum occurs at the point  Furthermore, we assume that the equation  can
be smoothly parameterized as

where  is an arc length parameter with reference point  at . Therefore, the quantity  has a

relative maximum or relative minimum at , and this implies that  at that point. From the chain rule,

where the derivatives are all evaluated at . However, the first factor in the dot product is the gradient of , and the second
factor is the unit tangent vector  to the constraint curve. Since the point  corresponds to , it follows from
this equation that

3.9.2 f(x,y) = 48x+ 96y− − 2xy− 9x2 y2 c = 150, 250, 350,
395

3.9.2
f 395 x y

5

 Method of Lagrange Multipliers: One Constraint

3.9.1 f g

g(x, y) = 0. f g(x, y) = 0

( , )x0 y0 g( , ) ≠ 0∇
⇀

x0 y0 λ

f( , ) = λ g( , ).∇
⇀

x0 y0 ∇
⇀

x0 y0

 Proof

( , ).x0 y0 g(x, y) = 0

x = x(s) and y = y(s)

s ( , )x0 y0 s = 0 z = f(x(s), y(s))

s = 0 = 0
dz

ds

dz

ds
= ⋅ + ⋅

∂f

∂x

∂x

∂s

∂f

∂y

∂y

∂s

=( + ) ⋅( + )
∂f

∂x
î

∂f

∂y
ĵ

∂x

∂s
î

∂y

∂s
ĵ

= 0,

s = 0 f

(0)T⃗  ( , )x0 y0 s = 0

f( , ) ⋅ (0) = 0,∇
⇀

x0 y0 T
⇀
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which implies that the gradient is either the zero vector  or it is normal to the constraint curve at a constrained relative
extremum. However, the constraint curve  is a level curve for the function  so that if  then 

 is normal to this curve at  It follows, then, that there is some scalar  such that

To apply Theorem  to an optimization problem similar to that for the golf ball manufacturer, we need a problem-solving
strategy.

1. Determine the objective function  and the constraint function  Does the optimization problem involve
maximizing or minimizing the objective function?

2. Set up a system of equations using the following template:

3. Solve for  and .
4. The largest of the values of  at the solutions found in step  maximizes ; the smallest of those values minimizes .

Use the method of Lagrange multipliers to find the minimum value of  subject to the constraint 

Solution

Let’s follow the problem-solving strategy:

1. The objective function is  To determine the constraint function, we must first subtract 
from both sides of the constraint. This gives  The constraint function is equal to the left-hand side, so 

. The problem asks us to solve for the minimum value of , subject to the constraint (Figure ).

Figure : Graph of level curves of the function  corresponding to  and . The red
graph is the constraint function.

2. We then must calculate the gradients of both  and :

The equation  becomes

0
⇀

g(x, y) = 0 g(x, y) g( , ) ≠ 0∇
⇀

x0 y0

g( , )∇
⇀

x0 y0 ( , )x0 y0 λ

f( , ) = λ g( , )∇
⇀

x0 y0 ∇
⇀

x0 y0

□

3.9.1

 Problem-Solving Strategy: Steps for Using Lagrange Multipliers

f(x, y) g(x, y).

.
f( , )∇

⇀
x0 y0

g( , )x0 y0

= λ g( , )∇
⇀

x0 y0

= 0

(3.9.1)

(3.9.2)

x0 y0

f 3 f f

 Example : Using Lagrange Multipliers3.9.1

f(x, y) = +4 −2x+8yx2 y2

x+2y = 7.

f(x, y) = +4 −2x+8y.x2 y2 7
x+2y−7 = 0.

g(x, y) = x+2y−7 f 3.9.3

3.9.3 f(x,y) = + 4 − 2x+ 8yx2 y2 c = 10 26

f g

f (x, y)∇
⇀

g (x, y)∇
⇀

= (2x−2) +(8y+8)î ĵ

= +2 .î ĵ

f ( , ) = λ g ( , )∇
⇀

x0 y0 ∇
⇀

x0 y0
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which can be rewritten as

Next, we set the coefficients of  and  equal to each other:

The equation  becomes . Therefore, the system of equations that needs to be solved is

3. This is a linear system of three equations in three variables. We start by solving the second equation for  and substituting it
into the first equation. This gives , so substituting this into the first equation gives

Solving this equation for  gives . We then substitute this into the third equation:

Since  this gives 

4. Next, we evaluate  at the point ,

To ensure this corresponds to a minimum value on the constraint function, let’s try some other points on the constraint from
either side of the point , such as the intercepts of , Which are  and .

We get  and .

So it appears that  has a relative minimum of  at , subject to the given constraint.

Use the method of Lagrange multipliers to find the maximum value of

subject to the constraint 

Hint

Use the problem-solving strategy for the method of Lagrange multipliers.

Answer

Subject to the given constraint,  has a maximum value of  at the point .

Let’s now return to the problem posed at the beginning of the section.

(2 −2) +(8 +8) = λ( +2 ) ,x0 î y0 ĵ î ĵ

(2 −2) +(8 +8) = λ +2λ .x0 î y0 ĵ î ĵ

î ĵ

2 −2x0

8 +8y0

= λ

= 2λ.

g ( , ) = 0x0 y0 +2 −7 = 0x0 y0

2 −2x0

8 +8y0

+2 −7x0 y0

= λ

= 2λ
= 0.

λ

λ = 4 +4y0

2 −2 = 4 +4.x0 y0

x0 = 2 +3x0 y0

(2 +3) +2 −7 = 0y0 y0

4 −4 = 0y0

= 1.y0

= 2 +3,x0 y0 = 5.x0

f(x, y) = +4 −2x+8yx2 y2 (5, 1)

f(5, 1) = +4(1 −2(5) +8(1) = 27.52 )2

(5, 1) g(x, y) = 0 (7, 0) (0, 3.5)

f(7, 0) = 35 > 27 f(0, 3.5) = 77 > 27

f 27 (5, 1)

 Exercise 3.9.1

f(x, y) = 9 +36xy−4 −18x−8yx2 y2

3x+4y = 32.

f 976 (8, 2)
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The golf ball manufacturer, Pro-T, has developed a profit model that depends on the number  of golf balls sold per month
(measured in thousands), and the number of hours per month of advertising y, according to the function

where  is measured in thousands of dollars. The budgetary constraint function relating the cost of the production of thousands
golf balls and advertising units is given by  Find the values of  and  that maximize profit, and find the
maximum profit.

Solution:

Again, we follow the problem-solving strategy:

1. The objective function is  To determine the constraint function, we first subtract 
 from both sides of the constraint, then divide both sides by , which gives  The constraint function is

equal to the left-hand side, so  The problem asks us to solve for the maximum value of , subject to
this constraint.

2. So, we calculate the gradients of both  and :

The equation  becomes

which can be rewritten as

We then set the coefficients of  and  equal to each other:

The equation  becomes . Therefore, the system of equations that needs to be solved is

3. We use the left-hand side of the second equation to replace  in the first equation:

Then we substitute this into the third equation:

Since  this gives 

 Example : Golf Balls and Lagrange Multipliers3.9.2

x

z = f(x, y) = 48x+96y− −2xy−9 ,x2 y2

z

20x+4y = 216. x y

f(x, y) = 48x+96y− −2xy−9 .x2 y2

216 4 5x+y−54 = 0.
g(x, y) = 5x+y−54. f

f g

f(x, y)∇
⇀

g(x, y)∇
⇀

= (48 −2x−2y) +(96 −2x−18y)î ĵ

= 5 + .î ĵ

f( , ) = λ g( , )∇
⇀

x0 y0 ∇
⇀

x0 y0

(48 −2 −2 ) +(96 −2 −18 ) = λ(5 + ),x0 y0 î x0 y0 ĵ î ĵ

(48 −2 −2 ) +(96 −2 −18 ) = λ5 +λ .x0 y0 î x0 y0 ĵ î ĵ

î ĵ

48 −2 −2 = 5λx0 y0

96 −2 −18 = λ.x0 y0

g( , ) = 0x0 y0 5 + −54 = 0x0 y0

48 −2 −2 = 5λx0 y0

96 −2 −18 = λx0 y0

5 + −54 = 0.x0 y0

λ

48 −2 −2x0 y0

48 −2 −2x0 y0

8x0

x0

= 5(96 −2 −18 )x0 y0

= 480 −10 −90x0 y0

= 432 −88y0

= 54 −11 .y0

5(54 −11 ) + −54y0 y0

270 −55 + −54y0 y0

216 −54y0

y0

= 0

= 0

= 0

= 4.

= 54 −11 ,x0 y0 = 10.x0
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4. We then substitute  into  which gives

Therefore the maximum profit that can be attained, subject to budgetary constraints, is  with a production level of
 golf balls and  hours of advertising bought per month. Let’s check to make sure this truly is a maximum. The

endpoints of the line that defines the constraint are  and  Let’s evaluate  at both of these points:

The second value represents a loss, since no golf balls are produced. Neither of these values exceed , so it seems that
our extremum is a maximum value of , subject to the given constraint.

A company has determined that its production level is given by the Cobb-Douglas function  where 
represents the total number of labor hours in  year and  represents the total capital input for the company. Suppose  unit of
labor costs  and  unit of capital costs . Use the method of Lagrange multipliers to find the maximum value of 

 subject to a budgetary constraint of  per year.

Hint

Use the problem-solving strategy for the method of Lagrange multipliers.

Answer

Subject to the given constraint, a maximum production level of  occurs with  labor hours and  of total
capital input.

In the case of an objective function with three variables and a single constraint function, it is possible to use the method of
Lagrange multipliers to solve an optimization problem as well. An example of an objective function with three variables could be
the Cobb-Douglas function in Exercise :  where  represents the cost of labor,  represents capital
input, and  represents the cost of advertising. The method is the same as for the method with a function of two variables; the
equations to be solved are

Maximize the function  subject to the constraint 

Solution

1. The objective function is  To determine the constraint function, we subtract  from each side of
the constraint:  which gives the constraint function as 

2. Next, we calculate  and 

(10, 4) f(x, y) = 48x+96y− −2xy−9 ,x2 y2

f(10, 4) = 48(10) +96(4) −(10 −2(10)(4) −9(4)2 )2

= 480 +384 −100 −80 −144

= 540.

$540, 000
10, 000 4

(10.8, 0) (0, 54) f

f(10.8, 0)

f(0, 54)

= 48(10.8) +96(0) − −2(10.8)(0) −9( )10.82 02

= 401.76

= 48(0) +96(54) − −2(0)(54) −9( )02 542

= −21, 060.

540
f

 Exercise : Optimizing the Cobb-Douglas function3.9.2

f(x, y) = 2.5x0.45y0.55 x

1 y 1
$40 1 $50

f(x, y) = 2.5x0.45y0.55 $500, 000

13890 5625 $5500

3.9.2 f(x, y, z) = ,x0.2y0.4z0.4 x y

z

f(x, y, z)∇
⇀

g(x, y, z)

= λ g(x, y, z)∇
⇀

= 0.

 Example : Lagrange Multipliers with a Three-Variable objective function3.9.3

f(x, y, z) = + +x2 y2 z2 x+y+z = 1.

f(x, y, z) = + + .x2 y2 z2 1
x+y+z−1 = 0 g(x, y, z) = x+y+z−1.

f(x, y, z)∇
⇀

g(x, y, z) :∇
⇀

f(x, y, z)∇
⇀

g(x, y, z)∇
⇀

= ⟨2x, 2y, 2z⟩

= ⟨1, 1, 1⟩.
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This leads to the equations

which can be rewritten in the following form:

3. Since each of the first three equations has  on the right-hand side, we know that  and all three variables
are equal to each other. Substituting  and  into the last equation yields  so  and 
and  which corresponds to a critical point on the constraint curve.

4. Then, we evaluate  at the point :

Therefore, a possible extremum of the function is . To verify it is a minimum, choose other points that satisfy the constraint
from either side of the point we obtained above and calculate  at those points. For example,

Both of these values are greater than , leading us to believe the extremum is a minimum, subject to the given constraint.

Use the method of Lagrange multipliers to find the minimum value of the function

subject to the constraint 

Hint

Use the problem-solving strategy for the method of Lagrange multipliers with an objective function of three variables.

Answer

Evaluating  at both points we obtained, gives us,

Since the constraint is continuous, we compare these values and conclude that  has a relative minimum of  at the

point , subject to the given constraint.

Problems with Two Constraints
The method of Lagrange multipliers can be applied to problems with more than one constraint. In this case the objective function, 

 is a function of three variables:

⟨2 , 2 , 2 ⟩x0 y0 z0

+ + −1x0 y0 z0

= λ⟨1, 1, 1⟩

= 0

2x0

2y0

2z0

+ + −1x0 y0 z0

= λ

= λ

= λ

= 0.

λ 2 = 2 = 2x0 y0 z0

=y0 x0 =z0 x0 3 −1 = 0,x0 =x0
1
3

=y0
1
3

=z0
1
3

f ( , , )1
3

1
3

1
3

f ( , , ) = + + = =
1

3

1

3

1

3
( )

1

3

2

( )
1

3

2

( )
1

3

2 3

9

1

3

1
3

f

f(1, 0, 0)

f(0, −2, 3)

= + + = 112 02 02

= +(−2 + = 13.02 )2 32

1
3

 Exercise 3.9.3

f(x, y, z) = x+y+z

+ + = 1.x2 y2 z2

f

f ( , , ) = + + =
3
–

√

3

3
–

√

3

3
–

√

3

3
–

√

3

3
–

√

3

3
–

√

3
3
–

√

f (− , − , − ) = − − − = −
3
–

√

3

3
–

√

3

3
–

√

3

3
–

√

3

3
–

√

3

3
–

√

3
3
–

√
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–

√
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3
–
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3
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–
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–
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and it is subject to two constraints:

There are two Lagrange multipliers,  and , and the system of equations becomes

Find the maximum and minimum values of the function

subject to the constraints  and 

Solution

Let’s follow the problem-solving strategy:

1. The objective function is  To determine the constraint functions, we first subtract  from both
sides of the first constraint, which gives , so . The second constraint function
is 

2. We then calculate the gradients of  and :

The equation  becomes

which can be rewritten as

Next, we set the coefficients of  and  equal to each other:

The two equations that arise from the constraints are  and . Combining these equations
with the previous three equations gives

3. The first three equations contain the variable . Solving the third equation for  and replacing into the first and second
equations reduces the number of equations to four:

w = f(x, y, z)

g(x, y, z) = 0 and h(x, y, z) = 0.

λ1 λ2

f( , , )∇
⇀

x0 y0 z0

g( , , )x0 y0 z0

h( , , )x0 y0 z0

= g( , , ) + h( , , )λ1∇
⇀

x0 y0 z0 λ2∇
⇀

x0 y0 z0

= 0

= 0

 Example : Lagrange Multipliers with Two Constraints3.9.4

f(x, y, z) = + +x2 y2 z2

= +z2 x2 y2 x+y−z+1 = 0.

f(x, y, z) = + + .x2 y2 z2 z2

+ − = 0x2 y2 z2 g(x, y, z) = + −x2 y2 z2

h(x, y, z) = x+y−z+1.
f , g, h

f(x, y, z)∇
⇀

g(x, y, z)∇
⇀

h(x, y, z)∇
⇀

= 2x +2y +2zî ĵ k̂

= 2x +2y −2zî ĵ k̂

= + − .î ĵ k̂

f( , , ) = g( , , ) + h( , , )∇
⇀

x0 y0 z0 λ1∇
⇀

x0 y0 z0 λ2∇
⇀

x0 y0 z0

2 +2 +2 = (2 +2 −2 ) + ( + − ),x0 î y0 ĵ z0k̂ λ1 x0 î y0 ĵ z0k̂ λ2 î ĵ k̂

2 +2 +2 = (2 + ) +(2 + ) −(2 + ) .x0 î y0 ĵ z0k̂ λ1x0 λ2 î λ1y0 λ2 ĵ λ1z0 λ2 k̂

î ĵ

2x0

2y0

2z0

= 2 +λ1x0 λ2

= 2 +λ1y0 λ2

= −2 − .λ1z0 λ2

= +z2
0 x2

0 y2
0 + − +1 = 0x0 y0 z0

2x0

2y0

2z0

z2
0

+ − +1x0 y0 z0

= 2 +λ1x0 λ2

= 2 +λ1y0 λ2

= −2 −λ1z0 λ2

= +x2
0 y2

0

= 0.

λ2 λ2
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Next, we solve the first and second equation for . The first equation gives , the second equation gives 

. We set the right-hand side of each equation equal to each other and cross-multiply:

Therefore, either  or . If , then the first constraint becomes . The only real solution to
this equation is  and , which gives the ordered triple . This point does not satisfy the second
constraint, so it is not a solution. Next, we consider , which reduces the number of equations to three:

We substitute the first equation into the second and third equations:

Then, we solve the second equation for , which gives . We then substitute this into the first equation,

and use the quadratic formula to solve for :

Recall , so this solves for  as well. Then, , so

Therefore, there are two ordered triplet solutions:

4. We substitute  into , which gives

2x0

2y0

z2
0

+ − +1x0 y0 z0

= 2 −2 −2λ1x0 λ1z0 z0

= 2 −2 −2λ1y0 λ1z0 z0

= +x2
0 y2

0

= 0.

λ1 =λ1
+x0 z0

−x0 z0

=λ1
+y0 z0

−y0 z0

+x0 z0

−x0 z0

( + )( − )x0 z0 y0 z0

− + −x0y0 x0z0 y0z0 z2
0

2 −2y0z0 x0z0

2 ( − )z0 y0 x0

=
+y0 z0

−y0 z0

= ( − )( + )x0 z0 y0 z0

= + − −x0y0 x0z0 y0z0 z2
0

= 0

= 0.

= 0z0 =y0 x0 = 0z0 0 = +x2
0 y2

0

= 0x0 = 0y0 (0, 0, 0)
=y0 x0
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z2
0
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0 y2

0

= 0.

z2
0
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0
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0 x0
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0
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Then, we substitute  into , which gives

 is the maximum value and  is the minimum value of , subject to the given constraints.

Use the method of Lagrange multipliers to find the minimum value of the function

subject to the constraints  and 

Hint

Use the problem-solving strategy for the method of Lagrange multipliers with two constraints.

Answer

 is a minimum value of , subject to the given constraints.

Key Concepts
An objective function combined with one or more constraints is an example of an optimization problem.
To solve optimization problems, we apply the method of Lagrange multipliers using a four-step problem-solving strategy.

Key Equations
Method of Lagrange multipliers, one constraint

Method of Lagrange multipliers, two constraints

Glossary

constraint
an inequality or equation involving one or more variables that is used in an optimization problem; the constraint enforces a limit
on the possible solutions for the problem

Lagrange multiplier
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 Exercise 3.9.4

f(x, y, z) = + +x2 y2 z2

2x+y+2z = 9 5x+5y+7z = 29.
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f( , ) = λ g( , )∇
⇀

x0 y0 ∇
⇀

x0 y0

g( , ) = 0x0 y0
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the constant (or constants) used in the method of Lagrange multipliers; in the case of one constant, it is represented by the
variable 

method of Lagrange multipliers
a method of solving an optimization problem subject to one or more constraints

objective function
the function that is to be maximized or minimized in an optimization problem

optimization problem
calculation of a maximum or minimum value of a function of several variables, often using Lagrange multipliers
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3.E: Differentiation of Functions of Several Variables (Exercise)

3.2: Functions of Several Variables 

For the following exercises, evaluate each function at the indicated values.

1)  Find 

Solution:

2) . Find 

3) The volume of a right circular cylinder is calculated by a function of two variables,  where  is the radius of the
right circular cylinder and  represents the height of the cylinder. Evaluate  and explain what this means.

Solution:  This is the volume when the radius is  and the height is .

4) An oxygen tank is constructed of a right cylinder of height  and radius  with two hemispheres of radius  mounted on the top
and bottom of the cylinder. Express the volume of the cylinder as a function of two variables,  and , find , and explain
what this means.

For the following exercises, find the domain of the function. Graph the domain as a region in xy-plane.

5) 

Solution:All points in the 

6) 

7) 

Solution:

8) 

9) 

Solution:All real ordered pairs in the  of the form 

10) 

Find the range of the functions.

11) 

Solution:

12) 

13) 

Solution:The set 

For the following exercises, find the level curves of each function at the indicated value of  to visualize the given function. Graph
the level curves in xy-plane.

14) 

15) 

Solution:  a hyperbola

16) 

17) 

Solution:  a line;  line through the origin

W (x, y) = 4 + .x2 y2 W (2, −1),W (−3, 6).

17, 72

W (x, y) = 4 +x2 y2 W (2 +h, 3 +h).

V (x, y) = π y,x2 x

y V (2, 5)

20π. 2 5

y x x

x y V (10, 2)

V (x, y) = 4 +x2 y2

xy−plane

f(x, y) = + −4x2 y2
− −−−−−−−−

√

f(x, y) = 4ln( −x)y2

x < y2

g(x, y) = 16 −4 −x2 y2
− −−−−−−−−−−

√

z(x, y) = −y2 x2

xy−plane (a, b)

f(x, y) =
y+2

x2

g(x, y) = 16 −4 −x2 y2
− −−−−−−−−−−

√

z|0 ≤ z ≤ 4

V (x, y) = 4 +x2 y2

z = −y2 x2

R

c

z(x, y) = − , c = 1y2 x2

z(x, y) = − , c = 4y2 x2

− = 4,y2 x2

g(x, y) = + ; c = 4, c = 9x2 y2

g(x, y) = 4 −x−y; c = 0, 4

4 = x+y, x+y = 0,
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18) 

19) 

Solution:  three lines

20) 

21) 

Solution:

22) 

23) 

Solution:

24) 

25) 

Solution:

26) 

27) 

Solution:

28) 

29) any constant

Solution:The level curves are parabolas of the form 

For the following exercises, find the vertical traces of the functions at the indicated values of  and , and plot the traces.

30) 

31) 

Solution:  a curve in the zy-plane. 

32) 

Find the domain of the following functions.

33) 

f(x, y) = xy; c = 1; c = −1

h(x, y) = 2x−y; c = 0, −2, 2

2x−y = 0, 2x−y = −2, 2x−y = 2;

f(x, y) = −y; c = 1, 2x2

g(x, y) = ; c = −1, 0, 2
x

x+y

= −1, = 0, = 2
x

x+y

x

x+y

x

x+y

g(x, y) = −y; c = −1, 0, 2x3

g(x, y) = ; c = , 3exy
1

2

= , = 3exy
1

2
exy

f(x, y) = ; c = 4, 9x2

f(x, y) = xy−x; c = −2, 0, 2

xy−x = −2, xy−x = 0, xy−x = 2

h(x, y) = ln( + ); c = −1, 0, 1x2 y2

g(x, y) = ln( ); c = −2, 0, 2
y

x2

= y, y = , y =e−2x2 x2 e2x2

z = f(x, y) = , c = 3+x2 y2
− −−−−−

√

f(x, y) = , c =
y+2

x2

y = c −2.x2

x y

z = 4 −x−y; x = 2

f(x, y) = 3x+ , x = 1y3

z = 3 + ,y3

z = cos x = 1+x2 y2
− −−−−−

√

z = 100 −4 −25x2 y2
− −−−−−−−−−−−−−

√
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Solution:

34) 

35) 

Solution:

36) 

37) 

Solution:All points in 

38) 

For the following exercises, plot a graph of the function.

39) 

Solution:

40) 

41) Use technology to graph 

Solution:

Sketch the following by finding the level curves. Verify the graph using technology.

42) 

43) 

Solution:

+ ≤ 1
x2

25

y2

4

z = ln(x− )y2

f(x, y, z) =
1

36 −4 −9 −x2 y2 z2
− −−−−−−−−−−−−−−−

√

+ + < 1
x2

9

y2

4

z2

36

f(x, y, z) = 49 − − −x2 y2 z2
− −−−−−−−−−−−−−

√

f(x, y, z) = 16 − − −x2 y2 z2
− −−−−−−−−−−−−−

√3

xyz−space

f(x, y) = cos +x2 y2
− −−−−−

√

z = f(x, y) = +x2 y2
− −−−−−

√

z = +x2 y2

z = y.x2

f(x, y) = 4 − −x2 y2
− −−−−−−−−

√

f(x, y) = 2 − +x2 y2
− −−−−−

√
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44) 

45) 

Solution:

46) 

47) Describe the contour lines for several values of  for 

Solution:The contour lines are circles.

Find the level surface for the functions of three variables and describe it.

48) 

49) 

Solution: , a sphere of radius 

50) 

51) 

Solution:  a hyperboloid of one sheet

52) 

For the following exercises, find an equation of the level curve of  that contains the point .

53) 

Solution:

54) 

55) 

Solution:

z = 1 +e− −x2 y2

z = cos +x2 y2
− −−−−−

√

z = −y2 x2

c z = + −2x−2y.x2 y2

w(x, y, z) = x−2y+z, c = 4

w(x, y, z) = + + , c = 9x2 y2 z2

+ + = 9x2 y2 z2 3

w(x, y, z) = + − , c = −4x2 y2 z2

w(x, y, z) = + − , c = 4x2 y2 z2

+ − = 4,x2 y2 z2

w(x, y, z) = 9 −4 +36 , c = 0x2 y2 z2

f P

f(x, y) = 1 −4 − ,P (0, 1)x2 y2

4 + = 1,x2 y2

g(x, y) = arctanx,P (1, 2)y2

g(x, y) = ( + ),P (1, 0)exy x2 y2

1 = ( + )exy x2 y2
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56) The strength  of an electric field at point  resulting from an infinitely long charged wire lying along the  is

given by , where  is a positive constant. For simplicity, let  and find the equations of the level

surfaces for  and 

57) A thin plate made of iron is located in the  The temperature  in degrees Celsius at a point  is inversely
proportional to the square of its distance from the origin. Express  as a function of  and .

Solution:

58) Refer to the preceding problem. Using the temperature function found there, determine the proportionality constant if the
temperature at point  is  Use this constant to determine the temperature at point 

59) Refer to the preceding problem. Find the level curves for  and  and describe what the level curves
represent.

Solution: . The level curves represent circles of radii  and 

3.3: Limits and Continuity 

For the following exercises, find the limit of the function.

1) 6.2E: Exercises

2) 

Solution:

3) Show that the limit  exists and is the same along the paths:  and , and along .

For the following exercises, evaluate the limits at the indicated values of  and . If the limit does not exist, state this and explain
why the limit does not exist.

4) 

Solution:

5) 

6) 

Solution:

7) 

8) 

Solution:

9) 

10) 

E (x, y, z) y−axis

E(x, y, z) = k/ +x2 y2
− −−−−−

√ k k = 1

E = 10 E = 100.

xy−plane. T P (x, y)
T x y

T (x, y) =
k

+x2 y2

P (1, 2) 50°C. Q(3, 4).

T = 40°C T = 100°C,

+ = , + =x2 y2 k

40
x2 y2 k

100
/2010k

−−−
√ /10k

−−
√

xlim
(x,y)→(1,2)

lim
(x,y)→(1,2)

5 yx2

+x2 y2

2.0

lim
(x,y)→(0,0)

5 yx2

+x2 y2
y−axis x−axis y = x

x y

lim
(x,y)→(0,0)

4 +10 +4x2 y2

4 −10 +6x2 y2

2

3

lim
(x,y)→(11,13)

1

xy

−−−

√

lim
(x,y)→(0,1)

sinxy2

x

1

sin( )lim
(x,y)→(0,0)

+x8 y7

x−y+10

lim
(x,y)→(π/4,1)

ytanx

y+1

1

2

lim
(x,y)→(0,π/4)

secx+2

3x− tany

( − )lim
(x,y)→(2,5)

1

x

5

y
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Solution:

11) 

12) 

Solution:

13) 

14) 

Solution:

15) 

16) 

Solution:

17) 

18) 

Solution:The limit does not exist because when  and  both approach zero, the function approaches , which is undefined
(approaches negative infinity).

For the following exercises, complete the statement.

19) A point  in a plane region  is an interior point of  if _________________.

20) A point  in a plane region R is called a boundary point of  if ___________.

Solution:every open disk centered at  contains points inside  and outside 

For the following exercises, use algebraic techniques to evaluate the limit.

21) 

22) 

Solution:

23) 

24) 

Solution:The limit does not exist.

For the following exercises, evaluate the limits of the functions of three variables.

25) 

26) 

Solution:The limit does not exist.

−
1

2

xlnylim
(x,y)→(4,4)

lim
(x,y)→(4,4)

e− −x2 y2

e−32

lim
(x,y)→(0,0)

9 − −x2 y2
− −−−−−−−−

√

( − +3x+2y)lim
(x,y)→(1,2)

x2y3 x3y2

11.0

xsin( )lim
(x,y)→(π,π)

x+y

4

lim
(x,y)→(0,0)

xy+1

+ +1x2 y2

1.0

lim
(x,y)→(0,0)

+x2 y2

−1+ +1x2 y2
− −−−−−−−−

√

ln( + )lim
(x,y)→(0,0)

x2 y2

x y ln0

( , )x0 y0 R R

( , )x0 y0 R

( , )x0 y0 R R

lim
(x,y)→(2,1)

x−y−1

−1x−y− −−−−
√

lim
(x,y)→(0,0)

−4x4 y4

+2x2 y2

0.0

lim
(x,y)→(0,0)

−x3 y3

x−y

lim
(x,y)→(0,0)

−xyx2

−x−−√ y√

lim(x,y,z)→(1,2,3)
x − zz2 y2

xyz−1

lim
(x,y,z)→(0,0,0)

− −x2 y2 z2

+ −x2 y2 z2
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For the following exercises, evaluate the limit of the function by determining the value the function approaches along the indicated
paths. If the limit does not exist, explain why not.

27) 

a. Along the  

b. Along the  

c. Along the path 

28) Evaluate  using the results of previous problem.

Solution:The limit does not exist. The function approaches two different values along different paths.

29) 

a. Along the  

b. Along the  

c. Along the path 

30) Evaluate  using the results of previous problem.

Solution:The limit does not exist because the function approaches two different values along the paths.

Discuss the continuity of the following functions. Find the largest region in the  in which the following functions are
continuous.

31) 

32) 

Solution:The function  is continuous in the region 

33) 

34) 

Solution:The function  is continuous at all points in the  except at 

For the following exercises, determine the region in which the function is continuous. Explain your answer.

35) 

36) 

(Hint: Show that the function approaches different values along two different paths.)

Solution:The function is continuous at  since the limit of the function at  is , the same value of 

37) 

38) Determine whether  is continuous at .

Solution:The function is discontinuous at  The limit at  fails to exist and  does not exist.

lim
(x,y)→(0,0)

xy+y2

+x2 y2

x−axis (y = 0)

y−axis (x = 0)

y = 2x

lim
(x,y)→(0,0)

xy+y2

+x2 y2

lim
(x,y)→(0,0)

yx2

+x4 y2

x−axis (y = 0)

y−axis (x = 0)

y = x2

lim
(x,y)→(0,0)

yx2

+x4 y2

xy−plane

f(x, y) = sin(xy)

f(x, y) = ln(x+y)

f y > −x.

f(x, y) = e3xy

f(x, y) =
1

xy

f xy−plane (0, 0).

f(x, y) =
yx2

+x2 y2

f(x, y) ={
yx2

+x2 y2

0

if(x, y) ≠ (0, 0)

if(x, y) = (0, 0)

(0, 0) (0, 0) 0 f(0, 0).

f(x, y) =
sin( + )x2 y2

+x2 y2

g(x, y) =
−x2 y2

+x2 y2
(0, 0)

(0, 0). (0, 0) g(0, 0)
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39) Create a plot using graphing software to determine where the limit does not exist. Determine the region of the coordinate plane

in which  is continuous.

40) Determine the region of the  in which the composite function  is continuous. Use

technology to support your conclusion.

Solution:Since the function  is continuous over  is continuous where  is

continuous. The inner function  is continuous on all points of the  except where  Thus, 

 is continuous on all points of the coordinate plane except at points at which 

41) Determine the region of the  in which  is continuous. Use technology to support your
conclusion. (Hint: Choose the range of values for  and  carefully!)

42) At what points in space is  continuous?

Solution:All points  in space

43) At what points in space is  continuous?

44) Show that  does not exist at  by plotting the graph of the function.

Solution:The graph increases without bound as  and  both approach zero.

45) [T] Evaluate  by plotting the function using a CAS. Determine analytically the limit along the path 

46) [T]

a. Use a CAS to draw a contour map of .

b. What is the name of the geometric shape of the level curves?

c. Give the general equation of the level curves.

d. What is the maximum value of ?

e. What is the domain of the function?

f. What is the range of the function?

Solution:

a.

f(x, y) =
1

−yx2

xy−plane g(x, y) = arctan( )
xy2

x+y

arctanx (−∞, ∞), g(x, y) = arctan( )
xy2

x+y
z =

xy2

x+y

z xy−plane y = −x.

g(x, y) = arctan( )
xy2

x+y
y = −x.

xy−plane f(x, y) = ln( + −1)x2 y2

x y

g(x, y, z) = + −2x2 y2 z2

P (x, y, z)

g(x, y, z) =
1

+ −1x2 z2

lim
(x,y)→(0,0)

1

+x2 y2
(0, 0)

x y

lim
(x,y)→(0,0)

−xy2

+x2 y4
x = .y2

z = 9 − −x2 y2
− −−−−−−−−

√

z
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b. The level curves are circles centered at  with radius . c.  d.  e. 
 f. 

47) True or False: If we evaluate  along several paths and each time the limit is , we can conclude that 

48) Use polar coordinates to find  You can also find the limit using L’Hôpital’s rule.

Solution:

49) Use polar coordinates to find 

50) Discuss the continuity of  where  and 

Solution:  is continuous at all points  that are not on the line 

51) Given  find 

52) Given  find .

Solution:

3.4: Partial Derivatives 

For the following exercises, calculate the partial derivative using the limit definitions only.

1)  for 

2)  for 

Solution:

For the following exercises, calculate the sign of the partial derivative using the graph of the surface.

(0, 0) 9 −c + = 9 −cx2 y2 z = 3

(x, y) ∈ ∣ + ≤ 9R2 x2 y2 z|0 ≤ z ≤ 3

f(x)lim
(x,y)→(0,0)

1

f(x) = 1.lim
(x,y)→(0,0)

.lim
(x,y)→(0,0)

sin +x2 y2
− −−−−−

√

+x2 y2
− −−−−−

√

1.0

cos( + ).lim
(x,y)→(0,0)

x2 y2

f(g(x, y)) f(t) = 1/t g(x, y) = 2x−5y.

f(g(x, y)) (x, y) 2x−5y = 0.

f(x, y) = −4y,x2 .lim
h→0

f(x+h, y) −f(x, y)

h

f(x, y) = −4y,x2 lim
h→0

f(1 +h, y) −f(1, y)

h

2.0

∂z

∂x
z = −3xy+x2 y2

∂z

∂y
z = −3xy+x2 y2

= −3x+2y
∂z

∂y
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3) 

4) 

Solution:The sign is negative.

5) 

6) 

Solution:The partial derivative is zero at the origin.

For the following exercises, calculate the partial derivatives.

7)  for 

8)  for 

Solution:

9)  and  for 

10)  and  for 

Solution:

11) Find  for 

12) Let  Find  and .

Solution:

13) Let . Find  and .

14) Let  Find  and .

Solution:

15) Let  Find  and .

16) Let  Evaluate  and .

Solution:

(1, 1)fx

(−1, 1)fx

(1, 1)fy

(0, 0)fx

∂z

∂x
z = sin(3x)cos(3y)

∂z

∂y
z = sin(3x)cos(3y)

= −3sin(3x)sin(3y)
∂z

∂y

∂z

∂x

∂z

∂y
z = yx8e3

∂z

∂x

∂z

∂y
z = ln( + )x6 y4

= ; =
∂z

∂x

6x5

+x6 y4

∂z

∂y

4y3

+x6 y4

(x, y)fy f(x, y) = cos(x)sin(y).exy

z = .exy
∂z

∂x

∂z

∂y

= y ; = x
∂z

∂x
exy

∂z

∂y
exy

z = ln( )
x

y

∂z

∂x

∂z

∂y

z = tan(2x−y).
∂z

∂x

∂z

∂y

= 2se (2x−y), = −se (2x−y)
∂z

∂x
c2 ∂z

∂y
c2

z = sinh(2x+3y).
∂z

∂x

∂z

∂y

f(x, y) = arctan( ).
y

x
(2, −2)fx (2, −2)fy

(2, −2) = = (2, −2)fx
1

4
fy
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17) Let  Find  and 

Evaluate the partial derivatives at point 

18) Find  at  for .

Solution:

19) Given  find  and 

20) Given  find  and 

Solution:

21) The area of a parallelogram with adjacent side lengths that are  and , and in which the angle between these two sides is , is
given by the function Find the rate of change of the area of the parallelogram with respect to the following:

a. Side a

b. Side b

c. 

22) Express the volume of a right circular cylinder as a function of two variables:

a. its radius  and its height .

b. Show that the rate of change of the volume of the cylinder with respect to its radius is the product of its circumference
multiplied by its height.

c. Show that the rate of change of the volume of the cylinder with respect to its height is equal to the area of the circular base.

Solution:   

23) Calculate  for 

Find the indicated higher-order partial derivatives.

24)  for 

Solution:

25)  for 

26) Let  Find  and .

Solution:

27) Given  find  and .

28) Given  find  and .

Solution:

29) Given  show that .

30) Show that  is a solution of the differential equation 

Solution:

f(x, y) = .
xy

x−y
(2, −2)fx (2, −2).fy

P (0, 1).

∂z

∂x
(0, 1) z = cos(y)e−x

= −cos(1)
∂z

∂x

f(x, y, z) = y ,x3 z2 f∂2

∂x∂y
(1, 1, 1).fz

f(x, y, z) = 2sin(x+y), (0, , −4), (0, , −4),fx
π

2
fy

π

2
(0, , −4).fz

π

2

= 0, = 0, = 0fx fy fz

a b θ

A(a, b, θ) = basin(θ).

Angleθ

r h

a.V (r,h) = π hr2 b. = 2πrh
∂V

∂r
c. = π

∂V

∂h
r2

∂w

∂z
w = zsin(x +2z).y2

fxy z = ln(x−y)

=fxy
1

(x−y)2

fyx z = ln(x−y)

z = +3xy+2 .x2 y2 z∂2

∂x2

z∂2

∂y2

= 2, = 4
z∂2

∂x2

z∂2

∂y2

z = tany,ex
z∂2

∂x∂y

z∂2

∂y∂x

f(x, y, z) = xyz, , ,fxyy fyxy fyyx

= = = 0fxyy fyxy fyyx

f(x, y, z) = sin( y),e−2x z2 =fxyy fyxy

z = ( − )sinx
1

2
ey e−y + = 0.

z∂2

∂x2

z∂2

∂y2
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31) Find  for 

32) Let  Find 

Solution:

33) Let  Find .

34) Given  find all points at which  simultaneously.

Solution:

35) Given  find all points at which  and  simultaneously.

36) Given , find all points on  at which  simultaneously.

Solution:

37) Given  find all points at which  simultaneously.

38) Show that  satisfies the equation 

Solution:

39) Show that  solves Laplace’s equation 

40) Show that  satisfies the heat equation 

Solution:

41) Find  for 

42) Find  for 

Solution:

43) Find  for 

44) Find  for 

Solution:

45) The function  gives the pressure at a point in a gas as a function of temperature  and volume . The letters 

 and  are constants. Find  and , and explain what these quantities represent.

= − ( − )sinx
zd2

dx2

1

2
ey e−y

= ( − )sinx
zd2

dy2

1

2
ey e−y

+ = 0
zd2

dx2

zd2

dy2

(x, y)fxx f(x, y) = + .
4x2

y

y2

2x

f(x, y, z) = z−3x +5 z− z.x2y3 y2z3 x2 y3 .fxyz

= 6 x−18yfxyz y2 z2

F (x, y, z) = y −2 yz+3xz−2 z.x3 z2 x2 y3 Fxyz

f(x, y) = +x−3xy+ −5,x2 y3 = = 0fx fy

( , ), (1, 1)
1

4

1

2

f(x, y) = 2 +2xy+ +2x−3,x2 y2 = 0
∂f

∂x
= 0

∂f

∂y

f(x, y) = −3y −3 −3 +1y3 x2 y2 x2 f = = 0fx fy

(0, 0), (0, 2), ( , −1), (− , −1)3
–

√ 3
–

√

f(x, y) = 15 −3xy+15 ,x3 y3 (x, y) = (x, y) = 0fx fy

z = sinyex + = 0.
z∂2

∂x2

z∂2

∂y2

+ = sin(y) − siny = 0
z∂2

∂x2

z∂2

∂y2
ex ex

f(x, y) = ln( + )x2 y2 + = 0.
z∂2

∂x2

z∂2

∂y2

z = cos( )e−t x

c
= − cos( ).

∂z

∂t
e−t x

c

= cos( )c2 z∂2

∂x2
e−t x

c

lim
Δx→0

f(x+Δx) −f(x, y)

Δx
f(x, y) = −7x−2xy+7y.

lim
Δy→0

f(x, y+Δy) −f(x, y)

Δy
f(x, y) = −7x−2xy+7y.

= −2x+7
∂f

∂y

=lim
Δx→0

Δf

Δx
lim

Δx→0

f(x+Δx, y) −f(x, y)

Δx
f(x, y) = +xy+y.x2y2

=lim
Δx→0

Δf

Δx
lim

Δx→0

f(x+Δx, y) −f(x, y)

Δx
f(x, y) = sin(xy).

= ycosxy
∂f

∂x

P (T ,V ) =
nRT

V
T V

n R
∂P

∂V

∂P

∂T
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46) The equation for heat flow in the  is . Show that  is a solution.

47) The basic wave equation is  Verify that  and  are solutions.

48) The law of cosines can be thought of as a function of three variables. Let  and  be two sides of any triangle where the
angle  is the included angle between the two sides. Then,  gives the square of the third side of

the triangle. Find  and  when  and 

Solution:

49) Suppose the sides of a rectangle are changing with respect to time. The first side is changing at a rate of in./sec whereas the
second side is changing at the rate of  in/sec. How fast is the diagonal of the rectangle changing when the first side measures 
in. and the second side measures  in.? (Round answer to three decimal places.)

50) A Cobb-Douglas production function is  where  and  represent the amount of labor and capital

available. Let  and  Find  and  at these values, which represent the marginal productivity of labor and

capital, respectively.

Solution:  at  at 

51) The apparent temperature index is a measure of how the temperature feels, and it is based on two variables: , which is relative
humidity, and , which is the air temperature.

 Find  and  when  and 

3.5: Tangent Planes and Linear Approximations 

For the following exercises, find a unit normal vector to the surface at the indicated point.

1) 

Solution:

2)  when 

** #3 -7 to be removed***For the following exercises, as a useful review for techniques used in this section, find a normal vector
and a tangent vector at point .

3) 

Solution:Normal vector: , tangent vector: 

4) 

5) 

Solution:Normal vector: , tangent vector: 

6) 

7) 

Solution:

For the following exercises, find the equation for the tangent plane to the surface at the indicated point. (Hint: Solve for  in terms
of  and .)

8) 

9) 

xy−plane = +
∂f

∂t

f∂2

∂x2

f∂2

∂y2
f(x, y, t) = sinxsinye−2t

= .ftt fxx f(x, t) = sin(x+ t) f(x, t) = sin(x− t)

x, y, θ

θ F (x, y, θ) = + −2xycosθx2 y2

∂F

∂θ

∂F

∂x
x = 2, y = 3, θ = .

π

6

= 6, = 4 −3
∂F

∂θ

∂F

∂x
3
–

√

2
4 16

20

f(x, y) = 200 ,x0.7y0.3 x y

x = 500 y = 1000.
δf

δx

δf

δy

δf

δx
(500, 1000) = 172.36,

δf

δy
(500, 1000) = 36.93

h

t

A = 0.885t−22.4h+1.20th−0.544.
∂A

∂t

∂A

∂h
t = 20°F h = 0.90.

f(x, y) = , (2, −1, 8)x3

( )(12i−k)
145
−−−

√

145

ln( ) = 0
x

y−z
x = y = 1

P

+xy+ = 3,P (−1, −1)x2 y2

i+j −j

( + = 9( − ), d( , 1)x2 y2)2 x2 y2 2
–

√

x −2 +y+5x = 6,P (4, 2)y2 x2

7i−17j 17i+7j

2 − = 3x−y−7,P (1, −2)x3 x2y2

z −3 = 0,P (2, 2, 3)e −x2 y2

−1.094i−0.18238j

z

x y

−8x−3y−7z = −19,P (1, −1, 2)

z = −9 −3 ,P (2, 1, −39)x2 y2
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Solution:

10) 

11) 

Solution:

12) 

13) 

Solution:

14) 

15) 

Solution:

16) 

17) 

Solution:

18) 

19) 

Solution:

For the following exercises, find parametric equations for the normal line to the surface at the indicated point. (Recall that to find
the equation of a line in space, you need a point on the line, , and a vector  that is parallel to the line.
Then the equation of the line is 

20) 

21) 

Solution:

22) 

23) 

Solution:

24) 

25)  at point 

Solution:

For the following exercises, use the figure shown here.

−36x−6y−z = −39

+10xyz+ +8 = 0,P (−1, −1, −1)x2 y2 z2

z = ln(10 +2 +1),P (0, 0, 0)x2 y2

z = 0

z = ,P (0, 0, 1)e7 +4x2 y2

xy+yz+zx = 11,P (1, 2, 3)

5x+4y+3z−22 = 0

+4 = ,P (3, 2, 5)x2 y2 z2

+ = 3xyz,P (1, 2, )x3 y3 3

2

4x−5y+4z = 0

z = axy,P (1, , 1)
1

a

z = sinx+siny+sin(x+y),P (0, 0, 0)

2x+2y−z = 0

h(x, y) = ln ,P (3, 4)+x2 y2
− −−−−−

√

z = −2xy+ ,P (1, 2, 1)x2 y2

−2x+2y−z = 1

( , , )P0 x0 y0 z0 n = ⟨a, b, c⟩
x = +at, y = +bt, z = +ct. )x0 y0 z0

−3x+9y+4z = −4,P (1, −1, 2)

z = 5 −2 ,P (2, 1, 18)x2 y2

x = 20t+2, y = −4t+1, z = −t+18

−8xyz+ +6 = 0,P (1, 1, 1)x2 y2 z2

z = ln(3 +7 +1),P (0, 0, 0)x2 y2

x = 0, y = 0, z = t

z = ,P (0, 0, 1)e4 +6x2 y2

z = −2xy+x2 y2 P (1, 2, 1)

x−1 = 2t; y−2 = −2t; z−1 = t
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26) The length of line segment  is equal to what mathematical expression?

27) The length of line segment  is equal to what mathematical expression?

Solution:The differential of the function 

28) Using the figure, explain what the length of line segment  represents.

For the following exercises, complete each task.

29) Show that  is differentiable at point 

Solution:Using the definition of differentiability, we have 

30) Find the total differential of the function 

31) Show that  is differentiable at every point. In other words, show that 
, where both  and  approach zero as 

approaches 

Solution:  for small  and  satisfies the definition of differentiability.

32) Find the total differential of the function  where  changes from  to  and  changes from  to .

33) Let  Compute  from  to  and then find the approximate change in  from point  to
point . Recall , and  and  are approximately equal.

Solution:  and  They are relatively close.

34) The volume of a right circular cylinder is given by  Find the differential . Interpret the formula
geometrically.

35) See the preceding problem. Use differentials to estimate the amount of aluminum in an enclosed aluminum can with diameter 
 and height  if the aluminum is  cm thick.

Solution:

36) Use the differential  to approximate the change in  as  moves from point  to point 

 Compare this approximation with the actual change in the function.

37) Let  Find the exact change in the function and the approximate change in the function as 
changes from  to  and  changes from  to .

Solution:  exact change , approximate change is . The two values are close.

AC

BC

z(x, y) = dz = dx+ dyfx fy

AB

f(x, y) = xexy (1, 0).

x ≈ x+y.exy

w = cos(x) + .ey z2

f(x, y) = +3yx2

Δz = f(x+Δx, y+Δy) −f(x, y) = Δx+ Δy+ Δx+ Δyfx fy ε1 ε2 ε1 ε2 (Δx, Δy)
(0, 0).

Δz = 2xΔx+3Δy+(Δx . (Δx → 0)2 )2 Δx z

z =
xy

y+x
x 10 10.5 y 15 13

z = f(x, y) = x .ey Δz P (1, 2) Q(1.05, 2.1) z P

Q Δz = f(x+Δx, y+Δy) −f(x, y) dz Δz

Δz ≈ 1.185422 dz ≈ 1.108.

V (r,h) = π h.r2 dV

8.0cm 12cm 0.04

16cm3

dz z = 4 − −x2 y2
− −−−−−−−−

√ (x, y) (1, 1)

(1.01, 0.97).

z = f(x, y) = +3xy− .x2 y2 x

2.00 92.05 y 3.00 2.96

Δz = = 0.6449 dz = 0.65
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38) The centripetal acceleration of a particle moving in a circle is given by  where  is the velocity and  is the radius

of the circle. Approximate the maximum percent error in measuring the acceleration resulting from errors of  in  and  in .
(Recall that the percentage error is the ratio of the amount of error over the original amount. So, in this case, the percentage error in

a is given by .)

39) The radius  and height  of a right circular cylinder are measured with possible errors of  and , respectively. Approximate
the maximum possible percentage error in measuring the volume (Recall that the percentage error is the ratio of the amount of error

over the original amount. So, in this case, the percentage error in  is given by .)

Solution:  or 

40) The base radius and height of a right circular cone are measured as  in. and  in., respectively, with a possible error in
measurement of as much as  in. each. Use differentials to estimate the maximum error in the calculated volume of the cone.

41) The electrical resistance  produced by wiring resistors  and  in parallel can be calculated from the formula 

. If  and  are measured to be  and , respectively, and if these measurements are accurate to within 

, estimate the maximum possible error in computing . (The symbol  represents an ohm, the unit of electrical resistance.)

Solution:

42) The area of an ellipse with axes of length  and  is given by the formula . Approximate the percent change in the
area when  increases by  and  increases by 

43) The period  of a simple pendulum with small oscillations is calculated from the formula , where  is the length

of the pendulum and  is the acceleration resulting from gravity. Suppose that  and  have errors of, at most,  and ,
respectively. Use differentials to approximate the maximum percentage error in the calculated value of .

Solution:

44) Electrical power  is given by , where  is the voltage and  is the resistance. Approximate the maximum

percentage error in calculating power if  is applied to a  resistor and the possible percent errors in measuring  and 
 are  and , respectively.

For the following exercises, find the linear approximation of each function at the indicated point.

45) 

Solution:

46) 

47) 

Solution:

48) 

49) 

Solution:

50) [T] Find the equation of the tangent plane to the surface  at point  and graph the surface and the
tangent plane at the point.

51) [T] Find the equation for the tangent plane to the surface at the indicated point, and graph the surface and the tangent plane: 

a(r, v) = ,
v2

r
v r

3 v 2 r

da

a

r h 4 5

V
dV

V

13 0.13

10 25
0.1

R R1 R2

= +
1

R

1

R1

1

R2
R1 R2 7Ω 6Ω

0.05Ω R Ω

0.025

2a 2b A = πab

a 2 b 1.5

T T = 2π
L

g

−−

√ L

g L g 0.5 0.1
T

0.3

P P =
V 2

R
V R

120V 2000 −Ω V

R 3 4

f(x, y) = x ,P (1, 4)y√

2x+ y−1
1

4

f(x, y) = cosy;P (0, 0)ex

f(x, y) = arctan(x+2y),P (1, 0)

x+y+ π−
1

2

1

4

1

2

f(x, y) = ,P (2, 1)20 − −7x2 y2
− −−−−−−−−−−

√

f(x, y, z) = ,P (3, 2, 6)+ +x2 y2 z2
− −−−−−−−−−

√

x+ y+ z
3

7

2

7

6

7

f(x, y) = +x2 y2 (1, 2, 5),

z = ln(10 +2 +1),P (0, 0, 0).x2 y2
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Solution:

52) [T] Find the equation of the tangent plane to the surface  at point , and graph the

surface and the tangent plane.

3.6: The Chain Rule 

For the following exercises, use the information provided to solve the problem.

1) Let  where  and  Find .

Solution:

2) Let  where  and . Find  and .

3) If  and  find  and .

Solution:

4) If  and , find .

5) If  and , find ∂f∂r and express the answer in terms of  and .

Solution:

6) Suppose  and , where  and . Find .

For the following exercises, find  using the chain rule and direct substitution.

7) 

Solution:

8) 

9) 

Solution:

10) 

11) 

Solution:

z = 0

z = f(x, y) = sin(x+ )y2 ( , 0, )
π

4

2
–√

2

w(x, y, z) = xycosz, x = t, y = ,t2 z = arcsint.
dw

dt

= ycosz+xcosz(2t) −
dw

dt

xysinz

1 − t2
− −−−−

√

w(t, v) = etv t = r+s v= rs
∂w

∂r

∂w

∂s

w = 5 +2 , x = −3s+ t,x2 y2 y = s−4t,
∂w

∂s

∂w

∂t

= −30x+4y, = 10x−16y
∂w

∂s

∂w

∂t

w = x , x = 5cos(2t),y2 y = 5sin(2t)
∂w

∂t

f(x, y) = xy, x = rcosθ, y = rsinθ r θ

= rsin(2θ)
∂f

∂r

f(x, y) = x+y, u = siny, x =ex t2 y = πt x = rcosθ y = rsinθ
∂f

∂θ
df

dt

f(x, y) = + , x = t, y =x2 y2 t2

= 2t+4
df

dt
t3

f(x, y) = , y = , x = t+x2 y2
− −−−−−

√ t2

f(x, y) = xy, x = 1 − , y = 1 +t√ t√

= −1
df

dt

f(x, y) = , x = , y = 2
x

y
et et

f(x, y) = ln(x+y), x = , y =et et

= 1
df

dt
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12) 

13) Let  and . Express  as a function of  and find  directly. Then,

find  using the chain rule.

Solution:  in both cases

14) Let  where  and . Find .

15) Let  where  and . Find  when  and .

Solution:

For #16 - #24, find using partial derivatives.

16) 

17) 

Solution:

18) 

19) 

Solution:

20) 

21) 

Solution:

22) 

23) 

Solution:

24) 

25) Find  using the chain rule where  and .

Solution:

26) Let  and  Find .

27) Let  and . Find .

Solution:

28) Find  by the chain rule where  and .

29) Let  and  Find  and .

f(x, y) = , x = t, y = tx4

w(x, y, z) = + + , x = cost, y = sint,x2 y2 z2 z = et w t
dw

dt
dw

dt

= 2
dw

dt
e2t

z = y,x2 x = t2 y = t3 dz

dt

u = siny,ex x = t2 y = πt
du

dt
x = ln2 y =

π

4

2 t+ π =2
–

√ 2
–

√
du

dt

dy

dx

sin(6x) + tan(8y) +5 = 0

+ x−3 = 0x3 y2

= −
dy

dx

3 +x2 y2

2xy

sin(x+y) +cos(x−y) = 4

−2xy+ = 4x2 y4

=
dy

dx

y−x

−x+2y3

x +y −2 y = 0ey ex x2

+ =x2/3 y2/3 a2/3

= −
dy

dx

y

x

−−
√3

xcos(xy) +ycosx = 2

+y = 1exy ey

= −
dy

dx

yexy

x + (1 +y)exy ey

+cosy = 0x2y3

dz

dt
z = 3 , x = ,x2y3 t4 y = t2

= 42
dz

dt
t13

z = 3cosx−sin(xy), x = ,
1

t
y = 3t.

dz

dt

z = , x = ,e1−xy t1/3 y = t3 dz

dt

= − ×
dz

dt

10

3
t7/3 e1−t10/3

dz

dt
z = cos (xy), x = t,h2 1

2
y = et

z = , x = 2cosu,
x

y
y = 3sinv.

∂z

∂u

∂z

∂v
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Solution:  and 

30) Let , where  and . Find  and .

31) If  and , find  and  when  and .

Solution:

32) Find  if  and .

33) If  and , find .

Solution:

34) Find  and  if  is defined implicitly by .

For the following exercises, use this information: A function  is said to be homogeneous of degree  if 

. For all homogeneous functions of degree , the following equation is true: .

Show that the given function is homogeneous and verify that .

35) 

36) 

Solution:

37) 

38) The volume of a right circular cylinder is given by  where  is the radius of the cylinder and  is the cylinder

height. Suppose  and  are functions of  given by  and  so that  and  are both increasing with time. How fast is

the volume increasing when  and ?

Solution:

39) The pressure  of a gas is related to the volume and temperature by the formula , where temperature is expressed in

kelvins. Express the pressure of the gas as a function of both  and . Find  when  cm /min, 

K/min, , and .

40) The radius of a right circular cone is increasing at  cm/min whereas the height of the cone is decreasing at  cm/min. Find the
rate of change of the volume of the cone when the radius is  cm and the height is  cm.

Solution:

41) The volume of a frustum of a cone is given by the formula  where  is the radius of the smaller

circle,  is the radius of the larger circle, and  is the height of the frustum (see figure). Find the rate of change of the volume of
this frustum when  and 

=
∂z

∂u

−2sinu3

sinv
=

∂z

∂v

−2cosucosv3

si vn2

z = e yx2

x = uv−−
√ y =

1

v

∂z

∂u

∂z

∂v

z = xy , x = rcosθ,ex/y y = rsinθ
∂z

∂r

∂z

∂θ
r = 2 θ =

π

6

= , = (2 −4 )
∂z

∂r
3
–

√ e 3√ ∂z

∂θ
3
–

√ e 3√

∂w

∂s
w = 4x+ + , x = , y = ln( ),y2 z3 ers

2 r+s

t
z = rst2

w = sin(xyz), x = 1 −3t, y = ,e1−t z = 4t
∂w

∂t

= cos(xyz) ×yz×(−3) −cos(xyz)xz +cos(xyz)xy×4
∂w

∂t
e1−t

∂z

∂x

∂z

∂y
z = f(x, y) 2 +3 −2 = 9x2 y2 z2

f(x, y) n

f(tx, ty) = f(x, y)tn n x +y = nf(x, y)
∂f

∂x

∂f

∂y

x +y = nf(x, y)
∂f

∂x

∂f

∂y

f(x, y) = 3 +x2 y2

f(x, y) = +x2 y2
− −−−−−

√

f(tx, ty) = = f(x, y), = x ( + ×2x+y ( + ×2y = 1f(x, y)+t2x2 t2y2
− −−−−−−−−

√ t1 ∂f

∂y

1

2
x2 y2)−1/2 1

2
x2 y2)−1/2

f(x, y) = y−2x2 y3

V (x, y) = π y,x2 x y

x y t x = t
1

2
y = t

1

3
x y

x = 2 y = 5

34π

3

P PV = kT

V T
dP

dt
k = 1, = 2

dV

dt
3 = 12

dT

dt
V = 20cm3 T = 20°F

3 2
13 18

= c /min
dV

dt

1066π

3
m3

V = πz( + +xy),
1

3
x2 y2 x

y z

x = 10in. , y = 12in. , z = 18in.
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42) A closed box is in the shape of a rectangular solid with dimensions  and . (Dimensions are in inches.) Suppose each
dimension is changing at the rate of  in./min. Find the rate of change of the total surface area of the box when 

 and 

Solution:

43) The total resistance in a circuit that has three individual resistances represented by  and  is given by the formula 

. Suppose at a given time the  resistance is , the  resistance is  and the  resistance is 

 Also, suppose the  resistance is changing at a rate of  the  resistance is changing at the rate of , and the 
 resistance has no change. Find the rate of change of the total resistance in this circuit at this time.

44) The temperature  at a point  is  and is measured using the Celsius scale. A fly crawls so that its position after 

seconds is given by  and , where  and  are measured in centimeters. The temperature function satisfies 

 and . How fast is the temperature increasing on the fly’s path after  sec?

Solution:

44) The  and  components of a fluid moving in two dimensions are given by the following functions:  and 

 The speed of the fluid at the point  is . Find 

 and  using the chain rule.

46) Let  where  and  Use a tree diagram and the

chain rule to find an expression for .

Solution:

3.7: Directional Derivatives and the Gradient 
For the following exercises, find the directional derivative using the limit definition only.

1)  at point  in the direction of 

2)  at point  in the direction of 

Solution:

3) Find the directional derivative of  at point  in the direction of 

For the following exercises, find the directional derivative of the function at point P in the direction of v.

4) 

Solution:

5) 

6) 

x, y, z

0.5
x = 2in. , y = 3in. , z = 1in.

= 12in /min
dA

dt
.2

x, y, z

R(x, y, z) =
xyz

yz+xz+xy
x 100Ω y 200Ω, z

300Ω. x 2Ω/min, y 1Ω/min

z

T (x, y) T (x, y) t

x = 1 + t− −−−
√ y = 2 + t

1

3
x y

(2, 3) = 4Tx (2, 3) = 3Ty 3

2°C/sec

x y u(x, y) = 2y

\5isplaystylev(x, y) = −2x; x ≥ 0; y ≥ 0. (x, y) s(x, y) = u(x, y +v(x, y)2 )2
− −−−−−−−−−−−−−

√

∂s

∂x

∂s

∂y

u = u(x, y, z), x = x(w, t), y = y(w, t), z = z(w, t),w = w(r, s), t = t(r, s).
∂u

∂r

= ( + ) + ( + ) + ( + )
∂u

∂r

∂u

∂x

∂x

∂w

∂w

∂r

∂x

∂t

∂t

∂r

∂u

∂y

∂y

∂w

∂w

∂r

∂y

∂t

∂t

∂r

∂u

∂z

∂z

∂w

∂w

∂r

∂z

∂t

∂t

∂r

f(x, y) = 5 −2 −x2 1

2
y2 P (3, 4) u = (cos )i+(sin )j

π

4

π

4

f(x, y) = cos(2x)y2 P ( , 2)
π

3
u = (cos )i+(sin )j

π

4

π

4

−3 3
–

√

f(x, y) = sin(2x)y2 P ( , 2)
π

4
u = 5i+12j.

f(x, y) = xy,P (0, −2), v= i+ j
1

2

3
–

√

2

−1

h(x, y) = siny,P (1, ), v= −iex
π

2

h(x, y, z) = xyz,P (2, 1, 1), v= 2i+j−k
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Solution:

7) 

8) 

Solution:

9) 

10) 

Solution:

11) 

12) 

Solution:

13) 

14) 

Solution:

For the following exercises, find the directional derivative of the function in the direction of the unit vector 

15) 

16) 

Solution:

17) 

18) 

Solution:

19) 

20) 

Solution:

For the following exercises, find the gradient.

21) Find the gradient of . Then, find the gradient at point 

22) Find the gradient of  at point 

Solution:

23) Find the gradient of  at  and in the direction of 

2

6
–

√

f(x, y) = xy,P (1, 1), u = ⟨ , ⟩
2
–

√

2

2
–

√

2

f(x, y) = − , u = ⟨ , ⟩,P (1, 0)x2 y2 3
–

√

2

1

2

3
–

√

f(x, y) = 3x+4y+7, u = ⟨ , ⟩,P (0, )
3

5

4

5

π

2

f(x, y) = cosy, u = ⟨0, 1⟩,P = (0, )ex
π

2

−1.0

f(x, y) = , u = ⟨0, −1⟩,P = (1, −1)y10

f(x, y) = ln( + ), u = ⟨ , ⟩,P (1, 2)x2 y2 3

5

4

5
22

25

f(x, y) = y,P (−5, 5), v= 3i−4jx2

g(x, y, z) = +xz,P (1, 2, 2), v= ⟨2, −1, 2⟩y2

2

3

u = cosθi+sinθj.

f(x, y) = +2 , θ =x2 y2 π

6

f(x, y) = , θ = −
y

x+2y

π

4

− (x+y)2
–

√

2(x+2y)2

f(x, y) = cos(3x+y), θ =
π

4

w(x, y) = y , θ =ex
π

3

(y+ )ex 3
–

√

2

f(x, y) = xarctan(y), θ =
π

2

f(x, y) = ln(x+2y), θ =
π

3

1 +2 3
–

√

2(x+2y)

f(x, y) =
14 − −x2 y2

3
P (1, 2).

f(x, y, z) = xy+yz+xz P (1, 2, 3).

⟨5, 4, 3⟩

f(x, y, z)) P

u : f(x, y, z) = ln( +2 +3 ),P (2, 1, 4), u = i− j− k.x2 y2 z2 −3

13

4

13

12

13
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24) 

Solution:

For the following exercises, find the directional derivative of the function at point  in the direction of .

25) 

26) 

Solution:

For the following exercises, find the derivative of the function at  in the direction of .

27) 

28) 

Solution:

29) Sketch the level curve of  that passes through  and draw the gradient vector at .

30) Sketch the level curve of  that passes through  and draw the gradient vector at P.

Solution: Level Curve: . Gradient vector: 

For the following exercises, find the gradient vector at the indicated point.

31) 

32) 

Solution:

33) 

34) 

Solution:

For the following exercises, find the derivative of the function.

35)  at point  in the direction the function increases most rapidly

36)  at point  in the direction the function increases most rapidly

Solution:

37)  at point  in the direction the function increases most rapidly

38)  at point  in the direction the function increases most rapidly

Solution:

39)  at point  in the direction the function increases most rapidly

For the following exercises, find the maximum rate of change of  at the given point and the direction in which it occurs.

f(x, y, z) = 4 ,P (2, −1, 1), u = i+ j− kx5y2z3 1

3

2

3

2

3

−320

P Q

f(x, y) = +3 ,P (1, 1),Q(4, 5)x2 y2

f(x, y, z) = ,P (2, 1, −1),Q(−1, 2, 0)
y

x+z

3

11
−−

√

P u

f(x, y) = −7x+2y,P (2, −4), u = 4i−3j

f(x, y) = ln(5x+4y),P (3, 9), u = 6i+8j

31

255

f(x, y) = 4x−2y+3 P (1, 2) P

f(x, y) = +4x2 y2 P (−2, 0)

+4 = 4x2 y2 ⟨−4, 0⟩

f(x, y) = x −y ,P (−1, 1)y2 x2

f(x, y) = x − ln(x),P (−3, 0)ey

i−3j
4

3

f(x, y, z) = xy− ln(z),P (2, −2, 2)

f(x, y, z) = x ,P (−2, −1, −1)+y2 z2
− −−−−−

√

i+ j+ k2
–

√ 2
–

√ 2
–

√

f(x, y) = +xy+x2 y2 (−5, −4)

f(x, y) = exy (6, 7)

1.6( )1019

f(x, y) = arctan( )
y

x
(−9, 9)

f(x, y, z) = ln(xy+yz+zx) (−9, −18, −27)

5 2
–

√

99

f(x, y, z) = + +
x

y

y

z

z

x
(5, −5, 5)

f
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40) 

Solution:

41) 

42) 

Solution:

For the following exercises, find equations of

a. the tangent plane and

b. the normal line to the given surface at the given point.

43)  at point 

44)  at point 

Solution:

45)  at point 

46)  at point 

Solution:

For the following exercises, solve the problem.

47) The temperature  in a metal sphere is inversely proportional to the distance from the center of the sphere (the origin: 
. The temperature at point  is 

a. Find the rate of change of the temperature at point  in the direction toward point 

b. Show that, at any point in the sphere, the direction of greatest increase in temperature is given by a vector that points
toward the origin.

48) The electrical potential (voltage) in a certain region of space is given by the function 

a. Find the rate of change of the voltage at point  in the direction of the vector 

b. In which direction does the voltage change most rapidly at point ?

c. What is the maximum rate of change of the voltage at point ?

Solution:

49) If the electric potential at a point  in the xy-plane is , then the electric intensity vector at  is 

a. Find the electric intensity vector at 

b. Show that, at each point in the plane, the electric potential decreases most rapidly in the direction of the vector 

50) In two dimensions, the motion of an ideal fluid is governed by a velocity potential . The velocity components of the fluid u in
the x-direction and v in the y-direction, are given by . Find the velocity components associated with the velocity
potential 

Solution:

3.8: Maxima/Minima Problems 
For the following exercises, find all critical points.

1) 

2) 

f(x, y) = x , (−2, 0)e−y

, ⟨1, 2⟩5
–

√

f(x, y) = , (4, 10)+2yx2
− −−−−−

√

f(x, y) = cos(3x+2y), ( , − )
π

6

π

8

, ⟨−3, −2⟩
13

2

−−−
√

4 −2 + = 12x2 y2 z2 (2, 2, 2).

xy+yz+xz = 3 (1, 1, 1)

a. x+y+z = 3, b. x−1 = y−1 = z−1

xyz = 6 (1, 2, 3)

x cosz−z = 1ey (1, 0, 0)

a. x+y−z = 1, b. x−1 = y = −z

T

(0, 0, 0)) (1, 2, 2) 120°C.

(1, 2, 2) (2, 1, 3).

V (x, y, z) = 5 −3xy+xyz.x2

(3, 4, 5) ⟨1, 1, −1⟩.

(3, 4, 5)

(3, 4, 5)

a. , b. ⟨38, 6, 12⟩, c. 2
32

3
–

√
406
−−−

√

(x, y) V (x, y) = cos(2y)e−2x (x, y)
E = −∇V (x, y).

( , 0).
π

4

E.

φ

⟨u, v⟩ = ∇φ

φ(x, y) = sinπxsin2πy.

⟨u, v⟩ = ⟨πcos(πx)sin(2πy), 2πsin(πx)cos(2πy)⟩

f(x, y) = 1 + +x2 y2

f(x, y) = (3x−2 +(y−4)2 )2
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Solution:

3) 

4) 

Solution:

For the following exercises, find the critical points of the function by using algebraic techniques (completing the square) or by
examining the form of the equation. Verify your results using the partial derivatives test.

5) 

6) 

Solution:Maximum at 

7) 

8) 

Solution:Relative minimum at 

For the following exercises, use the second derivative test to identify any critical points and determine whether each critical point is
a maximum, minimum, saddle point, or none of these.

9) 

10) 

Solution:The second derivative test fails. Since  for all  and  different from zero, and  when either  or 
equals zero (or both), then the absolute minimum occurs at 

11) 

12) 

Solution:  is a saddle point.

13) 

14) 

Solution:  is a saddle point.

15) 

16) 

Solution:  is a local maximum.

20) 

21) 

Solution:Relative minimum located at .

22) 

23) 

Solution:  is a saddle point.

24) 

25) 

Solution:  and  are saddle points;  is a relative minimum.

( , 4)
2

3

f(x, y) = + −16xyx4 y4

f(x, y) = 15 −3xy+15x3 y3

(0, 0)( , )
1

15

1

15

f(x, y) = + +1x2 y2
− −−−−−−−−

√

f(x, y) = − −5 +8x−10y−13x2 y2

(4, −1, 8)

f(x, y) = + +2x−6y+6x2 y2

f(x, y) = +1+x2 y2
− −−−−−

√

(0, 0, 1)

f(x, y) = − +4xy−2 +1x3 y2

f(x, y) = x2y2

> 0x2y2 x y = 0x2y2 x y

(0, 0).

f(x, y) = −6x+ +4y−8x2 y2

f(x, y) = 2xy+3x+4y

f(−2, − ) = −6
3

2

f(x, y) = 8xy(x+y) +7

f(x, y) = +4xy+x2 y2

f(0, 0) = 0; (0, 0, 0)

f(x, y) = + −300x−75y−3x3 y3

f(x, y) = 9 −x4y4

f(0, 0) = 9

f(x, y) = 7 y+9xx2 y2

f(x, y) = 3 −2xy+ −8yx2 y2

(2, 6)

f(x, y) = 3 +2xy+x2 y2

f(x, y) = y2 +xy+3y+2x+3

(1, −2)

f(x, y) = +xy+ −3xx2 y2

f(x, y) = +2 − yx2 y2 x2

(2, 1) (−2, 1) (0, 0)
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26) 

27) 

Solution:  is a relative maximum.

28) 

29) 

Solution:  is a saddle point.

30) 

31) 

Solution:The relative maximum is at .

32) 

33) 

Solution:  is a saddle point and  is the relative minimum.

34) 

For the following exercises, determine the extreme values and the saddle points. Use a CAS to graph the function.

35) [T] 

Solution:A saddle point is located at 

36) [T] 

37) [T] 

Solution:There is a saddle point at  local maxima at  and , and local minima at  and .

Find the absolute extrema of the given function on the indicated closed and bounded set .

f(x, y) = +y−x2 ey

f(x, y) = e−( + +2x)x2 y2

(−1, 0)

f(x, y) = +xy+ −x−y+1x2 y2

f(x, y) = +10xy+x2 y2

(0, 0)

f(x, y) = − −5 +10x−30y−62x2 y2

f(x, y) = 120x+120y−xy− −x2 y2

(40, 40)

f(x, y) = 2 +2xy+ +2x−3x2 y2

f(x, y) = +x−3xy+ −5x2 y3

( , )
1

4

1

2
(1, 1)

f(x, y) = 2xye− −x2 y2

f(x, y) = y −ex ey

(0, 0).

f(x, y) = xsin(y)

f(x, y) = sin(x)sin(y), x ∈ (0, 2π), y ∈ (0, 2π)

(π, π), ( , )
π

2

π

2
( , )

3π

2

3π

2
( , )
π

2

3π

2
( , )

3π

2

π

2

R
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38)  is the triangular region with vertices  and .

39) Find the absolute maximum and minimum values of  on the region 

Solution:  is the absolute minimum and  is the absolute maximum.

40)  on 

41)  on 

Solution:There is an absolute minimum at  and an absolute maximum at .

42) Find three positive numbers the sum of which is , such that the sum of their squares is as small as possible.

43) Find the points on the surface  that are closest to the origin.

Solution:

44) Find the maximum volume of a rectangular box with three faces in the coordinate planes and a vertex in the first octant on the
line .

45) The sum of the length and the girth (perimeter of a cross-section) of a package carried by a delivery service cannot exceed 
in. Find the dimensions of the rectangular package of largest volume that can be sent.

Solution:  by  by  in.

46) A cardboard box without a lid is to be made with a volume of  ft . Find the dimensions of the box that requires the least
amount of cardboard.

47) Find the point on the surface  nearest the plane  Identify the point on the plane.

Solution:

48) Find the point in the plane  that is closest to the origin.

49) A company manufactures two types of athletic shoes: jogging shoes and cross-trainers. The total revenue from  units of
jogging shoes and  units of cross-trainers is given by  where  and  are in
thousands of units. Find the values of  and  to maximize the total revenue.

Solution:  and 

50) A shipping company handles rectangular boxes provided the sum of the length, width, and height of the box does not exceed 
in. Find the dimensions of the box that meets this condition and has the largest volume.

51) Find the maximum volume of a cylindrical soda can such that the sum of its height and circumference is  cm.

Solution:

3.9: Lagrange Multipliers 
In exercises 1-15, use the method of Lagrange multipliers to find the maximum and minimum values of the function subject
to the given constraint.

1) Objective function:  Constraint: 

Answer:

Subject to the given constraint, the function  has a relative minimum of  at both  and 

and a relative maximum of  at both  and 

2) Objective function:  Constraint: 

3) Objective function:  Constraint: 

f(x, y) = xy−x−3y;R (0, 0), (0, 4), (5, 0)

f(x, y) = + −2y+1x2 y2 R = (x, y) ∣ + ≤ 4.x2 y2

(0, 1, 0) (0, −2, 9)

f(x, y) = −3xy−x3 y3 R = (x, y) : −2 ≤ x ≤ 2, −2 ≤ y ≤ 2

f(x, y) =
−2y

+ +1x2 y2
R = (x, y) : + ≤ 4x2 y2

(0, 1, −1) (0, −1, 1)

27

−yz = 5x2

( , 0, 0), (− , 0, 0)5
–

√ 5
–

√

x+y+z = 1

108

18 36 18

4 3

f(x, y) = + +10x2 y2 x+2y−z = 0.

( , , )
47

24

47

12

235

24

2x−y+2z = 16

x

y R(x, y) = −5 −8 −2xy+42x+102y,x2 y2 x y

x y

x = 3 y = 6

96

120

V = ≈ 20, 372c
64, 000

π
m3

f(x, y) = 4xy + = 1
x2

9

y2

16

f −24 (− , 2 )
3 2√

2
2
–

√ ( , −2 )
3 2√

2
2
–

√

24 ( , 2 )
3 2√

2
2
–

√ (− , −2 )
3 2√

2
2
–

√

f(x, y) = yx2 +2 = 6x2 y2

f(x, y) = + +2x−2y+1x2 y2 g(x, y) = + = 2x2 y2
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Answer:
Subject to the given constraint,  has a relative minimum of  at  and a relative maximum of  at .

4) Objective function:  Constraint: 

5) Objective function:  Constraint: 

Answer:
 has a relative minimum of  at both  and , subject to the given constraint.

6) Objective function:  Constraint: 

7) Objective function:  Constraint: 

Answer:
Subject to the given constraint,  has a relative minimum of  at the point .

8) Objective function:  Constraint: 

9) Objective function:  Constraint: 

Answer:

Subject to the given constraint, the function  has a relative minimum of  at , 

a relative minimum of  at both points  and , 

a relative maximum of  at , and a relative maximum of  at both points  and .

Solution:
Let  be the constraint function. Then: 
 

 and  
 
Using the Lagrange Multiplier equation,

 
we have:

 
giving us the system of equations:

 
Rewriting the first two equations as zero-products (by moving to one-side and factoring), we get: 

 
Now we consider the combinations of these solutions to the above two equations and plug each of these into the
constraint equation to solve for the corresponding Lagrange points. 
 
The combination  and  produces a contradiction when placed in the constraint equation, since this point is not
on the ellipse. 

f −1 (−1, 1) 7 (1, −1)

f(x, y) = xy 4 +8 = 16x2 y2

f(x, y) = +x2 y2 xy = 1

f 2 (−1, −1) (1, 1)

f(x, y) = −x2 y2 x−2y+6 = 0

f(x, y) = +x2 y2 x+2y−5 = 0

f f(1, 2) = 5 (1, 2)

f(x, y) = +x2 y2 (x−1 +4 = 4)2 y2

f(x, y) = 4 +x3 y2 2 + = 1x2 y2

f − 2
–√ (− , 0)

2√

2

25
27

( , − )1
3

7√

3
( , )1

3

7√

3

2
–

√ ( , 0)2√

2
1 (0, 1) (0, −1)

g(x, y) = 2 +x2 y2

f(x, y) = 12 +2y∇
⇀

x2 î ĵ g(x, y) = 4x +2y∇
⇀

î ĵ

f(x, y) = λ g(x, y),∇
⇀

∇
⇀

12 +2y = 4xλ +2yλx2
î ĵ î ĵ

12 = 4xλ, 2y = 2yλ, and the constraint 2 + = 1x2 x2 y2

4x(3x−λ)

x = 0 or λ

= 0

= 3x

and 2y(1 −λ)

y = 0 or λ

= 0

= 1

x = 0 y = 0
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Taking the combination  and , we put  in for  in the constraint and solve for , obtaining: . This
gives us two Lagrange points:  and . 
 

Taking the combination  and , we put  in for  in the constraint and solve for , obtaining: .

This gives us two Lagrange points:  and . 

 
Taking the combination  and , we substitute  into the first equation for , giving us  so .

Plugging this value in for  in the constraint equation and solving for , we obtain  which gives us the two

Lagrange points:  and . 

 
Evaluating the function  at these Lagrange points, we find:

 
 
Comparing these values with where the corresponding Lagrange points lie on the constraint curve, we conclude the
results stated in the answer above.

10) Objective function:  Constraint: 

11) Objective function:  Constraint: 

Answer:

Subject to the given constraint,  has a relative minimum of  at the point  and a relative

maximum of  at the point 

12) Objective function:  Constraint: 

13) Objective function:  Constraint: 

Answer:

Subject to the given constraint,  has a relative minimum of  at 

 and  and a relative maximum of  at 

 and .

14) Objective function:  Constraint: 

15) Objective function:  Constraint: 

Answer:
Subject to the given constraint,  has a relative minimum of  at the points   

 and  
To see a 3D visualization of this problem, see: CalcPlot3D for Problem 15.

 

x = 0 λ = 1 0 x y y = ±1
(0, 1) (0, −1)

λ = 3x y = 0 0 y x x = ±
2√

2

(− , 0)
2√

2
( , 0)

2√

2

λ = 3x λ = 1 1 λ 1 = 3x x = 1
3

x y y = ±
7√

3

( , − )1
3

7√

3
( , )1

3

7√

3

f

f(0, −1)

f (− , 0)
2√

2

f ( , − )1
3

7√

3

= 1

= = −
−4( 2

–
√ )3

8
2
–

√

= 25
27

f(0, 1)

f ( , 0)
2√

2

f ( , )1
3

7√

3

= 1

= =
4( 2

–
√ )3

8
2
–

√

= 25
27

f(x, y) = 2 +x2 y2 g(x, y) = + = 1x2 y2

f(x, y, z) = x+3y−z + + = 4x2 y2 z2

f −2 11
−−

√ (− , − , )
2 11√

11

6 11√

11

2 11√

11

2 11
−−

√ ( , , − ) .
2 11√

11

6 11√

11

2 11√

11

f(x, y, z) = x+y+z + + = 1
1

x

1

y

1

z

f(x, y, z) = xyz +2 +3 = 6x2 y2 z2

f −
2 3√

3

( , 1, − ) , ( , −1, ) , (− , 1, ) ,2
–

√
6√

3
2
–

√
6√

3
2
–

√
6√

3
(− , −1, − )2

–
√

6√

3

2 3√

3

( , 1, ) , ( , −1, − ) , (− , −1, ) ,2
–

√
6√

3
2
–

√
6√

3
2
–

√
6√

3
(− , 1, − )2

–
√

6√

3

f(x, y, z) = + +x2 y2 z2 + + = 1x4 y4 z4

f(x, y, z) = + +x2 y2 z2 xyz = 4

f 6 2
–

√3 ( , , ) ,4
–

√3
4
–

√3
4
–

√3 ( , − , − ) ,4
–

√3
4
–

√3
4
–

√3

(− , , − ) ,4
–

√3 4
–

√3 4
–

√3 (− , − , ) .4
–

√3 4
–

√3 4
–

√3
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In exercises 16-21, use the method of Lagrange multipliers to find the requested extremum of the given function subject to
the given constraint.

16) Maximize  subject to the constraint, .

17) Maximize  subject to the constraints, .

Answer:

Subject to the given constraints,  has a relative maximum of  at the point .  If  were not

a constraint, there would have been two other Lagrange points with relative extrema of  subject to the other two

constraints.  These would have been  and  

 

To verify that  really has a relative maximum at the point  we would need to check the value of  on either

side of this point on the constraint curve,  
 

If  which is less than ,  would be  

If  which is greater than ,  would be  
 

Then we compare the value of  at the Lagrange point, , with the values of  at these other points on the

constraint. 
We have   and   
 

Therefore, we can conclude that  indeed has a relative maximum of  at the point 

18) Maximize  subject to the constraint, .

19) Minimize  subject to the constraint, .

Answer:
Subject to the given constraint,  has a relative minimum of  at the point .

20) Minimize  on the ellipse .

21) Maximize  on the sphere .

Answer:

Subject to the given constraint,  has a relative maximum of  at the point . 

Note that, subject to this constraint,  also has a relative minimum of  at the point . 

To see a 3D visualization of this problem, see: CalcPlot3D for Problem 21.

 

In exercises 22-23, use the method of Lagrange multipliers with two constraints.

22) Optimize  subject to the constraints: .

Answer:
maximum: , minimum: 

23) Minimize  when  and .

Answer:

f(x, y) = 6 − −x2 y2− −−−−−−−−
√ x+y−2 = 0

f(x, y) = −x2 y2 g(x, y) = y− = 0, x > 0, y > 0x2

f f ( , ) =
2√

2
1
2

1
4

( , )
2√

2
1
2

x > 0

f

(0, 0) (− , ) .
2√

2
1
2

f ( , ) ,
2√

2
1
2

f

y− = 0.x2

x = 0.5
2√

2
y y = (0.5 = 0.25.)2

x = 1
2√

2
y y = (1 = 1.)2

f ( , )
2√

2
1
2

f

f(0.5, 0.25) = (0.5 −(0.25 = 0.25 −0.0625 = 0.1875 <)2 )2 1
4

f(1, 1) = (1 −(1 = 0 < .)2 )2 1
4

f 1
4

( , ) .
2√

2
1
2

U(x, y) = 8x4/5y1/5 4x+2y = 12

f(x, y, z) = + +x2 y2 z2 x+y+z = 1

f f ( , , ) =1
3

1
3

1
3

1
3

( , , )1
3

1
3

1
3

f(x, y) = xy + = 1
x2

a2

y2

b2

f(x, y, z) = 2x+3y+5z + + = 19x2 y2 z2

f 19 2
–

√ ( , , )2
–

√
3 2√

2

5 2√

2

f −19 2
–

√ (− , − , − )2
–

√
3 2√

2

5 2√

2

f(x, y, z) = yz+xy xy = 1, + = 1y2 z2

3
2

1
2

f(x, y, z) = + +x2 y2 z2 x+y+z = 9 x+2y+3z = 20
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minimum: 

 

Use the method of Lagrange multipliers to solve the following applied problems.

24) A large container in the shape of a rectangular solid must have a volume of 480 m . The bottom of the container costs $5/m  to
construct whereas the top and sides cost $3/m  to construct. Use Lagrange multipliers to find the dimensions of the container of this
size that has the minimum cost.

25) A rectangular box without a top (a topless box) is to be made from 12 ft  of cardboard. Find the maximum volume of such a
box.

Answer:
The maximum volume is  ft . The dimensions are  ft.

26) Find the minimum distance from the parabola  to point .

27) Find the point on the line  that is closest to point .

Answer:

29) Find the minimum distance from point  to the parabola 

Answer:
 unit

30) Find the minimum and maximum distances between the ellipse  and the origin.

31) Find the minimum distance from the plane  to point .

Answer:
 units

32) Find the point on the plane  that is closest to the point .

33) Find the point on the surface  closest to the point 

Answer:

34) A pentagon is formed by placing an isosceles triangle on a rectangle, as shown in the diagram. If the perimeter of the pentagon
is 10 in., find the lengths of the sides of the pentagon that will maximize the area of the pentagon.

35) [T] By investing  units of labor and  units of capital, a watch manufacturer can produce  watches. Find
the maximum number of watches that can be produced on a budget of $20,000 if labor costs $100/unit and capital costs $200/unit.

f(2, 3, 4) = 29

3 2

2

2

4 3 1 ×2 ×2

y = x2 (0, 3)

y = 2x+3 (4, 2)

(25, 195)

(0, 1) = 4y.x2

1.0

+xy+2 = 1x2 y2

x+y+z = 1 (2, 1, 1)

3
–

√

4x+3y+z = 2 (1, −1, 1)

−2xy+ −x+y = 0x2 y2 (1, 2, −3).

(1, , −3)1
2

x y P (x, y) = 50x0.4y0.6
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Use a grapher like CalcPlot3D to sketch a contour plot of the function.

Answer:

Roughly 3365 watches at the critical point (

36) A rectangular solid is contained within a tetrahedron with vertices at , and the origin. The base of
the box has dimensions  and , and the height of the box is . If the sum of , , and  is , find the dimensions that maximizes
the volume of the rectangular solid.

38) Show that, of all the triangles inscribed in a circle of radius  (see diagram), the equilateral triangle has the largest perimeter.

Chapter Review Exercises 

Chapter Review Exercise 

3.E: Differentiation of Functions of Several Variables (Exercise) is shared under a not declared license and was authored, remixed, and/or curated
by LibreTexts.

14.E: Differentiation of Functions of Several Variables (Exercise) has no license indicated.

80, 60).

(1, 0, 0), (0, 1, 0), (0, 0, 1)
x y z x y z 1

R
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CHAPTER OVERVIEW

4: Multiple Integration
In this chapter we extend the concept of a definite integral of a single variable to double and triple integrals of functions of two and
three variables, respectively. We examine applications involving integration to compute volumes, masses, and centroids of more
general regions. We will also see how the use of other coordinate systems (such as polar, cylindrical, and spherical coordinates)
makes it simpler to compute multiple integrals over some types of regions and functions. In the preceding chapter, we discussed
differential calculus with multiple independent variables. Now we examine integral calculus in multiple dimensions. Just as a
partial derivative allows us to differentiate a function with respect to one variable while holding the other variables constant, we
will see that an iterated integral allows us to integrate a function with respect to one variable while holding the other variables
constant.

4.1: Iterated Integrals and Area
4.2: Double Integration and Volume
4.3: Double Integrals in Polar Coordinates
4.4: Triple Integrals
4.5: Triple Integrals in Cylindrical and Spherical Coordinates
4.6: Calculating Centers of Mass and Moments of Inertia
4.7: Change of Variables in Multiple Integrals
4.8: Multiple Integration (Exercises)

 

Contributors and Attributions 

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is
licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

This page titled 4: Multiple Integration is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

https://libretexts.org/
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/04%3A_Multiple_Integration/4.01%3A_Iterated_Integrals_and_Area
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/04%3A_Multiple_Integration/4.02%3A_Double_Integration_and_Volume
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/04%3A_Multiple_Integration/4.03%3A_Double_Integrals_in_Polar_Coordinates
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/04%3A_Multiple_Integration/4.04%3A_Triple_Integrals
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/04%3A_Multiple_Integration/4.05%3A_Triple_Integrals_in_Cylindrical_and_Spherical_Coordinates
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/04%3A_Multiple_Integration/4.06%3A_Calculating_Centers_of_Mass_and_Moments_of_Inertia
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/04%3A_Multiple_Integration/4.07%3A_Change_of_Variables_in_Multiple_Integrals
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/04%3A_Multiple_Integration/4.08%3A_Multiple_Integration_(Exercises)
https://cnx.org/contents/i4nRcikn@3.1:H2TLb2-S@4/Introduction
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/04%3A_Multiple_Integration
https://creativecommons.org/licenses/by-nc-sa/4.0
https://openstax.org/
https://openstax.org/details/books/calculus-volume-1


4.1.1 https://math.libretexts.org/@go/page/89542

4.1: Iterated Integrals and Area
In the previous chapter we found that we could differentiate functions of several variables with respect to one variable, while
treating all the other variables as constants or coefficients. We can integrate functions of several variables in a similar way. For
instance, if we are told that , we can treat  as staying constant and integrate to obtain :

Make a careful note about the constant of integration, . This "constant'' is something with a derivative of  with respect to , so it
could be any expression that contains only constants and functions of . For instance, if , then 

. To signify that  is actually a function of , we write:

Using this process we can even evaluate definite integrals.

Evaluate the integral  

 
Solution

We find the indefinite integral as before, then apply the Fundamental Theorem of Calculus to evaluate the definite integral:

We can also integrate with respect to . In general,

and

Note that when integrating with respect to , the bounds are functions of  (of the form  and ) and the final
result is also a function of . When integrating with respect to , the bounds are functions of  (of the form  and 

) and the final result is a function of . Another example will help us understand this.

Evaluate . 

 
Solution

We consider  as staying constant and integrate with respect to :

(x, y) = 2xyfx y f(x, y)

f(x, y) = ∫ (x, y)dxfx

= ∫ 2xy dx

= y+C.x2

C 0 x

y f(x, y) = y+siny+ +17x2 y3

(x, y) = 2xyfx C y

f(x, y) = ∫ (x, y)dx = y+C(y).fx x2 (4.1.1)

Example : Integrating functions of more than one variable4.1.1

2xy dx.∫
2y

1

2xy dx∫
2y

1
= yx2 ∣

∣
2y

1

= (2y y−(1 y)2 )2

= 4 −y.y3

y

(x, y)dx = f(x, y) = f( (y), y)−f( (y), y),∫
(y)h2

(y)h1

fx ∣
∣

(y)h2

(y)h1

h2 h1 (4.1.2)

(x, y)dy = f(x, y) = f(x, (x))−f(x, (x)).∫
(x)g2

(x)g1

fy
∣
∣

(x)g2

(x)g1

g2 g1 (4.1.3)

x y x = (y)h1 x = (y)h2

y y x y = (x)g1

y = (x)g2 x

Example : Integrating functions of more than one variable4.1.2

(5 +6 ) dy∫
x

1
x3y−3 y2

x y
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Note how the bounds of the integral are from  to  and that the final answer is a function of .

In the previous example, we integrated a function with respect to  and ended up with a function of . We can integrate this as
well. This process is known as iterated integration, or multiple integration.

Evaluate  

 
Solution

We follow a standard "order of operations'' and perform the operations inside parentheses first (which is the integral evaluated
in Example .)

Note how the bounds of  were  to  and the final result was a number.

The previous example showed how we could perform something called an iterated integral; we do not yet know why we would be
interested in doing so nor what the result, such as the number , means. Before we investigate these questions, we offer some
definitions.

Iterated integration is the process of repeatedly integrating the results of previous integrations. Integrating one integral is
denoted as follows.

Let , ,  and  be numbers and let , ,  and  be functions of  and , respectively. Then:

1. 

2. 

Again make note of the bounds of these iterated integrals.

With ,  varies from  to , whereas  varies from  to . That is, the bounds of  are curves,

the curves  and , whereas the bounds of  are constants,  and . It is useful to remember that when
setting up and evaluating such iterated integrals, we integrate "from curve to curve, then from point to point.''

We now begin to investigate why we are interested in iterated integrals and what they mean.

(5 +6 ) dy∫
x

1
x3y−3 y2 =( + )

5x3y−2

−2

6y3

3

∣

∣
∣
x

1

=(− +2 )−(− +2)
5

2
x3x−2 x3 5

2
x3

= − x−2.
9

2
x3 5

2

y = 1 y = x x

y x

Example : Integrating an integral4.1.3

( (5 +6 ) dy) dx.∫
2

1
∫

x

1
x3y−3 y2

4.1.2

( (5 +6 ) dy) dx∫
2

1
∫

x

1
x3y−3 y2 = ([ + ] ) dx∫

2

1

5x3y−2

−2

6y3

3

∣

∣
∣
x

1

= ( − x−2) dx∫
2

1

9

2
x3 5

2

=( − −2x)
9

8
x4 5

4
x2 ∣

∣
∣
2

1

= .
89

8

x x = 1 x = 2

89/8

Definition: Iterated Integration

a b c d (x)g1 (x)g2 (y)h1 (y)h2 x y

f(x, y)dx dy = ( f(x, y)dx) dy.∫
d

c

∫
(y)h2

(y)h1

∫
d

c

∫
(y)h2

(y)h1

f(x, y)dy dx = ( f(x, y)dy) dx.∫
b

a

∫
(x)g2

(x)g1

∫
b

a

∫
(x)g2

(x)g1

f(x, y)dx dy∫
d

c

∫
(y)h2

(y)h1

x (y)h1 (y)h2 y c d x

x = (y)h1 x = (y)h2 y y = c y = d
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Area of a plane region

Consider the plane region  bounded by  and , shown in Figure . We learned in Section 7.1 (in
Calculus I) that the area of  is given by

Figure : Calculating the area of a plane region R with an iterated integral.

We can view the expression  as

meaning we can express the area of  as an iterated integral:

In short: a certain iterated integral can be viewed as giving the area of a plane region.

A region  could also be defined by  and , as shown in Figure . Using a process similar to that
above, we have 

Figure : Calculating the area of a plane region R with an iterated integral.

We state this formally in a theorem.

1. Let  be a plane region bounded by  and , where  and  are continuous functions on 
. The area  of  is

R a ≤ x ≤ b (x) ≤ y ≤ (x)g1 g2 4.1.1
R

( (x) − (x)) dx.∫
b

a

g2 g1 (4.1.4)

4.1.1

( (x) − (x))g2 g1

( (x) − (x)) = 1 dy = dy,g2 g1 ∫
(x)g2

(x)g1

∫
(x)g2

(x)g1

R

area of R = ( (x) − (x)) dx = ( dy) dx = dy dx.∫
b

a

g2 g1 ∫
b

a

∫
(x)g2

(x)g1

∫
b

a

∫
(x)g2

(x)g1

(4.1.5)

R c ≤ y ≤ d (y) ≤ x ≤ (y)h1 h2 4.1.2

the area of R = dx dy.∫
d

c

∫
(y)h2

(y)h1

(4.1.6)

4.1.2

THEOREM : Area of a plane region4.1.1

R a ≤ x ≤ b (x) ≤ y ≤ (x)g1 g2 g1 g2

[a, b] A R

A = dy dx.∫
b

a

∫
(x)g2

(x)g1

(4.1.7)
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2. Let  be a plane region bounded by  and , where  and  are continuous functions on 
. The area  of  is

The following examples should help us understand this theorem.

Find the area  of the rectangle with corners  and , as shown in Figure .

Figure : Calculating the area of a rectangle with an iterated integral in Example .

Solution

Multiple integration is obviously overkill in this situation, but we proceed to establish its use.

The region  is bounded by , ,  and . Choosing to integrate with respect to  first, we have 

We could also integrate with respect to  first, giving: 

Clearly there are simpler ways to find this area, but it is interesting to note that this method works.

Find the area  of the triangle with vertices at ,  and , as shown in Figure .

Figure : Calculating the area of a triangle with iterated integrals in Example .

Solution

R c ≤ y ≤ d (y) ≤ x ≤ (y)h1 h2 h1 h2

[c, d] A R

A = dx dy.∫
d

c

∫
(y)h2

(y)h1

(4.1.8)

Example : Area of a rectangle4.1.4

A (−1, 1) (3, 3) 4.1.3

4.1.3 4.1.4

R x = −1 x = 3 y = 1 y = 3 y

A = 1 dy dx = (y  ) dx = 2 dx = 2x = 8.∫
3

−1
∫

3

1
∫

3

−1

∣
∣
3

1
∫

3

−1

∣
∣
3

−1

x

A = 1 dx dy = (x  ) dy = 4 dy = 4y = 8.∫
3

1
∫

3

−1
∫

3

1

∣
∣
3

−1
∫

3

1

∣
∣
3

1

Example : Area of a triangle4.1.5

A (1, 1) (3, 1) (5, 5) 4.1.4

4.1.4 4.1.5
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The triangle is bounded by the lines as shown in the figure. Choosing to integrate with respect to  first gives that  is bounded
by  to , while  is bounded by  to . (Recall that since -values increase from left to right, the
leftmost curve, , is the lower bound and the rightmost curve, , is the upper bound.) The area is

We can also find the area by integrating with respect to  first. In this situation, though, we have two functions that act as the
lower bound for the region ,  and . This requires us to use two iterated integrals. Note how the -bounds are
different for each integral:

As expected, we get the same answer both ways.

Find the area of the region enclosed by  and , as shown in Figure .

Figure : Calculating the area of a plane region with iterated integrals in Example .

Solution

Once again we'll find the area of the region using both orders of integration.

Using :

Using :

x x

x = y x =
y+5

2
y y = 1 y = 5 x

x = y x = (y+5)/2

A = dx dy∫
5

1
∫

y+5

2

y

= (x  ) dy∫
5

1

∣
∣

y+5

2

y

= (− y+ ) dy∫
5

1

1

2

5

2

=(− + y)
1

4
y2 5

2
∣
∣
5

1

= 4.

y

R y = 1 y = 2x−5 x

A = 1 dy dx∫
3

1
∫

x

1

= (y) dx∫
3

1

∣
∣
x

1

= (x−1) dx∫
3

1

= 2
= 4.

+

+

+

+

1 dy dx∫
5

3
∫

x

2x−5

(y) dx∫
5

3

∣
∣
x

2x−5

(−x+5) dx∫
5

3

2

Example : Area of a plane region4.1.6

y = 2x y = x2 4.1.5

4.1.5 4.1.6

dy dx

1 dy dx = (2x− )dx = ( − ) = .∫
2

0
∫

2x

x2

∫
2

0
x2 x2 1

3
x3 ∣

∣
2

0

4

3
(4.1.9)

dx dy
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Changing Order of Integration
In each of the previous examples, we have been given a region  and found the bounds needed to find the area of  using both
orders of integration. We integrated using both orders of integration to demonstrate their equality.

We now approach the skill of describing a region using both orders of integration from a different perspective. Instead of starting
with a region and creating iterated integrals, we will start with an iterated integral and rewrite it in the other integration order. To do
so, we'll need to understand the region over which we are integrating.

The simplest of all cases is when both integrals are bound by constants. The region described by these bounds is a rectangle (see
Example ), and so:

When the inner integral's bounds are not constants, it is generally very useful to sketch the bounds to determine what the region we
are integrating over looks like. From the sketch we can then rewrite the integral with the other order of integration.

Examples will help us develop this skill.

Rewrite the iterated integral  with the order of integration . 

 
Solution

We need to use the bounds of integration to determine the region we are integrating over.

The bounds tell us that  is bounded by  and ;  is bounded by 0 and 6. We plot these four curves: , , 
and  to find the region described by the bounds. Figure  shows these curves, indicating that  is a triangle.

Figure : Sketching the region R described by the iterated integral in Example .

To change the order of integration, we need to consider the curves that bound the -values. We see that the lower bound is 

 and the upper bound is . The bounds on  are  to . Thus we can rewrite the integral as 

Change the order of integration of . 

 
Solution

We sketch the region described by the bounds to help us change the integration order.  is bounded below and above (i.e., to
the left and right) by  and  respectively, and  is bounded between 0 and 4. Graphing the previous

1 dx dy = ( −y/2)dy =( − ) = .∫
4

0
∫

y√

y/2
∫

4

0
y√

2

3
y3/2 1

4
y2 ∣

∣
4

0

4

3
(4.1.10)

R R

4.1.4

1 dy dx = 1 dx dy.∫
b

a

∫
d

c

∫
d

c

∫
b

a

(4.1.11)

Example : Changing the order of integration4.1.7

1 dy dx∫
6

0
∫

x/3

0
dx dy

y 0 x/3 x y = 0 y = x/3 x = 0
x = 6 4.1.6 R

4.1.6 4.1.7

x

x = 3y x = 6 y 0 2 1 dx dy.∫
2

0
∫

6

3y

Example : Changing the order of integration4.1.8

1 dx dy∫
4

0
∫

(y+4)/2

/4y2

x

x = /4y2 x = (y+4)/2 y
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curves, we find the region  to be that shown in Figure .

Figure : Drawing the region determined by the bounds of integration in Example .

To change the order of integration, we need to establish curves that bound . The figure makes it clear that there are two lower
bounds for :  on , and  on . Thus we need two double integrals. The upper bound for
each is . Thus we have 

This section has introduced a new concept, the iterated integral. We developed one application for iterated integration: area
between curves. However, this is not new, for we already know how to find areas bounded by curves.

In the next section we apply iterated integration to solve problems we currently do not know how to handle. The "real" goal of this
section was not to learn a new way of computing area. Rather, our goal was to learn how to define a region in the plane using the
bounds of an iterated integral. That skill is very important in the following sections.

This page titled 4.1: Iterated Integrals and Area is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gregory
Hartman et al. via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

13.1: Iterated Integrals and Area by Gregory Hartman et al. is licensed CC BY-NC 3.0. Original source: http://www.apexcalculus.com/.

R 4.1.7

4.1.7 4.1.8

y

y y = 0 0 ≤ x ≤ 2 y = 2x−4 2 ≤ x ≤ 4
y = 2 x−−√

1 dx dy = 1 dy dx+ 1 dy dx.∫
4

0
∫

(y+4)/2

/4y2

∫
2

0
∫

2 x√

0
∫

4

2
∫

2 x√

2x−4
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4.2: Double Integration and Volume

The definite integral of  over , , was introduced as "the signed area under the curve.'' We approximated the value

of this area by first subdividing  into  subintervals, where the  subinterval has length , and letting  be any value in
the  subinterval. We formed rectangles that approximated part of the region under the curve with width , height , and
hence with area . Summing all the rectangle's areas gave an approximation of the definite integral, and Theorem 38 stated
that

connecting the area under the curve with sums of the areas of rectangles.

We use a similar approach in this section to find volume under a surface.

Let  be a closed, bounded region in the -plane and let  be a continuous function defined on . We wish to find the
signed volume under the surface of  over . (We use the term "signed volume'' to denote that space above the -plane, under ,
will have a positive volume; space above  and under the -plane will have a "negative'' volume, similar to the notion of signed
area used before.)

We start by partitioning  into  rectangular subregions as shown in Figure . For simplicity's sake, we let all widths be 
and all heights be . Note that the sum of the areas of the rectangles is not equal to the area of , but rather is a close
approximation. Arbitrarily number the rectangles 1 through , and pick a point  in the  subregion.

Figure : Developing a method for finding signed volume under a surface.

The volume of the rectangular solid whose base is the  subregion and whose height is  is . Such
a solid is shown in Figure . Note how this rectangular solid only approximates the true volume under the surface; part of the
solid is above the surface and part is below.

For each subregion  used to approximate , create the rectangular solid with base area  and height . The sum of
all rectangular solids is

This approximates the signed volume under  over . As we have done before, to get a better approximation we can use more
rectangles to approximate the region .

In general, each rectangle could have a different width  and height , giving the  rectangle an area  and
the  rectangular solid a volume of . Let  denote the length of the longest diagonal of all rectangles in the
subdivision of ;  means each rectangle's width and height are both approaching 0. If  is a continuous function, as 

f [a, b] f(x)dx∫
b

a

[a, b] n i th Δxi ci
i th Δxi f( )ci

f( ) Δci xi

f(x)dx = ∑f( ) Δ ,∫
b

a

lim
∥Δx∥→0

ci xi (4.2.1)

R xy z = f(x, y) R

f R xy f

f xy

R n 4.2.1a Δx

Δy R

n ( , )xi yi i th

4.2.1

ith f( , )xi yi = f( , ) Δx ΔyVi xi yi
4.2.1b

Ri R Δx Δy f( , )xi yi

f( , ) Δx Δy.∑
i=1

n

xi yi (4.2.2)

f R

R

Δxj Δyk i th Δ = Δ ΔAi xj yk
ith f( , ) Δxi yi Ai ||ΔA||

R ||ΔA|| → 0 f
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 shrinks (and hence ) the summation  approximates the signed volume better and better. This leads

to a definition.

Note: Recall that the integration symbol " '' is an "elongated S,'' representing the word "sum.'' We interpreted  as "take

the sum of the areas of rectangles over the interval .'' The double integral uses two integration symbols to represent a "double
sum.'' When adding up the volumes of rectangular solids over a partition of a region , as done in Figure , one could first add
up the volumes across each row (one type of sum), then add these totals together (another sum), as in

One can rewrite this as

The summation inside the parenthesis indicates the sum of heights  widths, which gives an area; multiplying these areas by the
thickness  gives a volume. The illustration in Figure  relates to this understanding.

Let  be a continuous function defined over a closed region  in the -plane. The signed volume  under  over 
 is denoted by the double integral

Alternate notations for the double integral are 

The definition above does not state how to find the signed volume, though the notation offers a hint. We need the next two
theorems to evaluate double integrals to find volume.

Let  be a continuous function defined over a closed region  in the -plane. Then the signed volume  under 
over  is

This theorem states that we can find the exact signed volume using a limit of sums. The partition of the region  is not specified,
so any partitioning where the diagonal of each rectangle shrinks to 0 results in the same answer.

This does not offer a very satisfying way of computing area, though. Our experience has shown that evaluating the limits of sums
can be tedious. We seek a more direct method.

Recall Theorem 54 in Section 7.2. This stated that if  gives the cross-sectional area of a solid at , then  gave the
volume of that solid over .

Consider Figure , where a surface  is drawn over a region . Fixing a particular  value, we can consider the area
under  over  where  has that fixed value. That area can be found with a definite integral, namely

||ΔA|| n → ∞ f( , ) Δ∑
i=1

n

xi yi Ai

∫ f(x)dx∫
b

a

[a, b]
R 4.2.1

f( , ) Δ Δ .∑
j=1

n

∑
i=1

m

xi yj xi yj (4.2.3)

( f( , ) Δ ) Δ .∑
j=1

n

∑
i=1

m

xi yj xi yj (4.2.4)

×
Δyj 4.2.2

Definition 101: Double Integral, Signed Volume

z = f(x, y) R xy V f

R

V = f(x, y)dA.∬
R

(4.2.5)

f(x, y)dA = f(x, y)dx dy = f(x, y)dy dx.∬
R

∬
R

∬
R

(4.2.6)

theorem 118: Double Integrals and Signed Volume

z = f(x, y) R xy V f

R

V = f(x, y)dA = f( , ) Δ .∬
R

lim
||ΔA||→0

∑
i=1

n

xi yi Ai (4.2.7)

R

A(x) x A(x)dx∫ b

a

[a, b]

4.2.2 z = f(x, y) R x

f R x

A(x) = f(x, y)dy.∫
(x)g2

(x)g1

(4.2.8)
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Remember that though the integrand contains , we are viewing  as fixed. Also note that the bounds of integration are functions
of : the bounds depend on the value of .

Figure : Finding volume under a surface by sweeping out a cross-sectional area.

As  is a cross-sectional area function, we can find the signed volume  under  by integrating it:

This gives a concrete method for finding signed volume under a surface. We could do a similar procedure where we started with 
fixed, resulting in a iterated integral with the order of integration . The following theorem states that both methods give the
same result, which is the value of the double integral. It is such an important theorem it has a name associated with it.

Let  be a closed, bounded region in the -plane and let  be a continuous function on .

1. If  is bounded by  and , where  and  are continuous functions on , then

2. If  is bounded by  and , where  and  are continuous functions on , then

Note that once again the bounds of integration follow the "curve to curve, point to point'' pattern discussed in the previous section.
In fact, one of the main points of the previous section is developing the skill of describing a region  with the bounds of an iterated
integral. Once this skill is developed, we can use double integrals to compute many quantities, not just signed volume under a
surface.

Let . Find the signed volume under  on the region , which is the rectangle with corners  and 
pictured in Figure , using Fubini's Theorem and both orders of integration. 
 
Solution

We wish to evaluate . As  is a rectangle, the bounds are easily described as  and .

Using the order :

x x

x x

4.2.2

A(x) V f

V = A(x)dx = ( f(x, y)dy) dx = f(x, y)dy dx.∫
b

a

∫
b

a

∫
(x)g2

(x)g1

∫
b

a

∫
(x)g2

(x)g1

(4.2.9)

y

dx dy

THEOREM 119: Fubini's Theorem

R xy z = f(x, y) R

R a ≤ x ≤ b (x) ≤ y ≤ (x)g1 g2 g1 g2 [a, b]

f(x, y)dA = f(x, y)dy dx.∬
R

∫
b

a

∫
(x)g2

(x)g1

(4.2.10)

R c ≤ y ≤ d (y) ≤ x ≤ (y)h1 h2 h1 h2 [c, d]

f(x, y)dA = f(x, y)dx dy.∬
R

∫
d

c

∫
(y)h2

(y)h1

(4.2.11)

R

Example : Evaluating a double integral4.2.1

f(x, y) = xy+ey f R (3, 1) (4, 2)
4.2.3

(xy+ ) dA∬
R

ey R 3 ≤ x ≤ 4 1 ≤ y ≤ 2

dy dx
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Figure : Finding the signed volume under a surface in Example 13.2.1.

Now we check the validity of Fubini's Theorem by using the order :

Both orders of integration return the same result, as expected.

Evaluate , where  is the triangle bounded by ,  and , as shown in

Figure .

Solution

While it is not specified which order we are to use, we will evaluate the double integral using both orders to help drive home
the point that it does not matter which order we use.

(xy+ ) dA∬
R

ey = (xy+ ) dy dx∫
4

3
∫

2

1
ey

= (  ) dx∫
4

3
[ x + ]

1

2
y2 ey

∣

∣
∣
2

1

= ( x+ −e) dx∫
4

3

3

2
e2

= ( +( −e)x)
3

4
x2 e2 ∣

∣
∣

4

3

= + −e ≈ 9.92.
21

4
e2

4.2.3

dx dy

(xy+ ) dA∬
R

ey = (xy+ ) dx dy∫
2

1
∫

4

3
ey

= ( ) dy∫
2

1
[ y+x ]

1

2
x2 ey

∣

∣
∣
4

3

= ( y+ ) dy∫
2

1

7

2
ey

= ( + )
7

4
y2 ey

∣

∣
∣
2

1

= + −e ≈ 9.92.
21

4
e2

Example : Evaluating a double integral4.2.2

(3xy− − +6) dA∬
R

x2 y2 R x = 0 y = 0 x/2 +y = 1

4.2.4
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Figure : Finding the signed volume under the surface in Example .

Using the order :

The bounds on  go from "curve to curve,'' i.e., , and the bounds on  go from "point to point,'' i.e., 
.

Now lets consider the order . Here  goes from "curve to curve,'' , and  goes from "point to point,'' 
:

We obtained the same result using both orders of integration.

Note how in these two examples that the bounds of integration depend only on ; the bounds of integration have nothing to do
with . This is an important concept, so we include it as a Key Idea.

When evaluating  using an iterated integral, the bounds of integration depend only on . The surface  does

not determine the bounds of integration.

Before doing another example, we give some properties of double integrals. Each should make sense if we view them in the
context of finding signed volume under a surface, over a region.

4.2.4 4.2.2

dy dx

y 0 ≤ y ≤ 1 −x/2 x

0 ≤ x ≤ 2

(3xy− − +6) dA∬
R

x2 y2 = (3xy− − +6) dy dx∫
2

0
∫

− +1x

2

0
x2 y2

= dx∫
2

0
( x − y− +6y)

3

2
y2 x2 1

3
y3 ∣

∣
∣

− +1x

2

0

= ( − −x− ) dx∫
2

0

11

12
x3 11

4
x2 17

3

= ( − − − x)
11

48
x4 11

12
x3 1

2
x2 17

3

∣

∣
∣

2

0

= = 5. .
17

3
6¯̄̄

dxdy x 0 ≤ x ≤ 2 −2y y

0 ≤ y ≤ 1

(3xy− − +6) dA∬
R

x2 y2 = (3xy− − +6) dx dy∫
1

0
∫

2−2y

0
x2 y2

= dy∫
1

0
( y− −x +6x)

3

2
x2 1

3
x3 y2 ∣

∣
∣

2−2y

0

= ( −22 +2y+ ) dy∫
1

0

32

3
y3 y2 28

3

= ( − + + y)
8

3
y4 22

3
y3 y2 28

3

∣

∣
∣

1

0

= = 5. .
17

3
6¯̄̄

R

f(x, y)

KEY IDEA 56: Double Integration Bounds

f(x, y)dA∬
R

R f
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Let  and  be continuous functions over a closed, bounded plane region , and let  be a constant.

1. 

2. 

3. If  on , then .

4. If  on , then .

5. Let  be the union of two nonoverlapping regions,  (see Figure ). Then 

Figure : R is the union of two nonoverlapping regions,  and .

Let  and  be the triangle with vertices ,  and  (Figure ). Evaluate the double

integral .

Figure : Finding the signed volume under a surface in Example .

Solution

If we attempt to integrate using an iterated integral with the order , note how there are two upper bounds on  meaning
we'll need to use two iterated integrals. We would need to split the triangle into two regions along the -axis, then use Theorem
120, part 5.

Instead, let's use the order . The curves bounding  are ; the bounds on  are . This gives
us:

THEOREM 120 Properties of Double Integrals

f g R c

c f(x, y)dA = c f(x, y)dA.∬
R

∬
R

(f(x, y) ±g(x, y)) dA = f(x, y)dA± g(x, y)dA∬
R

∬
R

∬
R

f(x, y) ≥ 0 R f(x, y)dA ≥ 0∬
R

f(x, y) ≥ g(x, y) R f(x, y)dA ≥ g(x, y)dA∬
R

∬
R

R R = ⋃R1 R2 4.2.5

f(x, y)dA = f(x, y)dA+ f(x, y)dA.∬
R

∬
R1

∬
R2

(4.2.12)

4.2.5 R1 R2

Example : Evaluating a double integral4.2.3

f(x, y) = sinx cosy R (−1, 0) (1, 0) (0, 1) 4.2.5

f(x, y)dA∬
R

4.2.5 4.2.3

dydx R

y

dxdy x y−1 ≤ x ≤ 1 −y y 0 ≤ y ≤ 1
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Recall that the cosine function is an even function; that is, . Therefore, from the last integral above, we have 
. Thus the integrand simplifies to  and we have

It turns out that over , there is just as much volume above the -plane as below (look again at Figure ), giving a final
signed volume of 0.

Evaluate , where  is the region bounded by the parabolas  and , graphed in Figure .

Figure : Finding the volume under the surface in Example .

Solution

Graphing each curve can help us find their points of intersection. Solving analytically, the second equation tells us that 
. Substituting this value in for  in the first equation gives us . Solving for :

Thus we've found analytically what was easy to approximate graphically: the regions intersect at  and , as shown in
Figure .

We now choose an order of integration:  or ? Either order works; since the integrand does not contain , choosing 
 might be simpler -- at least, the first integral is very simple.

Thus we have the following "curve to curve, point to point'' bounds: , and .

f(x, y)dA∬
R

= sinx cosy dx dy∫
1

0
∫

1−y

y−1

= dy∫
1

0
(−cosx cosy)∣

∣
1−y

y−1

= cosy(−cos(1 −y) +cos(y−1)) dy.∫
1

0

cosx = cos(−x)
cos(y−1) = cos(1 −y) 0,

f(x, y)dA∬
R

= 0 dy∫
1

0

= 0.

R xy 4.2.5

Example : Evaluating a double integral4.2.4

(4 −y)dA∬
R

R = 4xy2 = 4yx2 4.2.6

4.2.6 4.2.4

y = /4x2 y /16 = 4xx4 x

x4

16
−64xx4

x( −64)x3

x

= 4x

= 0

= 0

= 0,  4.

(0, 0) (4, 4)
4.2.6

dy dx dx dy x

dx dy

/4 ≤ x ≤ 2y2 y√ 0 ≤ y ≤ 4
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The signed volume under the surface  is about 11.7 cubic units.

In the previous section we practiced changing the order of integration of a given iterated integral, where the region  was not
explicitly given. Changing the bounds of an integral is more than just an test of understanding. Rather, there are cases where
integrating in one order is really hard, if not impossible, whereas integrating with the other order is feasible.

Rewrite the iterated integral  with the order . Comment on the feasibility to evaluate each integral.

Solution

Once again we make a sketch of the region over which we are integrating to facilitate changing the order. The bounds on  are
from  to ; the bounds on  are from  to . These curves are sketched in Figure , enclosing the
region .

Figure : Determining the region  determined by the bounds of integration in Example .

To change the bounds, note that the curves bounding  are  up to ; the triangle is enclosed between  and 

. Thus the new bounds of integration are  and , giving the iterated integral .

How easy is it to evaluate each iterated integral? Consider the order of integrating , as given in the original problem. The

first indefinite integral we need to evaluate is ; we have stated before (see Section 5.5) that this integral cannot be

evaluated in terms of elementary functions. We are stuck.

Changing the order of integration makes a big difference here. In the second iterated integral, we are faced with ;

integrating with respect to  gives us , and the first definite integral evaluates to

Thus

(4 −y)dA∬
R

= (4 −y)dx dy∫
4

0
∫

2 y√

/4y2

= (x(4 −y)) dy∫
4

0

∣
∣
2 y√

/4y2

= ((2 − )(4 −y)) dy = ( − −2 +8 ) dy∫
4

0
y√

y2

4
∫

4

0

y3

4
y2 y3/2 y1/2

= ( − − + )
y4

16

y3

3

4y5/2

5

16y3/2

3

∣

∣
∣

4

0

= = 11.7 .
176

15
3¯̄̄

f

R

Example : Changing the order of integration4.2.5

dx dy∫
3

0
∫

3

y

e−x2

dy dx

x

x = y x = 3 y y = 0 y = 3 4.2.7
R

4.2.7 R 4.2.5

y y = 0 y = x x = 0

x = 3 0 ≤ y ≤ x 0 ≤ x ≤ 3 dy dx∫
3

0
∫

x

0
e−x2

dxdy

∫ dxe−x2

∫ dye−x2

y y +Ce−x2

dy = x .∫
x

0
e−x2

e−x2

dy dx = (x ) dx.∫
3

0
∫

x

0
e−x2

∫
3

0
e−x2
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This last integral is easy to evaluate with substitution, giving a final answer of . Figure  shows the
surface over .

Figure : Showing the surface  defined in Example  over its region 

In short, evaluating one iterated integral is impossible; the other iterated integral is relatively simple.

Definition 22 defines the average value of a single--variable function  on the interval  as

that is, it is the "area under  over an interval divided by the length of the interval.'' We make an analogous statement here: the
average value of  over a region  is the volume under  over  divided by the area of .

Let  be a continuous function defined over a closed region  in the -plane. The average value of  on  is

Find the average value of  over the region , which is bounded by the parabolas  and . Note:
this is the same function and region as used in Example .

Solution

In Example 13.2.4 we found

We find the area of  by computing :

Dividing the volume under the surface by the area gives the average value:

While the surface, as shown in Figure , covers -values from  to , the "average'' -value on  is 

(1 − ) ≈ 0.51
2

e−9 4.2.8

R

4.2.8 f 4.2.5 R.

f(x) [a, b]

average value of f(x) on [a, b] = f(x)dx;
1

b−a
∫

b

a

f

z = f(x, y) R f R R

Definition 102 The Average Value of  on f R

z = f(x, y) R xy f R

average value of f  on R = .
f(x, y)dA∬

R

dA∬R

(4.2.13)

Example : Finding average value of a function over a region 4.2.6 R

f(x, y) = 4 −y R = 4xy2 = 4yx2

4.2.4

f(x, y)dA = (4 −y)dx dy = .∬
R

∫
4

0
∫

2 y√

/4y2

176

15

R dA∬
R

dA = dx dy = .∬
R

∫
4

0
∫

2 y√

/4y2

16

3

average value of f  on R = = = 2.2.
176/15

16/3

11

5

4.2.9 z z = 0 z = 4 z R 2.2.
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Figure : Finding the average value of  in Example .

The previous section introduced the iterated integral in the context of finding the area of plane regions. This section has extended
our understanding of iterated integrals; now we see they can be used to find the signed volume under a surface.

This new understanding allows us to revisit what we did in the previous section. Given a region  in the plane, we computed 

; again, our understanding at the time was that we were finding the area of . However, we can now view the function 

 as a surface, a flat surface with constant -value of 1. The double integral  finds the volume, under , over ,

as shown in Figure . Basic geometry tells us that if the base of a general right cylinder has area , its volume is , where
 is the height. In our case, the height is 1. We were "actually'' computing the volume of a solid, though we interpreted the number

as an area.

Figure : Showing how an iterated integral used to find area finds a certain volume.

The next section extends our abilities to find "volumes under surfaces.'' Currently, some integrals are hard to compute because
either the region  we are integrating over is hard to define with rectangular curves, or the integrand itself is hard to deal with.
Some of these problems can be solved by converting everything into polar coordinates.

This page titled 4.2: Double Integration and Volume is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by
Gregory Hartman et al. via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

13.2: Double Integration and Volume by Gregory Hartman et al. is licensed CC BY-NC 3.0. Original source: http://www.apexcalculus.com/.

4.2.9 f 4.2.6

R
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R
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R
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4.3: Double Integrals in Polar Coordinates

Recognize the format of a double integral over a polar rectangular region.
Evaluate a double integral in polar coordinates by using an iterated integral.
Recognize the format of a double integral over a general polar region.
Use double integrals in polar coordinates to calculate areas and volumes.

Double integrals are sometimes much easier to evaluate if we change rectangular coordinates to polar coordinates. However, before
we describe how to make this change, we need to establish the concept of a double integral in a polar rectangular region.

Polar Rectangular Regions of Integration
When we defined the double integral for a continuous function in rectangular coordinates—say,  over a region  in the -plane
—we divided  into subrectangles with sides parallel to the coordinate axes. These sides have either constant -values and/or
constant -values. In polar coordinates, the shape we work with is a polar rectangle, whose sides have constant -values and/or
constant -values. This means we can describe a polar rectangle as in Figure , with .

Figure : (a) A polar rectangle  (b) divided into subrectangles  (c) Close-up of a subrectangle.

In this section, we are looking to integrate over polar rectangles. Consider a function  over a polar rectangle . We divide
the interval  into  subintervals  of length  and divide the interval  into  subintervals 

 of width . This means that the circles  and rays  for  and  divide the
polar rectangle  into smaller polar subrectangles  (Figure ).

As before, we need to find the area  of the polar subrectangle  and the “polar” volume of the thin box above . Recall
that, in a circle of radius  the length  of an arc subtended by a central angle of  radians is . Notice that the polar rectangle 

 looks a lot like a trapezoid with parallel sides  and  and with a width . Hence the area of the polar subrectangle 
 is

Simplifying and letting

we have .

Therefore, the polar volume of the thin box above  (Figure ) is

 Learning Objectives

g R xy

R x

y r

θ 4.3.1a R = {(r, θ) | a ≤ r ≤ b, α ≤ θ ≤ β}

4.3.1 R Rij

f(r, θ) R

[a, b] m [ , ]ri−1 ri Δr = (b−a)/m [α, β] n

[ , ]θi−1 θi Δθ = (β−α)/n r = ri θ = θi 1 ≤ i ≤ m 1 ≤ j≤ n

R Rij 4.3.1b

ΔA Rij Rij

r s θ s = rθ

Rij Δθri−1 Δθri Δr

Rij

ΔA = Δr( Δθ+ Δθ).
1

2
ri−1 ri

= ( + )r∗
ij

1

2
ri−1 ri

ΔA = ΔrΔθr∗
ij

Rij 4.3.2
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Figure : Finding the volume of the thin box above polar rectangle .

Using the same idea for all the subrectangles and summing the volumes of the rectangular boxes, we obtain a double Riemann sum
as

As we have seen before, we obtain a better approximation to the polar volume of the solid above the region  when we let  and 
 become larger. Hence, we define the polar volume as the limit of the double Riemann sum,

This becomes the expression for the double integral.

The double integral of the function  over the polar rectangular region  in the -plane is defined as

Again, just as in section on Double Integrals over Rectangular Regions, the double integral over a polar rectangular region can be
expressed as an iterated integral in polar coordinates. Hence,

Notice that the expression for  is replaced by  when working in polar coordinates. Another way to look at the polar
double integral is to change the double integral in rectangular coordinates by substitution. When the function  is given in terms of 

 and  using , and  changes it to

Note that all the properties listed in section on Double Integrals over Rectangular Regions for the double integral in rectangular
coordinates hold true for the double integral in polar coordinates as well, so we can use them without hesitation.

Sketch the polar rectangular region

4.3.2 Rij

f( , ) ΔrΔθ.∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij r∗
ij

R m

n

V = f( , ) ΔrΔθ.lim
m,n→∞

∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij r∗
ij

 Definition: The double integral in polar coordinates

f(r, θ) R rθ

f(r, θ)dA∬
R

= f( , )ΔAlim
m,n→∞

∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij

= f( , ) ΔrΔθ.lim
m,n→∞

∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij r∗
ij

(4.3.1)

(4.3.2)

f(r, θ)dA = f(r, θ) r dr dθ = f(r, θ) r dr dθ.∬
R

∬
R

∫
θ=β

θ=α

∫
r=b

r=a

dA r dr dθ

f

x y x = r cos θ, y = r sin θ dA = r dr dθ

f(x, y)dA = f(r cos θ, r sin θ) r dr dθ.∬
R

∬
R

 Example : Sketching a Polar Rectangular Region4.3.1A

R = {(r, θ) | 1 ≤ r ≤ 3, 0 ≤ θ ≤ π}.
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Solution

As we can see from Figure ,  and  are circles of radius 1 and 3 and  covers the entire top half of the
plane. Hence the region  looks like a semicircular band.

Figure : The polar region  lies between two semicircles.

Now that we have sketched a polar rectangular region, let us demonstrate how to evaluate a double integral over this region by
using polar coordinates.

Evaluate the integral  over the region 

Solution

First we sketch a figure similar to Figure , but with outer radius . From the figure we can see that we have

Sketch the region , and evaluate .

Hint

Follow the steps in Example .

Answer

Evaluate the integral

where  is the unit circle on the -plane.

Solution

4.3.3 r = 1 r = 3 0 ≤ θ ≤ π

R

4.3.3 R

 Example : Evaluating a Double Integral over a Polar Rectangular Region4.3.1B

3x dA∬
R

R = {(r, θ) | 1 ≤ r ≤ 2, 0 ≤ θ ≤ π}.

4.3.3 r = 2

3x dA∬
R

= 3r cos θ r dr dθ Use an integral with correct limits of integration.∫
θ=π

θ=0
∫

r=2

r=1

= cos θ[ ]dθ Integrate first with respect to r.∫
θ=π

θ=0
r3∣∣

r=2

r=1

= 7 cos θ dθ∫
θ=π

θ=0

= 7 sin θ = 0.
∣
∣
∣
θ=π

θ=0

 Exercise 4.3.1

D = {(r, θ)|1 ≤ r ≤ 2, − ≤ θ ≤ }π

2
π

2
x dA∬

R

4.3.1A

14
3

 Example : Evaluating a Double Integral by Converting from Rectangular Coordinates4.3.2A

(1 − − )dA∬
R

x2 y2

R xy
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The region  is a unit circle, so we can describe it as .

Using the conversion , and , we have

Evaluate the integral

where 

Solution

We can see that  is an annular region that can be converted to polar coordinates and described as 
 (see the following graph).

Figure : The annular region of integration .

Hence, using the conversion , and , we have

Evaluate the integral

R R = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}

x = r cos θ, y = r sin θ dA = r dr dθ

(1 − − )dA∬
R

x2 y2 = (1 − ) r dr dθ∫
2π

0
∫

1

0
r2

= (r− )dr dθ∫
2π

0
∫

1

0
r3

= dθ∫
2π

0
[ − ]
r2

2

r4

4

1

0

= dθ = .∫
2π

0

1

4

π

2

 Example : Evaluating a Double Integral by Converting from Rectangular Coordinates4.3.2B

(x+y)dA∬
R

R = {(x, y) | 1 ≤ + ≤ 4, x ≤ 0}.x2 y2

R

R = {(r, θ) | 1 ≤ r ≤ 2, ≤ θ ≤ }π

2
3π
2

4.3.4 R

x = r cos θ, y = r sin θ dA = r dr dθ

(x+y)dA∬
R

= (r cos θ+r sin θ)r dr dθ∫
θ=3π/2

θ=π/2
∫

r=2

r=1

=( dr)( (cos θ+sin θ)dθ)∫
r=2

r=1
r2 ∫

3π/2

π/2

= [sin θ−cos θ][ ]
r3

3

2

1

∣

∣
∣

3π/2

π/2

= − .
14

3

 Exercise 4.3.2

(4 − − )dA∬
R

x2 y2
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where  is the circle of radius 2 on the -plane.

Hint

Follow the steps in the previous example.

Answer

General Polar Regions of Integration

To evaluate the double integral of a continuous function by iterated integrals over general polar regions, we consider two types of
regions, analogous to Type I and Type II as discussed for rectangular coordinates in section on Double Integrals over General
Regions. It is more common to write polar equations as  than , so we describe a general polar region as 

 (Figure ).

Figure : A general polar region between  and .

If  is continuous on a general polar region  as described above, then

Evaluate the integral

where  is the region bounded by the polar axis and the upper half of the cardioid .

Solution

We can describe the region  as  as shown in Figure .

R xy

8π

r = f(θ) θ = f(r)
R = {(r, θ) |α ≤ θ ≤ β, (θ) ≤ r ≤ (θ)}h1 h2 4.3.5

4.3.5 α ≤ θ ≤ β (θ) ≤ r ≤ (θ)h1 h2

 Theorem: Double Integrals over General Polar Regions

f(r, θ) D

f(r, θ) r dr dθ = f(r, θ) r dr dθ.∬
D

∫
θ=β

θ=α

∫
r= (θ)h2

r= (θ)h1

 Example : Evaluating a Double Integral over a General Polar Region4.3.3

sinθ r dr dθ∬
D

r2

D r = 1 +cos θ

D {(r, θ) | 0 ≤ θ ≤ π, 0 ≤ r ≤ 1 +cos θ} 4.3.6
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Figure : The region  is the top half of a cardioid.

Hence, we have

Evaluate the integral

where .

Hint

Graph the region and follow the steps in the previous example.

Answer

Polar Areas and Volumes
As in rectangular coordinates, if a solid  is bounded by the surface , as well as by the surfaces ,
and , we can find the volume  of  by double integration, as

If the base of the solid can be described as , then the double integral for the volume
becomes

4.3.6 D

sin θ r dr dθ∬
D

r2 = ( sin θ) r dr dθ∫
θ=π

θ=0
∫

r=1+cos θ

r=0
r2

= sin θ dθ
1

4
[ ]∫

θ=π

θ=0
r4

∣

∣
∣

r=1+cos θ

r=0

= (1 +cos θ sin θ dθ
1

4
∫

θ=π

θ=0
)4

= − = .
1

4
[ ]

(1 +cos θ)5

5

π

0

8

5

 Exercise 4.3.3

2θ r dr dθ∬
D

r2 sin2

D = {(r, θ) | 0 ≤ θ ≤ π, 0 ≤ r ≤ 2 }cos 2θ
− −−−−

√

π

8

S z = f(r, θ) r = a, r = b, θ = α

θ = β V S

V = f(r, θ) r dr dθ = f(r, θ) r dr dθ.∬
R

∫
θ=β

θ=α

∫
r=b

r=a

D = {(r, θ)|α ≤ θ ≤ β, (θ) ≤ r ≤ (θ)}h1 h2

V = f(r, θ) r dr dθ = f(r, θ) r dr dθ.∬
D

∫
θ=β

θ=α

∫
r= (θ)h2

r= (θ)h1
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We illustrate this idea with some examples.

Find the volume of the solid that lies under the paraboloid  and above the unit circle on the -plane (Figure 
).

Figure : Finding the volume of a solid under a paraboloid and above the unit circle.

Solution

By the method of double integration, we can see that the volume is the iterated integral of the form

where .

This integration was shown before in Example , so the volume is  cubic units.

Find the volume of the solid that lies under the paraboloid  and above the disk  on the -
plane. See the paraboloid in Figure  intersecting the cylinder  above the -plane.

Figure : Finding the volume of a solid with a paraboloid cap and a circular base.

 Example : Finding a Volume Using a Double Integral4.3.4A

z = 1 − −x2 y2 xy

4.3.7

4.3.7

(1 − − )dA∬
R

x2 y2

R = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}

4.3.2A π
2

 Example : Finding a Volume Using Double Integration4.3.4B

z = 4 − −x2 y2 (x−1 + = 1)2 y2 xy

4.3.8 (x−1 + = 1)2 y2 xy

4.3.8
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Solution

First change the disk  to polar coordinates. Expanding the square term, we have .
Then simplify to get , which in polar coordinates becomes  and then either  or .
Similarly, the equation of the paraboloid changes to . Therefore we can describe the disk  on the 

 -plane as the region

Hence the volume of the solid bounded above by the paraboloid  and below by  is

Notice in the next example that integration is not always easy with polar coordinates. Complexity of integration depends on the
function and also on the region over which we need to perform the integration. If the region has a more natural expression in polar
coordinates or if  has a simpler antiderivative in polar coordinates, then the change in polar coordinates is appropriate; otherwise,
use rectangular coordinates.

Find the volume of the region that lies under the paraboloid  and above the triangle enclosed by the lines 
, and  in the -plane.

Solution

First examine the region over which we need to set up the double integral and the accompanying paraboloid.

Figure : Finding the volume of a solid under a paraboloid and above a given triangle.

The region  is . Converting the lines , and  in the -plane to
functions of  and  we have , and , respectively. Graphing the region on the -
plane, we see that it looks like .

Now converting the equation of the surface gives . Therefore, the volume of the solid is given by the double
integral

(x−1 + = 1)2 y2 −2x+1 + = 1x2 y2

+ = 2xx2 y2 = 2r cos θr2 r = 0 r = 2 cos θ
z = 4 −r2 (x−1 + = 1)2 y2

xy

D = {(r, θ) | 0 ≤ θ ≤ π, 0 ≤ r ≤ 2 cosθ}.

z = 4 − −x2 y2 r = 2 cosθ

V = f(r, θ) r dr dθ∬
D

= (4 − ) r dr dθ∫
θ=π

θ=0
∫

r=2 cos θ

r=0
r2

= ] dθ∫
θ=π

θ=0
[4 −

r2

2

r4

4

∣

∣
∣

2 cos θ

0

= [8 θ−4 θ] dθ∫
π

0
cos2 cos4

= = π .[ θ+ sin θ cos θ−sin θ θ]
5

2

5

2
cos3

π

0

5

2
units3

f

 Example : Finding a Volume Using a Double Integral4.3.5A

z = +x2 y2

y = x, x = 0 x+y = 2 xy

4.3.9

D {(x, y) | 0 ≤ x ≤ 1, x ≤ y ≤ 2 −x} y = x, x = 0 x+y = 2 xy

r θ θ = π/4, θ = π/2 r = 2/(cos θ+sin θ) xy

D = {(r, θ) | π/4 ≤ θ ≤ π/2, 0 ≤ r ≤ 2/(cos θ+sin θ)}

z = + =x2 y2 r2
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As you can see, this integral is very complicated. So, we can instead evaluate this double integral in rectangular coordinates as

Evaluating gives

To answer the question of how the formulas for the volumes of different standard solids such as a sphere, a cone, or a cylinder are
found, we want to demonstrate an example and find the volume of an arbitrary cone.

Use polar coordinates to find the volume inside the cone  and above the -plane.

Solution

The region  for the integration is the base of the cone, which appears to be a circle on the -plane (Figure ).

V = f(r, θ) r dr dθ∬
D

= r drdθ∫
θ=π/2

θ=π/4
∫

r=2/(cos θ+sin θ)

r=0
r2

= dθ∫
π/2

π/4
[ ]
r4

4

2/(cos θ+sin θ)

0

= dθ
1

4
∫

π/2

π/4
( )

2

cos θ+sin θ

4

= dθ
16

4
∫

π/2

π/4
( )

1

cos θ+sin θ

4

= 4 dθ.∫
π/2

π/4
( )

1

cos θ+sin θ

4

V = ( + )dy dx.∫
1

0
∫

2−x

x

x2 y2

V = ( + )dy dx∫
1

0
∫

2−x

x

x2 y2

= dx∫
1

0
[ y+ ]x2 y3

3

∣

∣
∣
2−x

x

= −4x+4 − dx∫
1

0

8

3
x2 8x3

3

= [ −2 + − ]
8x

3
x2 4x3

3

2x4

3

∣

∣
∣

1

0

= .
4

3
units3

 Example : Finding a Volume Using a Double Integral4.3.5B

z = 2 − +x2 y2
− −−−−−

√ xy

D xy 4.3.10
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Figure : Finding the volume of a solid inside the cone and above the -plane.

We find the equation of the circle by setting :

This means the radius of the circle is  so for the integration we have  and . Substituting  and
 in the equation  we have . Therefore, the volume of the cone is

Analysis

Note that if we were to find the volume of an arbitrary cone with radius  units and height  units, then the equation of the cone
would be .

We can still use Figure  and set up the integral as

Evaluating the integral, we get .

Use polar coordinates to find an iterated integral for finding the volume of the solid enclosed by the paraboloids 
and .

Hint

Sketching the graphs can help.

Answer

As with rectangular coordinates, we can also use polar coordinates to find areas of certain regions using a double integral. As
before, we need to understand the region whose area we want to compute. Sketching a graph and identifying the region can be
helpful to realize the limits of integration. Generally, the area formula in double integration will look like

4.3.10 xy

z = 0

0

2

+x2 y2

= 2 − +x2 y2
− −−−−−

√

= +x2 y2
− −−−−−

√

= 4.

2 0 ≤ θ ≤ 2π 0 ≤ r ≤ 2 x = r cosθ

y = r sin θ z = 2 − +x2 y2
− −−−−−

√ z = 2 −r

(2 −r) r dr dθ = 2π = cubic units.∫
θ=2π

θ=0
∫

r=2

r=0

4

3

8π

3

α h

z = h− h
a

+x2 y2
− −−−−−

√

4.3.10

(h− r) r dr dθ.∫
θ=2π

θ=0
∫

r=a

r=0

h

a

π h1
3

a2

 Exercise 4.3.5

z = +x2 y2

z = 16 − −x2 y2

V = (16 −2 ) r dr dθ = 64π cubic units.∫
2π

0
∫

2 2√

0
r2
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Evaluate the area bounded by the curve .

Solution

Sketching the graph of the function  reveals that it is a polar rose with eight petals (see the following figure).

Figure : Finding the area of a polar rose with eight petals.

Using symmetry, we can see that we need to find the area of one petal and then multiply it by 8. Notice that the values of  for
which the graph passes through the origin are the zeros of the function , and these are odd multiples of . Thus, one of
the petals corresponds to the values of  in the interval . Therefore, the area bounded by the curve  is

Find the area enclosed by the circle  and the cardioid .

Solution

First and foremost, sketch the graphs of the region (Figure ).

Area ofA = 1 r dr dθ.∫
β

α

∫
(θ)h2

(θ)h1

 Example : Finding an Area Using a Double Integral in Polar Coordinates4.3.6A

r = cos 4θ

r = cos 4θ

4.3.11

θ

cos 4θ π/8
θ [−π/8, π/8] r = cos 4θ

A = 8 1 r dr dθ∫
θ=π/8

θ=−π/8
∫

r=cos 4θ

r=0

= 8 ] dθ∫
θ=π/8

θ=−π/8
[

1

2
r2∣

∣
∣
cos 4θ

0

= 8 4θ dθ∫
π/8

−π/8

1

2
cos2

= 8 ][ θ+ sin 4θ cos 4θ
1

4

1

16
∣
∣
∣
π/8

−π/8

= 8 [ ]= .
π

16

π

2
units2

 Example : Finding Area Between Two Polar Curves4.3.6B

r = 3 cos θ r = 1 +cos θ

4.3.12
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Figure : Finding the area enclosed by both a circle and a cardioid.

We can from see the symmetry of the graph that we need to find the points of intersection. Setting the two equations equal to
each other gives

One of the points of intersection is . The area above the polar axis consists of two parts, with one part defined by the
cardioid from  to  and the other part defined by the circle from  to . By symmetry, the total area
is twice the area above the polar axis. Thus, we have

Evaluating each piece separately, we find that the area is

Find the area enclosed inside the cardioid  and outside the cardioid .

Hint

Sketch the graph, and solve for the points of intersection.

Answer

Evaluate the integral

4.3.12

3 cos θ = 1 +cos θ.

θ = π/3
θ = 0 θ = π/3 θ = π/3 θ = π/2

A = 2 [ 1 r dr dθ+ 1 r dr dθ] .∫
θ=π/3

θ=0
∫

r=1+cos θ

r=0
∫

θ=π/2

θ=π/3
∫

r=3 cos θ

r=0

A = 2( π+ + π− ) = 2( π) = π square units.
1

4

9

16
3
–

√
3

8

9

16
3
–

√
5

8

5

4

 Exercise 4.3.6

r = 3 −3 sinθ r = 1 +sinθ

A = 2 r dr dθ = (8π+9 )∫
π/6

−π/2
∫

3−3 sin θ

1+sin θ

3
–

√ units2

 Example : Evaluating an Improper Double Integral in Polar Coordinates4.3.7

dx dy.∬
R2

e−10( + )x2 y2
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Solution

This is an improper integral because we are integrating over an unbounded region . In polar coordinates, the entire plane 
can be seen as .

Using the changes of variables from rectangular coordinates to polar coordinates, we have

Evaluate the integral

Hint

Convert to the polar coordinate system.

Answer

Key Concepts
To apply a double integral to a situation with circular symmetry, it is often convenient to use a double integral in polar
coordinates. We can apply these double integrals over a polar rectangular region or a general polar region, using an iterated
integral similar to those used with rectangular double integrals.
The area  in polar coordinates becomes .
Use , and  to convert an integral in rectangular coordinates to an integral in polar
coordinates.
Use  and  to convert an integral in polar coordinates to an integral in rectangular coordinates, if
needed.
To find the volume in polar coordinates bounded above by a surface  over a region on the -plane, use a double
integral in polar coordinates.

Key Equations
Double integral over a polar rectangular region 

Double integral over a general polar region

R2 R2

0 ≤ θ ≤ 2π, 0 ≤ r ≤ ∞

dx dy∬
R2

e−10( + )x2 y2

= r dr dθ = ( r dr) dθ∫
θ=2π

θ=0
∫

r=∞

r=0
e−10r2

∫
θ=2π

θ=0
lim
a→∞

∫
r=a

r=0
e−10r2

=( ) dθ( r dr)∫
θ=2π

θ=0
lim
a→∞

∫
r=a

r=0
e−10r2

= 2π( r dr)lim
a→∞

∫
r=a

r=0
e−10r2

= 2π (− )( )lim
a→∞

1

20
e−10r2 ∣

∣
a

0

= 2π(− ) ( −1)
1

20
lim
a→∞

e−10a2

= .
π

10

 Exercise 4.3.7

dx dy.∬
R2

e−4( + )x2 y2

π

4

dA r dr dθ

x = r cos θ, y = r sin θ dA = r dr dθ

= +r2 x2 y2 θ = ta ( )n−1 y

x

z = f(r, θ) xy

R

f(r, θ)dA = f( , )ΔA = f( , ) ΔrΔθ∬
R

lim
m,n→∞

∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij lim
m,n→∞

∑
i=1

m

∑
j=1

n

r∗
ij θ∗

ij r∗
ij
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Glossary

polar rectangle
the region enclosed between the circles  and  and the angles  and ; it is described as 

This page titled 4.3: Double Integrals in Polar Coordinates is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

15.3: Double Integrals in Polar Coordinates by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f(r, θ) r dr dθ = f(r, θ) r dr dθ∬
D

∫
θ=β

θ=α

∫
(θ)r2

r= (θ)h1

r = a r = b θ = α θ = β

R = {(r, θ) | a ≤ r ≤ b, α ≤ θ ≤ β}
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4.4: Triple Integrals

Recognize when a function of three variables is integrable over a rectangular box.
Evaluate a triple integral by expressing it as an iterated integral.
Recognize when a function of three variables is integrable over a closed and bounded region.
Simplify a calculation by changing the order of integration of a triple integral.
Calculate the average value of a function of three variables.

Previously, we discussed the double integral of a function  of two variables over a rectangular region in the plane. In this section we define the triple
integral of a function  of three variables over a rectangular solid box in space, . Later in this section we extend the definition to more general
regions in .

Integrable Functions of Three Variables

We can define a rectangular box  in  as

We follow a similar procedure to what we did in previously. We divide the interval  into  subintervals  of equal length  with

divide the interval  into  subintervals  of equal length  with

and divide the interval  into  subintervals  of equal length  with

Then the rectangular box  is subdivided into  subboxes:

as shown in Figure .

Figure : A rectangular box in  divided into subboxes by planes parallel to the coordinate planes.

For each  and , consider a sample point  in each sub-box . We see that its volume is . Form the triple Riemann
sum

 Learning Objectives

f(x, y)
f(x, y, z) R

3

R
3

B R
3

B = {(x, y, z) | a ≤ x ≤ b, c ≤ y ≤ d, e ≤ z ≤ f}.

[a, b] l [ , ]xi−1 xi Δx

Δx = ,
−xi xi−1

l

[c, d] m [ , ]yi−1 yi Δy

Δy = ,
−yj yj−1

m

[e, f ] n [ , ]zi−1 zi Δz

Δz =
−zk zk−1

n

B lmn

= [ , ] ×[ , ] × [ , ],Bijk xi−1 xi yi−1 yi zi−1 zi

4.4.1

4.4.1 R3

i, j, k ( , , )x∗
ijk y∗

ijk z∗
ijk Bijk ΔV = ΔxΔyΔz

f( , , ) ΔxΔyΔz.∑
i=1

l

∑
j=1

m

∑
k=1

n

x∗
ijk y∗

ijk z∗
ijk
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We define the triple integral in terms of the limit of a triple Riemann sum, as we did for the double integral in terms of a double Riemann sum.

The triple integral of a function  over a rectangular box  is defined as

if this limit exists.

When the triple integral exists on  the function  is said to be integrable on . Also, the triple integral exists if  is continuous on .
Therefore, we will use continuous functions for our examples. However, continuity is sufficient but not necessary; in other words,  is bounded on  and
continuous except possibly on the boundary of . The sample point  can be any point in the rectangular sub-box  and all the properties
of a double integral apply to a triple integral. Just as the double integral has many practical applications, the triple integral also has many applications, which
we discuss in later sections.

Now that we have developed the concept of the triple integral, we need to know how to compute it. Just as in the case of the double integral, we can have an
iterated triple integral, and consequently, a version of Fubini’s theorem for triple integrals exists.

If  is continuous on a rectangular box , then

This integral is also equal to any of the other five possible orderings for the iterated triple integral.

For  and  real numbers, the iterated triple integral can be expressed in six different orderings:

For a rectangular box, the order of integration does not make any significant difference in the level of difficulty in computation. We compute triple integrals
using Fubini’s Theorem rather than using the Riemann sum definition. We follow the order of integration in the same way as we did for double integrals
(that is, from inside to outside).

Evaluate the triple integral

Solution

The order of integration is specified in the problem, so integrate with respect to  first, then y, and then .

 Definition: The triple integral

f(x, y, z) B

f( , , ) ΔxΔyΔz = f(x, y, z)dVlim
l,m,n→∞

∑
i=1

l

∑
j=1

m

∑
k=1

n

x∗
ijk

y∗
ijk

z∗
ijk

∭
B

B f(x, y, z) B f(x, y, z) B

f B

B ( , , )x∗
ijk y∗

ijk z∗
ijk Bijk

 Fubini’s Theorem for Triple Integrals

f(x, y, z) B = [a, b] × [c, d] × [e, f ]

f(x, y, z)dV = f(x, y, z)dx dy dz.∬
B

∫
f

e

∫
d

c

∫
b

a

a, b, c, d, e f

f(x, y, z)dx dy dz = ( ( f(x, y, z)dx) dy) dz∫
f

e

∫
d

c

∫
b

a

∫
f

e

∫
d

c

∫
b

a

= ( ( f(x, y, z)dx) dz) dy∫
d

c

∫
f

e

∫
b

a

= ( ( f(x, y, z)dy) dz) dx∫
b

a

∫
f

e

∫
d

c

= ( ( f(x, y, z)dy) dx) dz∫
f

e

∫
b

a

∫
d

c

= ( ( f(x, y, z)dz) dx) dy∫
d

c

∫
b

a

∫
d

c

= ( ( f(x, y, z)dz) dy) dx∫
b

a

∫
d

c

∫
f

e

(4.4.1)

(4.4.2)

(4.4.3)

(4.4.4)

(4.4.5)

(4.4.6)

 Example : Evaluating a Triple Integral4.4.1

(x+y )dx dy dz.∫
z=1

z=0
∫

y=4

y=2
∫

x=5

x=−1
z2

x z
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Evaluate the triple integral

where  as shown in Figure .

Figure : Evaluating a triple integral over a given rectangular box.

Solution

The order is not specified, but we can use the iterated integral in any order without changing the level of difficulty. Choose, say, to integrate  first, then 
, and then .

Now try to integrate in a different order just to see that we get the same answer. Choose to integrate with respect to  first, then , then 

(x+y )dx dy dz∫
z=1

z=0
∫

y=4

y=2
∫

x=5

x=−1
z2

= ] dy dz∫
z=1

z=0
∫

y=4

y=2
[ +xy
x2

2
z2∣

∣
∣
x=5

x=−1

= [12 +6y ] dy dz∫
z=1

z=0
∫

y=4

y=2
z2

= [ ] dz∫
z=1

z=0
12y+6

y2

2
z2

∣

∣
∣
y=4

y=2

= [24 +36 ] dz∫
z=1

z=0
z2

= [24z+36 ]
z3

3

z=1

z=0

= 36.

Integrate with respect to x.

Evaluate.

Integrate with respect to y.

Evaluate.

Integrate with respect to z.

Evaluate.

 Example : Evaluating a Triple Integral4.4.2

yz dV∭
B

x2

B = {(x, y, z) | −2 ≤ x ≤ 1, 0 ≤ y ≤ 3, 1 ≤ z ≤ 5} 4.4.2

4.4.2

y

x z

yz dV∭

B

x2 = [ yz] dy dx dz∫
5

1
∫

1

−2
∫

3

0
x2

= [ ] dx dz∫
5

1
∫

1

−2
zx2 y

3

3

∣

∣
∣
3

0

= z dx dz∫
5

1
∫

1

−2

y

2
x2

= [ ] dz∫
5

1
z

9

2

x3

3

∣

∣
∣
1

−2

= z dz∫
5

1

27

2

= = 162.
27

2

z2

2

∣

∣
∣
5

1

x z y

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64014?pdf


Access for free at OpenStax 4.4.4 https://math.libretexts.org/@go/page/64014

Evaluate the triple integral

where .

Hint

Follow the steps in the previous example.

Answer

Triple Integrals over a General Bounded Region

We now expand the definition of the triple integral to compute a triple integral over a more general bounded region  in . The general bounded regions
we will consider are of three types. First, let  be the bounded region that is a projection of  onto the -plane. Suppose the region  in  has the form

For two functions  and , such that  for all  in  as shown in the following figure.

Figure : We can describe region  as the space between  and  above the projection  of  onto the -plane.

The triple integral of a continuous function  over a general three-dimensional region

in , where  is the projection of  onto the -plane, is

yz dV∭

B

x2 = [ yz] dx dz dy∫
3

0
∫

5

1
∫

1

−2
x2

= [ ] dz dy∫
3

0
∫

5

1
yz

x3

3

∣

∣
∣
1

−2

= 3yz dz dy∫
3

0
∫

5

1

= ] dy∫
3

0
[3y

z2

2

∣

∣
∣
5

1

= 36y dy∫
3

0

= = 18(9 −0) = 162.36
y2

2

∣

∣
∣
3

0

 Exercise 4.4.1

z sin x cos y dV∭
B

B = {(x, y, z) | 0 ≤ x ≤ π, ≤ y ≤ 2π, 1 ≤ z ≤ 3}
3π

2

z sin x cos y dV = 8∭
B

E R
3

D E xy E R
3

E = {(x, y, z) | (x, y) ∈ D, (x, y) ≤ z ≤ (x, y)}.u1 u2

z = (x, y)u1 (x, y)u2 (x, y) ≤ (x, y)u1 u2 (x, y) D

4.4.3 E (x,y)u1 (x,y)u2 D E xy

 Triple Integral over a General Region

f(x, y, z)

E = {(x, y, z) | (x, y) ∈ D, (x, y) ≤ z ≤ (x, y)}u1 u2

R
3 D E xy

f(x, y, z)dV = [ f(x, y, z)dz] dA.∭
E

∬
D

∫
(x,y)u2

(x,y)u1
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Similarly, we can consider a general bounded region  in the -plane and two functions  and  such that  for
all  in . Then we can describe the solid region  in  as

where  is the projection of  onto the -plane and the triple integral is

Finally, if  is a general bounded region in the -plane and we have two functions  and  such that  for all 
 in , then the solid region  in  can be described as

where  is the projection of  onto the -plane and the triple integral is

Note that the region  in any of the planes may be of Type I or Type II as described in previously. If  in the -plane is of Type I (Figure ), then

Figure : A box  where the projection  in the -plane is of Type I.

Then the triple integral becomes

If  in the -plane is of Type II (Figure ), then

Figure : A box  where the projection  in the -plane is of Type II.

Then the triple integral becomes

D xy y = (x, z)u1 y = (x, z)u2 (x, z) ≤ (x, z)u1 u2

(x, z) D E R
3

E = {(x, y, z) | (x, z) ∈ D, (x, z) ≤ z ≤ (x, z)}u1 u2

D E xy

f(x, y, z)dV = [ f(x, y, z)dy] dA.∭
E

∬
D

∫
(x,z)u2

(x,z)u1

D xy x = (y, z)u1 x = (y, z)u2 (y, z) ≤ (y, z)u1 u2

(y, z) D E R
3

E = {(x, y, z) | (y, z) ∈ D, (y, z) ≤ z ≤ (y, z)}u1 u2

D E xy

f(x, y, z)dV = [ f(x, y, z)dx] dA.∭
E

∬
D

∫
(y,z)u2

(y,z)u1

D D xy 4.4.4

E = {(x, y, z) | a ≤ x ≤ b, (x) ≤ y ≤ (x), (x, y) ≤ z ≤ (x, y)}.g1 g2 u1 u2

4.4.4 E D xy

f(x, y, z)dV = f(x, y, z)dz dy dx.∭
E

∫
b

a

∫
(x)g2

(x)g1

∫
(x,y)u2

(x,y)u1

D xy 4.4.5

E = {(x, y, z) | c ≤ x ≤ d, (x) ≤ y ≤ (x), (x, y) ≤ z ≤ (x, y)}.h1 h2 u1 u2

4.4.5 E D xy
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Evaluate the triple integral of the function  over the solid tetrahedron bounded by the planes , and 
.

Solution

Figure  shows the solid tetrahedron  and its projection  on the -plane.

Figure : The solid  has a projection  on the -plane of Type I.

We can describe the solid region tetrahedron as

Hence, the triple integral is

To simplify the calculation, first evaluate the integral . We have

Now evaluate the integral

obtaining

Finally evaluate

Putting it all together, we have

Just as we used the double integral

to find the area of a general bounded region  we can use

to find the volume of a general solid bounded region . The next example illustrates the method.

f(x, y, z)dV = f(x, y, z)dz dx dy.∭
E

∫
y=d

y=c

∫
x= (y)h2

x= (y)h1

∫
z= (x,y)u2

z= (x,y)u1

 Example : Evaluating a Triple Integral over a General Bounded Region4.4.3A

f(x, y, z) = 5x−3y x = 0, y = 0, z = 0
x+y+z = 1

4.4.6 E D xy

4.4.6 E D xy

E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 −x, 0 ≤ z ≤ 1 −x−y}.

f(x, y, z)dV = (5x−3y)dz dy dx.∭
E

∫
x=1

x=0
∫

y=1−x

y=0
∫

z=1−x−y

z=0

(5x−3y)dz∫
z=1−x−y

z=0

(5x−3y)dz = (5x−3y)z = (5x−3y)(1 −x−y).∫
z=1−x−y

z=0

∣
∣
∣
z=1−x−y

z=0

(5x−3y)(1 −x−y)dy,∫
y=1−x

y=0

(5x−3y)(1 −x−y)dy = (x−1 (6x−1).∫
y=1−x

y=0

1

2
)2

(x−1 (6x−1)dx = .∫
x=1

x=0

1

2
)2 1

12

f(x, y, z)dV = (5x−3y)dz dy dx = .∭
E

∫
x=1

x=0
∫

y=1−x

y=0
∫

z=1−x−y

z=0

1

12

1 dA∬
D

D

1 dV∭
E

E
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Find the volume of a right pyramid that has the square base in the -plane  and vertex at the point  as shown in the following
figure.

Figure : Finding the volume of a pyramid with a square base.

Solution

In this pyramid the value of  changes from 0 to 1 and at each height  the cross section of the pyramid for any value of  is the square

Hence, the volume of the pyramid is

where

Thus, we have

Hence, the volume of the pyramid is  cubic units.

Consider the solid sphere . Write the triple integral

for an arbitrary function  as an iterated integral. Then evaluate this triple integral with . Notice that this gives the volume of a sphere
using a triple integral.

Hint

Follow the steps in the previous example. Use symmetry.

Answer

 Example : Finding a Volume by Evaluating a Triple Integral4.4.3B

xy [−1, 1] ×[−1, 1] (0, 0, 1)

4.4.7

z z z

[−1 +z, 1 −z] × [−1 +z, 1 −z].

1 dV∭
E

E = {(x, y, z) | 0 ≤ z ≤ 1, −1 +z ≤ y ≤ 1 −z, −1 +z ≤ x ≤ 1 −z}.

1 dV∭
E

= 1 dx dy dz∫
z=1

z=0
∫

y=1−z

y=−1+z

∫
x=1−z

x=−1+z

= (2 −2z)dy dz∫
z=1

z=0
∫

y=1−z

y=−1+z

= (2 −2z dz = .∫
z=1

z=0
)2 4

3

4

3

 Exercise 4.4.3

E = {(x, y, z) | + + = 9}x2 y2 z2

f(x, y, z)dV∭
E

f f(x, y, z) = 1

1 dV = 8 1 dz dy dx∭
E

∫
x=3

x=−3
∫

y= 9−z2√

y=− 9−z2√
∫

z= 9− −x2 y2√

z=− 9− −x2 y2√

= 36π cubic units.
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Changing the Order of Integration
As we have already seen in double integrals over general bounded regions, changing the order of the integration is done quite often to simplify the
computation. With a triple integral over a rectangular box, the order of integration does not change the level of difficulty of the calculation. However, with a
triple integral over a general bounded region, choosing an appropriate order of integration can simplify the computation quite a bit. Sometimes making the
change to polar coordinates can also be very helpful. We demonstrate two examples here.

Consider the iterated integral

The order of integration here is first with respect to z, then y, and then x. Express this integral by changing the order of integration to be first with
respect to , then , and then . Verify that the value of the integral is the same if we let .

Solution

The best way to do this is to sketch the region  and its projections onto each of the three coordinate planes. Thus, let

and

We need to express this triple integral as

Knowing the region  we can draw the following projections (Figure ):

on the -plane is 

on the -plane is , and

on the -plane is .

Figure . The three cross sections of  on the three coordinate planes.

Now we can describe the same region  as , and consequently, the triple integral becomes

Now assume that  in each of the integrals. Then we have

 Example : Changing the Order of Integration4.4.4

f(x, y, z)dz dy dx.∫
x=1

x=0
∫

y=x2

y=0
∫

z=y

z=0

x z y f(x, y, z) = xyz

E

E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ , 0 ≤ z ≤ y}.x2

f(x, y, z)dz dy dx = f(x, y, z)dV .∫
x=1

x=0
∫

y=x2

y=0
∫

z=x2

z=0
∭

E

f(x, y, z)dx dz dy.∫
y=d

y=c

∫
z= (y)v2

z= (y)v1

∫
x= (y,z)u2

x= (y,z)u1

E 4.4.8

xy = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ } = {(x, y) | 0 ≤ y ≤ 1, ≤ x ≤ 1},D1 x2 y√

yz = {(y, z) | 0 ≤ y ≤ 1, 0 ≤ z ≤ }D2 y2

xz = {(x, z) | 0 ≤ x ≤ 1, 0 ≤ z ≤ }D3 x2

4.4.8 E

E {(x, y, z) | 0 ≤ y ≤ 1, 0 ≤ z ≤ , ≤ x ≤ 1}y2 y√

f(x, y, z)dx dz dy = f(x, y, z)dx dz dy∫
y=d

y=c

∫
z= (y)v2

z= (y)v1

∫
x= (y,z)u2

x= (y,z)u1

∫
y=1

y=0
∫

z=x2

z=0
∫

x=1

x= y√

f(x, y, z) = xyz
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The answers match.

Write five different iterated integrals equal to the given integral

Hint

Follow the steps in the previous example, using the region  as , and describe and sketch the
projections onto each of the three planes, five different times.

Answer

Evaluate the triple integral

where  is the region bounded by the paraboloid  (Figure ) and the plane .

xyz dz dy dx∫
x=1

x=0
∫

y=x2

y=0
∫

z=y2

z=0
= ] dy dx∫

x=1

x=0
∫

y=x2

y=0
[xy

z2

2

∣

∣
∣
z=y2

z=0

= (x ) dy dx∫
x=1

x=0
∫

y=x2

y=0

y5

2

= ] dx∫
x=1

x=0
[x

y6

12

∣

∣
∣
y=x2

y=0

= dx =∫
x=1

x=0

x13

12

x14

168

∣

∣
∣
x=1

x=0

= ,
1

168

xyz dx dz dy∫
y=1

y=0
∫

z=y2

z=0
∫

x=1

x= y√

= ] dz dy∫
y=1

y=0
∫

z=y2

z=0
[yz

x2

2

∣

∣
∣
1

y√

= ( − ) dz dy∫
y=1

y=0
∫

z=y2

z=0

yz

2

zy2

2

= ] dy∫
y=1

y=0
[ −
yz2

4

y2z2

4

∣

∣
∣
z=y2

z=0

= ( − ) dy∫
y=1

y=0

y5

4

y6

4

= ( − )
y6

24

y7

28

∣

∣
∣
y=1

y=0

= .
1

168

 Exercise 4.4.4

f(x, y, z)dx dy dz.∫
z=4

z=0
∫

y=4−z

y=0
∫

x= y√

x=0

E {(x, y, z) | 0 ≤ z ≤ 4, 0 ≤ y ≤ 4 −z, 0 ≤ x ≤ }y√

(i) f(x, y, z)dy dx dz, (ii) f(x, y, z)dx dz dy, (iii) f(x, y, z)dz dx dy,∫
z=4

z=0
∫

x= 4−z√

x=0
∫

y=4−z

y=x2
∫

y=4

y=0
∫

z=4−y

z=0
∫

x= y√

x=0
∫

y=4

y=0
∫

x= y√

x=0
∫

Z=4−y

z=0

(iv) f(x, y, z)dz dy dx, (v) f(x, y, z)dy dz dx∫
x=2

x=0
∫

y=4

y=x2
∫

z=4−y

z=0
∫

x=2

x=0
∫

z=4−x2

z=0
∫

y=4−z

y=x2

 Example : Changing Integration Order and Coordinate Systems4.4.5

dV ,∭
E

+x2 z2− −−−−−
√

E y = +x2 z2 4.4.9 y = 4
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Figure . Integrating a triple integral over a paraboloid.

Solution

The projection of the solid region  onto the -plane is the region bounded above by  and below by the parabola  as shown.

Figure . Cross section in the -plane of the paraboloid in Figure .

Thus, we have

The triple integral becomes

This expression is difficult to compute, so consider the projection of  onto the -plane. This is a circular disc . So we obtain

Here the order of integration changes from being first with respect to  then  and then  to being first with respect to  then to  and then to . It will
soon be clear how this change can be beneficial for computation. We have

Now use the polar substitution , and  in the -plane. This is essentially the same thing as when we used
polar coordinates in the -plane, except we are replacing  by . Consequently the limits of integration change and we have, by using ,

Average Value of a Function of Three Variables

Recall that we found the average value of a function of two variables by evaluating the double integral over a region on the plane and then dividing by the
area of the region. Similarly, we can find the average value of a function in three variables by evaluating the triple integral over a solid region and then
dividing by the volume of the solid.

4.4.9

E xy y = 4 y = x2

4.4.10 xy 4.4.9

E = {(x, y, z) | −2 ≤ x ≤ 2, ≤ y ≤ 4, − ≤ z }.x2 y−x2
− −−−−
√ y−x2

− −−−−
√

dV = dz dy dx.∭
E

+x2 z2− −−−−−
√ ∫

x=2

x=−2
∫

y=4

y=x2

∫
z= y−x2√

z=− y−x2√
+x2 z2− −−−−−

√

E xz + ≤ 4x2 z2

dV = dz dy dx = dy dz dx.∭
E

+x2 z2− −−−−−
√ ∫

x=2

x=−2
∫

y=4

y=x2

∫
z= y−x2√

z=− y−x2√
+x2 z2− −−−−−

√ ∫
x=2

x=−2
∫

z= 4−x2√

z=− 4−x2√
∫

y=4

y= +x2 z2

+x2 z2− −−−−−
√

z y x y z x

dy dz dx = (4 − − ) dz dx.∫
x=2

x=−2
∫

z= 4−x2√

z= 4−x2√
∫

y=4

y= +x2 z2

+x2 z2− −−−−−
√ ∫

x=2

x=−2
∫

z= 4−x2√

z=− 4−x2√
x2 z2 +x2 z2− −−−−−

√

x = r cos θ, z = r sin θ dz dx = r dr dθ xz

xy y z = +r2 x2 z2

(4 − − ) dz dx = (4 − )rr dr dθ = ] dθ =∫
x=2

x=−2
∫

z= 4−x2√

z=− 4−x2√
x2 z2 +x2 z2− −−−−−

√ ∫
θ=2π

θ=0
∫

r=2

r=0
r2 ∫

2π

0
[ −

4r3

3

r5

5

∣

∣
∣

2

0

∫ dθ =
2π

0

64

15

128π

15
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If  is integrable over a solid bounded region  with positive volume  then the average value of the function is

Note that the volume is

The temperature at a point  of a solid  bounded by the coordinate planes and the plane  is .
Find the average temperature over the solid.

Solution

Use the theorem given above and the triple integral to find the numerator and the denominator. Then do the division. Notice that the plane 
 has intercepts  and . The region  looks like

Hence the triple integral of the temperature is

The volume evaluation is

Hence the average value is

.

Find the average value of the function  over the cube with sides of length 4 units in the first octant with one vertex at the origin and
edges parallel to the coordinate axes.

Hint

Follow the steps in the previous example.

Answer

Key Concepts
To compute a triple integral we use Fubini’s theorem, which states that if  is continuous on a rectangular box , then

and is also equal to any of the other five possible orderings for the iterated triple integral.
To compute the volume of a general solid bounded region  we use the triple integral

Interchanging the order of the iterated integrals does not change the answer. As a matter of fact, interchanging the order of integration can help simplify
the computation.
To compute the average value of a function over a general three-dimensional region, we use

 Average Value of a Function of Three Variables

f(x, y, z) E V (E),

= f(x, y, z)dV .fave
1

V (E)
∭

E

V (E) = 1 dV .∭
E

 Example : Finding an Average Temperature4.4.6

(x, y, z) E x+y+z = 1 T (x, y, z) = (xy+8z+20) °C

x+y+z = 1 (1, 0, 0), (0, 1, 0), (0, 0, 1) E

E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 −x, 0 ≤ z ≤ 1 −x−y}.

f(x, y, z)dV = (xy+8z+20)dz dy dx = .∭
E

∫
x=1

x=0
∫

y=1−x

y=0
∫

z=1−x−y

z=0

147

40

V (E) = 1 dV = 1 dz dy dx = .∭
E

∫
x=1

x=0
∫

y=1−x

y=0
∫

z=1−x−y

z=0

1

6

= = = °CTave
147/40

1/6

6(147)

40

441

20

 Exercise 4.4.6

f(x, y, z) = xyz

= 8fave

f(x, y, z) B = [a, b] × [c, d] × [e, f ]

f(x, y, z)dV = f(x, y, z)dx dy dz∭
B

∫
f

e

∫
d

c

∫
b

a

E

V (E) = 1 dV .∭
E

= f(x, y, z)dV .fave
1

V (E)
∭

E
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Key Equations

Triple integral

Glossary

triple integral
the triple integral of a continuous function  over a rectangular solid box  is the limit of a Riemann sum for a function of three variables, if this
limit exists

This page titled 4.4: Triple Integrals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited
to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

15.4: Triple Integrals by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source: https://openstax.org/details/books/calculus-volume-1.

f( , , ) ΔxΔyΔz = f(x, y, z)dVlim
l,m,n→∞

∑
i=1

l

∑
j=1

m

∑
k=1

n

x∗
ijk y∗

ijk z∗
ijk ∭

B

f(x, y, z) B
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4.5: Triple Integrals in Cylindrical and Spherical Coordinates

Evaluate a triple integral by changing to cylindrical coordinates.
Evaluate a triple integral by changing to spherical coordinates.

Earlier in this chapter we showed how to convert a double integral in rectangular coordinates into a double integral in polar
coordinates in order to deal more conveniently with problems involving circular symmetry. A similar situation occurs with triple
integrals, but here we need to distinguish between cylindrical symmetry and spherical symmetry. In this section we convert triple
integrals in rectangular coordinates into a triple integral in either cylindrical or spherical coordinates.

Also recall the chapter prelude, which showed the opera house l’Hemisphèric in Valencia, Spain. It has four sections with one of
the sections being a theater in a five-story-high sphere (ball) under an oval roof as long as a football field. Inside is an IMAX
screen that changes the sphere into a planetarium with a sky full of  twinkling stars. Using triple integrals in spherical
coordinates, we can find the volumes of different geometric shapes like these.

Review of Cylindrical Coordinates

As we have seen earlier, in two-dimensional space  a point with rectangular coordinates  can be identified with  in
polar coordinates and vice versa, where ,  and  are the relationships between
the variables.

In three-dimensional space  a point with rectangular coordinates  can be identified with cylindrical coordinates 
and vice versa. We can use these same conversion relationships, adding  as the vertical distance to the point from the -plane as
shown in .

Figure : Cylindrical coordinates are similar to polar coordinates with a vertical  coordinate added.

To convert from rectangular to cylindrical coordinates, we use the conversion

To convert from cylindrical to rectangular coordinates, we use

 and

Note that that -coordinate remains the same in both cases.

In the two-dimensional plane with a rectangular coordinate system, when we say  (constant) we mean an unbounded vertical
line parallel to the -axis and when  (constant) we mean an unbounded horizontal line parallel to the -axis. With the polar

 Learning Objectives

9000

R
2 (x, y) (r, θ)

x = r cosθ y = r sin θ, = +r2 x2 y2 tan θ = ( )y
x

R
3 (x, y, z) (r, θ, z)

z (xy
4.5.1

4.5.1 z

x = r cosθ
y = r sin θ

z = z

= +r2 x2 y2

θ = ( )tan−1 y

x

z = z

z

x = k

y y = l x
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coordinate system, when we say  (constant), we mean a circle of radius  units and when  (constant) we mean an
infinite ray making an angle  with the positive -axis.

Similarly, in three-dimensional space with rectangular coordinates  the equations  and  where  and 
 are constants, represent unbounded planes parallel to the -plane, -plane and -plane, respectively. With cylindrical

coordinates , by , and , where , and  are constants, we mean an unbounded vertical cylinder with
the z-axis as its radial axis; a plane making a constant angle  with the -plane; and an unbounded horizontal plane parallel to the 

-plane, respectively. This means that the circular cylinder  in rectangular coordinates can be represented simply as 
 in cylindrical coordinates. (Refer to Cylindrical and Spherical Coordinates for more review.)

Integration in Cylindrical Coordinates

Triple integrals can often be more readily evaluated by using cylindrical coordinates instead of rectangular coordinates. Some
common equations of surfaces in rectangular coordinates along with corresponding equations in cylindrical coordinates are listed in
Table . These equations will become handy as we proceed with solving problems using triple integrals.

Table : Equations of Some Common Shapes
Circular cylinder Circular cone Sphere Paraboloid

Rectangular

Cylindrical

As before, we start with the simplest bounded region  in  to describe in cylindrical coordinates, in the form of a cylindrical
box,  (Figure ). Suppose we divide each interval into , and 
subdivisions such that , and . Then we can state the following definition for a triple integral in
cylindrical coordinates.

Figure : A cylindrical box  described by cylindrical coordinates.

Consider the cylindrical box (expressed in cylindrical coordinates)

If the function  is continuous on  and if  is any sample point in the cylindrical subbox 
 (Figure ), then we can define the triple integral in cylindrical coordinates as

the limit of a triple Riemann sum, provided the following limit exists:

r = c c θ = α

α x

(x, y, z) x = k, y = l z = m k, l
m yz xz xy

(r, θ, z) r = c, θ = α z = m c,α m

α xy

xy + =x2 y2 c2

r = c

4.5.1

4.5.1

+ =x2 y2 c2 = ( + )z2 c2 x2 y2 + + =x2 y2 z2 c2 z = c( + )x2 y2

r = c z = cr + =r2 z2 c2 z = cr2

B R
3

B = {(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d} 4.5.2 l, m n

Δr = , Δθ =b⋅a
l

β⋅α
m Δz = d⋅c

n

4.5.2 B

 DEFINITION: triple integral in cylindrical coordinates

B = {(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d}.

f(r, θ, z) B ( , , )r∗
ijk

θ∗
ijk

z∗
ijk

= | , | ×| , | × | , |Bijk ri−1 ri θj−1 θj zk−1 ki 4.5.2

f( , , )ΔrΔθΔz.lim
l,m,n→∞

∑
i=1

l

∑
j=1

m

∑
k=1

n

r∗
ijk

θ∗
ijk

z∗
ijk
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Note that if  is the function in rectangular coordinates and the box  is expressed in rectangular coordinates, then the
triple integral

is equal to the triple integral

and we have

As mentioned in the preceding section, all the properties of a double integral work well in triple integrals, whether in rectangular
coordinates or cylindrical coordinates. They also hold for iterated integrals. To reiterate, in cylindrical coordinates, Fubini’s
theorem takes the following form:

Suppose that  is continuous on a rectangular box  which when described in cylindrical coordinates looks like 
.

Then  and

The iterated integral may be replaced equivalently by any one of the other five iterated integrals obtained by integrating with
respect to the three variables in other orders.

Cylindrical coordinate systems work well for solids that are symmetric around an axis, such as cylinders and cones. Let us look at
some examples before we define the triple integral in cylindrical coordinates on general cylindrical regions.

Evaluate the triple integral

where the cylindrical box  is 

Solution

As stated in Fubini’s theorem, we can write the triple integral as the iterated integral

The evaluation of the iterated integral is straightforward. Each variable in the integral is independent of the others, so we can
integrate each variable separately and multiply the results together. This makes the computation much easier:

g(x, y, z) B

g(x, y, z)dV∭
B

g(r cosθ, r sin θ, z)r dr dθdz∭
B

g(x, y, z)dV = g(r cosθ, r sin θ, z)r dr dθdz = f(r, θ z)r dr dθdz.∭
B

∭
B

∭
B

 Theorem: Fubini’s Theorem in Cylindrical Coordinates

g(x, y, z) B

B = {(r, θ, z)|a ≤ r ≤ b, α ≤ θ ≤ β, c ≤ z ≤ d}

g(x, y, z) = g(r cosθ, r sin θ, z) = f(r, θ, z)

g(x, y, z)dV = f(r, θ, z)r dr dθdz.∭
B

∫
d

c

∫
α

β

∫
b

a

 Example : Evaluating a Triple Integral over a Cylindrical Box4.5.1

(zr sin θ)r dr dθdz∭
B

B B = {(r, θ, z)|0 ≤ r ≤ 2, 0 ≤ θ ≤ π/2, 0, ≤ z ≤ 4}.

(zr sin θ)r dr dθdz = (zr sin θ)r dz dr dθ.∭
B

∫
θ=π/2

θ=0
∫

r=2

r=0
∫

z=4

z=0

(zr sin θ)r dz dr dθ =( sin θ dθ)( dr)( z dz)∫
θ=π/2

θ=0
∫

r=2

r=0
∫

z=4

z=0
∫

π/2

0
∫

2

0
r2 ∫

4

0

= ( )( )( ) = .−cosθ|
π/2
0

r3

3

∣

∣
∣
2

0

z2

2

∣

∣
∣
4

0

64

3
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Evaluate the triple integral

Hint

Follow the same steps as in the previous example.

Answer

If the cylindrical region over which we have to integrate is a general solid, we look at the projections onto the coordinate planes.
Hence the triple integral of a continuous function  over a general solid region 

 in  where  is the projection of  onto the -plane, is

In particular, if , then we have

Similar formulas exist for projections onto the other coordinate planes. We can use polar coordinates in those planes if necessary.

Consider the region  inside the right circular cylinder with equation , bounded below by the -plane and
bounded above by the sphere with radius  centered at the origin (Figure 15.5.3). Set up a triple integral over this region with a
function  in cylindrical coordinates.

Figure : Setting up a triple integral in cylindrical coordinates over a cylindrical region.

Solution

First, identify that the equation for the sphere is . We can see that the limits for  are from  to .
Then the limits for  are from  to . Finally, the limits for  are from  to . Hence the region is 

 Therefore, the triple integral is

 Exercise :4.5.1

rz sin θr dz dr dθ.∫
θ=π

θ=0
∫

r=1

r=0
∫

z=4

z=0

8

f(r, θ, z)
E = {(r, θ, z)|(r, θ) ∈ D, (r, θ) ≤ z ≤ (r, θ)}u1 u2 R

3 D E rθ

f(r, θ, z)r dr dθdz = [ f(r, θ, z)dz] r dr dθ.∭
E

∬
D

∫
(r,θ)u2

(r,θ)u1

D = {(r, θ)| (θ) ≤ r ≤ (θ),α ≤ θ ≤ β}G1 g2

f(r, θ, z)r dr dθ = f(r, θ, z)r dz dr dθ.∭
E

∫
θ=β

θ=α

∫
r= (θ)g2

r= (θ)g1

∫
z= (r,θ)u2

z= (r,θ)u1

 Example : Setting up a Triple Integral in Cylindrical Coordinates over a General Region4.5.2

E r = 2 sin θ rθ

4
f(r, θ, z)

4.5.3

+ = 16r2 z2 z 0 z = 16 −r2
− −−−−−

√

r 0 r = 2 sin θ θ 0 π

E = {(r, θ, z)|0 ≤ θ ≤ π, 0 ≤ r ≤ 2 sin θ, 0 ≤ z ≤ }.16 −r2
− −−−−−

√

f(r, θ, z)r dz dr dθ = f(r, θ, z)r dz dr dθ.∭
E

∫
θ=π

θ=0
∫

r=2 sin θ

r=0
∫

z= 16−r2√

z=0
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Consider the region inside the right circular cylinder with equation  bounded below by the -plane and bounded
above by . Set up a triple integral with a function  in cylindrical coordinates.

Hint

Analyze the region, and draw a sketch.

Answer

Let  be the region bounded below by the cone  and above by the paraboloid . (Figure
15.5.4). Set up a triple integral in cylindrical coordinates to find the volume of the region, using the following orders of
integration:

a. 

b. 

Figure : Setting up a triple integral in cylindrical coordinates over a conical region.

Solution

a. The cone is of radius 1 where it meets the paraboloid. Since  and  (assuming
 is nonnegative), we have . Solving, we have . Since , we have .

Therefore . So the intersection of these two surfaces is a circle of radius  in the plane . The cone is the lower
bound for  and the paraboloid is the upper bound. The projection of the region onto the -plane is the circle of radius 
centered at the origin.

Thus, we can describe the region as .

Hence the integral for the volume is

b. We can also write the cone surface as  and the paraboloid as . The lower bound for  is zero, but the upper
bound is sometimes the cone and the other times it is the paraboloid. The plane  divides the region into two regions. Then
the region can be described as

 Exercise :4.5.2

r = 2 sin θ rθ

z = 4 −y f(r, θ, z)

f(r, θ, z)r dz dr dθ = f(r, θ, z)r dz dr dθ.∭
E

∫
θ=π

θ=0
∫

r=2 sin θ

r=0
∫

z=4−r sin θ

z=0

 Example : Setting up a Triple Integral in Two Ways4.5.3

E z = +x2 y2− −−−−−√ z = 2 − −x2 y2

dz dr dθ

dr dz dθ

4.5.4

z = 2 − − = 2 −x2 y2 r2 z = =+x2 y2− −−−−−
√ r2

r 2 − = rr2 +r−2 = (r+2)(r−1) = 0r2 r ≥ 0 r = 1
z = 1 1 z = 1
z xy 1

E = {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, r ≤ z ≤ 2 − }r2

V = r dz dr dθ.∫
θ=2π

θ=0
∫

r=1

r=0
∫

z=2−r2

z=r

r = z = 2 −zr2 r

z = 1

E = {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1, 0 ≤ r ≤ z} ∪ {(r, θ, z)|0 ≤ θ ≤ 2π, 1 ≤ z ≤ 2, 0 ≤ r ≤ }.2 −z
− −−−

√
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Now the integral for the volume becomes

Redo the previous example with the order of integration .

Hint

Note that  is independent of  and .

Answer

 and

Let E be the region bounded below by the -plane, above by the sphere , and on the sides by the cylinder 
 (Figure 15.5.5). Set up a triple integral in cylindrical coordinates to find the volume of the region using the

following orders of integration, and in each case find the volume and check that the answers are the same:

a. 
b. .

Figure : Finding a cylindrical volume with a triple integral in cylindrical coordinates.

Solution

a. Note that the equation for the sphere is

and the equation for the cylinder is

Thus, we have for the region 

Hence the integral for the volume is

V = r dr dz dθ+ r dr dz dθ.∫
θ=2π

θ=0
∫

z=1

z=0
∫

r=z

r=0
∫

θ=2π

θ=0
∫

z=2

z=1
∫

r= 2−z√

r=0

 Exercise :4.5.3

dθdz dr

θ r z

E = {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1, 0 ≤ r ≤ 2 − }z2

V = r dθdz dr.∫
r=1

r=0
∫

z=2−r2

z=0
∫

θ=2π

θ=0

 Example : Finding a Volume with Triple Integrals in Two Ways4.5.4

rθ + + = 4x2 y2 z2

+ = 1x2 y2

dz dr dθ

dr dz dθ

4.5.5

+ + = 4 or + = 4x2 y2 z2 r2 z2

+ = 1 or = 1.x2 y2 r2

E

E = {(r, θ, z)|0 ≤ z ≤ , 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}4 −r2− −−−−
√
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b. Since the sphere is , which is , and the cylinder is , which is , we have 
, that is, . Thus we have two regions, since the sphere and the cylinder intersect at  in the -plane

and

Hence the integral for the volume is

Redo the previous example with the order of integration .

Hint

A figure can be helpful. Note that  is independent of  and .

Answer

 and

Review of Spherical Coordinates

In three-dimensional space  in the spherical coordinate system, we specify a point  by its distance  from the origin, the polar
angle  from the positive -axis (same as in the cylindrical coordinate system), and the angle  from the positive -axis and the
line  (Figure ). Note that  and . (Refer to Cylindrical and Spherical Coordinates for a review.) Spherical
coordinates are useful for triple integrals over regions that are symmetric with respect to the origin.

V (E) = r dz dr dθ∫
θ=2π

θ=0
∫

r=1

r=0
∫

z= 4−r2√

z=0

= [ ]dr dθ = (r )dr dθ∫
θ=2π

θ=0
∫

r=1

r=0
⟩rz|

z= 4−r2√
z=0 ∫

θ=2π

θ=0
∫

r=1

r=0
4 −r2− −−−−

√

= ( − ) dθ = 2π( − ) cubic units.∫
2π

0

8

3
3
–

√
8

3
3
–

√

(4.5.1)

(4.5.2)

(4.5.3)

+ + = 4x2 y2 z2 + = 4r2 z2 + = 1x2 y2 = 1r2

1 + = 4z2 = 3z2 (1, )3
–

√ rz

= {(r, θ, z)|0 ≤ r ≤ , ≤ z ≤ 2, 0 ≤ θ ≤ 2π}E1 4 −r2− −−−−√ 3
–

√

= {(r, θ, z)|0 ≤ r ≤ 1, 0 ≤ z ≤ , 0 ≤ θ ≤ 2π}.E2 3
–

√

V (E) = r dr dz dθ+ r dr dz dθ∫
θ=2π

θ=0
∫

z=2

z= 3√
∫

r= 4−r2√

r=0
∫

θ=2π

θ=0
∫

z= 3√

z=0
∫

r=1

r=0

= π+( −3 )π = 2π( − ) cubic units.3
–

√
16

3
3
–

√
8

3
3
–

√

(4.5.4)

(4.5.5)

 Exercise 4.5.4

dθdz dr

θ r z

= {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, r ≤ z ≤ }E2 4 −r2
− −−−−

√

V = r dθdz dr.∫
r=1

r=0
∫

z= 4−r2√

z=r

∫
θ=2π

θ=0

R
3 P ρ

θ x φ z

OP 4.5.6 ρ > 0 0 ≤ φ ≤ π
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Figure : The spherical coordinate system locates points with two angles and a distance from the origin.

Recall the relationships that connect rectangular coordinates with spherical coordinates.

From spherical coordinates to rectangular coordinates:

From rectangular coordinates to spherical coordinates:

Other relationships that are important to know for conversions are

 These equations are used to convert from spherical coordinates to cylindrical coordinates.

and

 These equations are used to convert from cylindrical coordinates to spherical coordinates.

 shows a few solid regions that are convenient to express in spherical coordinates.

Figure : Spherical coordinates are especially convenient for working with solids bounded by these types of surfaces. (The
letter  indicates a constant.)

Integration in Spherical Coordinates
We now establish a triple integral in the spherical coordinate system, as we did before in the cylindrical coordinate system. Let the
function  be continuous in a bounded spherical box, . We then
divide each interval into  and  subdivisions such that . Now we can illustrate the

4.5.6

x = ρ sin φ cosθ, y = ρ sin φ sin θ, and z = ρ cos φ.

= + + , tan θ = , φ = arccos( ).ρ2 x2 y2 z2 y

x

z

+ +x2 y2 z2− −−−−−−−−−
√

r = ρ sin φ

θ = θ

z = ρ cos φ

ρ = +r2 z2− −−−−−
√

θ = θ

φ = arccos( )z

+r2 z2√

4.5.7

4.5.7
c

f(ρ, θ,φ) B = {(ρ, θ,φ)|a ≤ ρ ≤ b, α ≤ θ ≤ β, γ ≤ φ ≤ ψ}

l,m,n n Δρ = , Δθ = . Δφ =b−a

l

β−α

m

ψ−γ

n
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following theorem for triple integrals in spherical coordinates with  being any sample point in the spherical subbox 
. For the volume element of the subbox  in spherical coordinates, we have , as shown in

the following figure.

Figure : The volume element of a box in spherical coordinates.

The triple integral in spherical coordinates is the limit of a triple Riemann sum,

provided the limit exists.

As with the other multiple integrals we have examined, all the properties work similarly for a triple integral in the spherical
coordinate system, and so do the iterated integrals. Fubini’s theorem takes the following form.

If  is continuous on a spherical solid box , then

This iterated integral may be replaced by other iterated integrals by integrating with respect to the three variables in other
orders.

As stated before, spherical coordinate systems work well for solids that are symmetric around a point, such as spheres and cones.
Let us look at some examples before we consider triple integrals in spherical coordinates on general spherical regions.

Evaluate the iterated triple integral

Solution

As before, in this case the variables in the iterated integral are actually independent of each other and hence we can integrate
each piece and multiply:

( , , )ρ∗
ijk θ∗

ijk φ∗
ijk

Bijk ΔV ΔV = (Δρ) (ρΔφ) (ρ sin φΔθ)

4.5.8

 Definition: triple integral in spherical coordinates

f( , , )( sin φΔρΔθΔφlim
l,m,n→∞

∑
i=1

l

∑
j=1

m

∑
k=1

n

ρ∗
ijk θ∗

ijk φ∗
ijk ρ∗

ijk)2

 Theorem: Fubini’s Theorem for Spherical Coordinates

f(ρ, θ,φ) B = [a, b] × [α, β] × [γ,ψ]

f(ρ, θ,φ) sin φdρ dφ dθ = f(ρ, θ,φ) sin φ dρ dφ dθ.∭
B

ρ2 ∫
φ=ψ

φ=γ

∫
θ=β

θ=α

∫
ρ=b

ρ=a

ρ2

 Example : Evaluating a Triple Integral in Spherical Coordinates4.5.5

sin φ dρ dφ dθ.∫
θ=2π

θ=0
∫

φ=π/2

φ=0
∫

ρ=1

ρ=0
ρ2

sin φ dρ dφ dθ = dθ sin φ dφ dρ = (2π) (1) ( ) =∫
2π

0
∫

π/2

0
∫

1

0
ρ2 ∫

2π

0
∫

π/2

0
∫

1

0
ρ2 1

3

2π

3
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The concept of triple integration in spherical coordinates can be extended to integration over a general solid, using the
projections onto the coordinate planes. Note that  and  mean the increments in volume and area, respectively. The
variables  and  are used as the variables for integration to express the integrals.

The triple integral of a continuous function  over a general solid region

in , where  is the projection of  onto the -plane, is

In particular, if , the we have

Similar formulas occur for projections onto the other coordinate planes.

Set up an integral for the volume of the region bounded by the cone  and the hemisphere 
 (see the figure below).

Figure : A region bounded below by a cone and above by a hemisphere.

Solution

Using the conversion formulas from rectangular coordinates to spherical coordinates, we have:

For the cone:  or  or  or .

For the sphere:  or  or  or .

Thus, the triple integral for the volume is

Set up a triple integral for the volume of the solid region bounded above by the sphere  and bounded below by the cone 
.

Hint

Follow the steps of the previous example.

dV dA

V A

f(ρ, θ,φ)

E = {(ρ, θ,φ)|(ρ, θ) ∈ D, (ρ, θ) ≤ φ ≤ (ρ, θ)}u1 u2

R
3 D E ρθ

f(ρ, θ,φ)dV = [ f(ρ, θ,φ)dφ] dA.∭
E

∬
D

∫
(ρ,θ)u2

(ρ,θ)u1

D = {(ρ, θ)| (θ) ≤ ρ ≤ (θ), α ≤ θ ≤ β}g1 g2

f(ρ, θ,φ)dV = f(ρ, θ,φ) sin φ dφ dρ dθ.∭
E

∫
β

α

∫
(θ)g2

(θ)g1

∫
(ρ,θ)u2

(ρ,θ)u1

ρ2

 Example : Setting up a Triple Integral in Spherical Coordinates4.5.6

z = 3( + )x2 y2− −−−−−−−√
z = 4 − −x2 y2

− −−−−−−−−
√

4.5.9

z = 3( + )x2 y2− −−−−−−−
√ ρ cos φ = ρ sin φ3

–
√ tan φ = 1

3√
φ = π

6

z = 4 − −x2 y2− −−−−−−−−
√ + + = 4z2 x2 y2 = 4ρ2 ρ = 2

V (E) = sin φ dρ dφ dθ.∫
θ=2π

θ=0
∫

φ+π/6

φ=0
∫

ρ=2

ρ=0
ρ2

 Exercise 4.5.5

ρ = 2
φ = π/3
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Answer

Let  be the region bounded below by the cone  and above by the sphere  (Figure 15.5.10).
Set up a triple integral in spherical coordinates and find the volume of the region using the following orders of integration:

a. 
b. 

Figure :. A region bounded below by a cone and above by a sphere.

Solution

a. Use the conversion formulas to write the equations of the sphere and cone in spherical coordinates.

For the sphere:

For the cone:

Hence the integral for the volume of the solid region  becomes

b. Consider the -plane. Note that the ranges for  and  (from part a.) are

V (E) = sin φ dρ dφ dθ∫
θ=2π

θ=0
∫

φ=π/3

φ=0
∫

ρ=2

ρ=0
ρ2

 Example : Interchanging Order of Integration in Spherical Coordinates4.5.7

E z = +x2 y2− −−−−−
√ z = + +x2 y2 z2

dρ dϕ dθ

dφ dρ dθ

4.5.10

+ + = zx2 y2 z2

= ρ cos φρ2

ρ = cos φ.

(4.5.6)

(4.5.7)

(4.5.8)

z = +x2 y2
− −−−−−

√

ρ cos φ = φ ϕρ2 sin2 cos2
− −−−−−−−−−−−

√

ρ cos φ = φ ( ϕ+ ϕ)ρ2 sin2 cos2 sin2
− −−−−−−−−−−−−−−−−−−−

√

ρ cos φ = ρ sin φ

cos φ = sin φ

φ = π/4.

(4.5.9)

(4.5.10)

(4.5.11)

(4.5.12)

(4.5.13)

(4.5.14)

E

V (E) = sin φ dρ dφ dθ.∫
θ=2π

θ=0
∫

φ=π/4

φ=0
∫

ρ=cos φ

ρ=0
ρ2

φρ φ ρ

0 ≤ ρ /2and ≤ ρ12
–

√ 2
–

√

0 ≤ φ ≤ π/40 ≤ ρ ≤ cos φ

(4.5.15)

(4.5.16)
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The curve  meets the line  at the point . Thus, to change the order of integration, we need to
use two pieces:

and

Hence the integral for the volume of the solid region  becomes

In each case, the integration results in .

Before we end this section, we present a couple of examples that can illustrate the conversion from rectangular coordinates to
cylindrical coordinates and from rectangular coordinates to spherical coordinates.

Convert the following integral into cylindrical coordinates:

Solution

The ranges of the variables are

The first two inequalities describe the right half of a circle of radius . Therefore, the ranges for  and  are

The limits of  are , hence

Convert the following integral into spherical coordinates:

Solution

The ranges of the variables are

ρ = cos φ φ = π/4 (π/4, /2)2
–

√

0 ≤ ρ ≤ /2, 0 ≤ φ ≤ π/42
–

√

/2 ≤ ρ ≤ 1, 0 ≤ φ ≤ ρ.2
–

√ cos−1

E

V (E) = sin φ dφ dρ dθ+ sin φ dφ dρ dθ∫
θ=2π

θ=0
∫

ρ= /22√

ρ=0
∫

φ=π/4

φ=0
ρ2 ∫

θ=2π

θ=0
∫

ρ=1

ρ= /22√
∫

φ= ρcos−1

φ=0
ρ2

V (E) = π
8

 Example : Converting from Rectangular Coordinates to Cylindrical Coordinates4.5.8

xyz dz dx dy.∫
y=1

y=−1
∫

x= 1−y2√

x=0
∫

z= +x2 y2√

z= +x2 y2

−1 ≤ y ≤ y

0 ≤ x ≤ 1 −y2
− −−−−

√

+ ≤ z ≤ .x2 y2 +x2 y2
− −−−−−

√

(4.5.17)

(4.5.18)

(4.5.19)

1 θ r

− ≤ θ ≤ and 0 ≤ r ≤ 1.
π

2

π

2

z ≤ z ≤ rr2

xyz dz dx dy = r(r cosθ) (r sin θ) z dz dr dθ.∫
y=1

y=−1
∫

x= 1−y2√

x=0
∫

z= +x2 y2√

z= +x2 y2

∫
θ=π/2

θ=−π/2
∫

r=1

r=0
∫

z=r

z=r2

 Example : Converting from Rectangular Coordinates to Spherical Coordinates4.5.9

( + + )dz dx dy.∫
y=3

y=0
∫

x= 9−y2√

x=0
∫

z= 18− −x2 y2√

z= +x2 y2√
x2 y2 z2

0 ≤ y ≤ 3

0 ≤ x ≤ 9 −y2
− −−−−

√

≤ z ≤ .+x2 y2
− −−−−−

√ 18 − −x2 y2
− −−−−−−−−−

√

(4.5.20)

(4.5.21)

(4.5.22)
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The first two ranges of variables describe a quarter disk in the first quadrant of the -plane. Hence the range for  is 
.

The lower bound  is the upper half of a cone and the upper bound  is the upper half of a
sphere. Therefore, we have , which is .

For the ranges of  we need to find where the cone and the sphere intersect, so solve the equation

This gives

Putting this together, we obtain

Use rectangular, cylindrical, and spherical coordinates to set up triple integrals for finding the volume of the region inside the
sphere  but outside the cylinder .

Answer: Rectangular

Answer: Cylindrical

Answer: Spherical

Now that we are familiar with the spherical coordinate system, let’s find the volume of some known geometric figures, such as
spheres and ellipsoids.

Find the volume of the spherical planetarium in l’Hemisphèric in Valencia, Spain, which is five stories tall and has a radius of
approximately  ft, using the equation .

xy θ

0 ≤ θ ≤ π

2

z = +x2 y2− −−−−−√ z = 18 − −x2 y2− −−−−−−−−−√
0 ≤ ρ ≤ 18

−−
√ 0 ≤ ρ ≤ 3 2

–
√

φ

+ = 18r2 z2

( + = 18+x2 y2
− −−−−−

√ )2 z2

+ = 18z2 z2

2 = 18z2

= 9z2

z = 3.

(4.5.23)

(4.5.24)

(4.5.25)

(4.5.26)

(4.5.27)

(4.5.28)

3 cos φ = 32
–

√

cos φ =
1

2
–

√

φ = .
π

4

(4.5.29)

(4.5.30)

(4.5.31)

( + + )dz dx dy = sin φ dρ dθdφ.∫
y=3

y=0
∫

x= 9−y2√

x=0
∫

z= 18− −x2 y2√

z= +x2 y2√
x2 y2 z2 ∫

φ=π/4

φ=0
∫

θ=π/2

θ=0
∫

ρ=3 2√

ρ=0
ρ4

 Exercise :4.5.6

+ + = 4x2 y2 z2 + = 1x2 y2

dz dy dx− dz dy dx.∫
x=2

x=−2
∫

y= 4−x2√

y=− 4−x2√
∫

z= 4− −x2 y2√

z=− 4− −x2 y2√
∫

x=1

x=−1
∫

y= 1−x2√

y=− 1−x2√
∫

z= 4− −x2 y2√

z=− 4− −x2 y2√

r dz dr dθ.∫
θ=2π

θ=0
∫

r=2

r=1
∫

z= 4−r2√

z=− 4−r2√

sin φ dρ dθdφ.∫
φ=5π/6

φ=π/6
∫

θ=2π

θ=0
∫

ρ=2

ρ=csc φ

ρ2

 Example : Chapter Opener: Finding the Volume of l’Hemisphèric4.5.10

50 + + =x2 y2 z2 r2
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Figure : (credit: modification of work by Javier Yaya Tur, Wikimedia Commons)

Solution

We calculate the volume of the ball in the first octant, where , and , using spherical coordinates, and then
multiply the result by  for symmetry. Since we consider the region  as the first octant in the integral, the ranges of the
variables are

Therefore,

This exactly matches with what we knew. So for a sphere with a radius of approximately  ft, the volume is 
.

For the next example we find the volume of an ellipsoid.

Find the volume of the ellipsoid .

Solution

We again use symmetry and evaluate the volume of the ellipsoid using spherical coordinates. As before, we use the first octant 
, and  and then multiply the result by .

In this case the ranges of the variables are

Also, we need to change the rectangular to spherical coordinates in this way:

Then the volume of the ellipsoid becomes

4.5.11

x ≤ 0, y ≤ 0 z ≤ 0
8 D

0 ≤ φ ≤ , 0 ≤ ρ ≤ r, 0 ≤ θ ≤ .
π

2

π

2

V = dx dy dz = 8 sin θ dφ dρ dφ∭
D

∫
θ=π/2

θ=0
∫

ρ=π

ρ=0
∫

φ=π/2

φ=0
ρ2

= 8 dφ dρ sin θ dθ∫
φ=π/2

φ=0
∫

ρ=r

ρ=0
ρ2 ∫

θ=π/2

θ=0

= 8 ( ) ( ) (1)
π

2

r3

3

= π .
4

3
r3

(4.5.32)

(4.5.33)

(4.5.34)

(4.5.35)

50
π(50 ≈ 523, 600 f4

3
)3 t3

 Example : Finding the Volume of an Ellipsoid4.5.11

+ + = 1x2

a2

y2

b2

z2

c2

x ≤ 0, y ≤ 0 z ≤ 0 8

0 ≤ φ ≤ 0 ≤ ρ ≤ 1, and 0 ≤ θ ≤ .
π

2

π

2

x = aρ cos φ sin θ, y = bρ sin φ sin θ, andz = cp cosθ.
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Find the volume of the space inside the ellipsoid  and outside the sphere .

Solution

This problem is directly related to the l’Hemisphèric structure. The volume of space inside the ellipsoid and outside the sphere
might be useful to find the expense of heating or cooling that space. We can use the preceding two examples for the volume of
the sphere and ellipsoid and then substract.

First we find the volume of the ellipsoid using  ft,  ft, and  ft in the result from Example. Hence the
volume of the ellipsoid is

From Example, the volume of the sphere is

Therefore, the volume of the space inside the ellipsoid  and outside the sphere  is
approximately

Hot air ballooning is a relaxing, peaceful pastime that many people enjoy. Many balloonist gatherings take place around the
world, such as the Albuquerque International Balloon Fiesta. The Albuquerque event is the largest hot air balloon festival in
the world, with over  balloons participating each year.

Figure : Balloons lift off at the  Albuquerque International Balloon Fiesta. (credit: David Herrera, Flickr)

As the name implies, hot air balloons use hot air to generate lift. (Hot air is less dense than cooler air, so the balloon floats as
long as the hot air stays hot.) The heat is generated by a propane burner suspended below the opening of the basket. Once the
balloon takes off, the pilot controls the altitude of the balloon, either by using the burner to heat the air and ascend or by using
a vent near the top of the balloon to release heated air and descend. The pilot has very little control over where the balloon

V = dx dy dz∭
D

= 8 abc sin θ dφ dρ dθ∫
θ=π/2

θ=0
∫

ρ=1

ρ=0
∫

φ=π/2

φ=0
ρ2

= 8abc dφ dρ sin θ dθ∫
φ=π/2

φ=0
∫

ρ=1

ρ=0
ρ2 ∫

θ=π/2

θ=0

= 8abc( )( ) (1)
π

2

1

3

= πabc.
4

3

(4.5.36)

(4.5.37)

(4.5.38)
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 Example : Finding the Volume of the Space Inside an Ellipsoid and Outside a Sphere4.5.12
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 Student Project: Hot air balloons
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goes, however—balloons are at the mercy of the winds. The uncertainty over where we will end up is one of the reasons
balloonists are attracted to the sport.

In this project we use triple integrals to learn more about hot air balloons. We model the balloon in two pieces. The top of the
balloon is modeled by a half sphere of radius 28

feet. The bottom of the balloon is modeled by a frustum of a cone (think of an ice cream cone with the pointy end cut off). The
radius of the large end of the frustum is  feet and the radius of the small end of the frustum is  feet. A graph of our balloon
model and a cross-sectional diagram showing the dimensions are shown in the following figure.

Figure : (a) Use a half sphere to model the top part of the balloon and a frustum of a cone to model the bottom part of the
balloon. (b) A cross section of the balloon showing its dimensions.

We first want to find the volume of the balloon. If we look at the top part and the bottom part of the balloon separately, we see
that they are geometric solids with known volume formulas. However, it is still worthwhile to set up and evaluate the integrals
we would need to find the volume. If we calculate the volume using integration, we can use the known volume formulas to
check our answers. This will help ensure that we have the integrals set up correctly for the later, more complicated stages of the
project.

1. Find the volume of the balloon in two ways.

a. Use triple integrals to calculate the volume. Consider each part of the balloon separately. (Consider using spherical
coordinates for the top part and cylindrical coordinates for the bottom part.)

b. Verify the answer using the formulas for the volume of a sphere, , and for the volume of a cone, .

In reality, calculating the temperature at a point inside the balloon is a tremendously complicated endeavor. In fact, an entire
branch of physics (thermodynamics) is devoted to studying heat and temperature. For the purposes of this project, however, we
are going to make some simplifying assumptions about how temperature varies from point to point within the balloon. Assume
that just prior to liftoff, the temperature (in degrees Fahrenheit) of the air inside the balloon varies according to the function

2. What is the average temperature of the air in the balloon just prior to liftoff? (Again, look at each part of the balloon
separately, and do not forget to convert the function into spherical coordinates when looking at the top part of the balloon.)

Now the pilot activates the burner for  seconds. This action affects the temperature in a -foot-wide column  feet high,
directly above the burner. A cross section of the balloon depicting this column in shown in the following figure

28 28

4.5.13
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Figure : Activating the burner heats the air in a -foot-high, -foot-wide column directly above the burner.

Assume that after the pilot activates the burner for  seconds, the temperature of the air in the column described above
increases according to the formula

Then the temperature of the air in the column is given by

while the temperature in the remainder of the balloon is still given by

3. Find the average temperature of the air in the balloon after the pilot has activated the burner for  seconds.

Key Concepts
To evaluate a triple integral in cylindrical coordinates, use the iterated integral

To evaluate a triple integral in spherical coordinates, use the iterated integral

Key Equations

Triple integral in cylindrical coordinates

Triple integral in spherical coordinates

Glossary

triple integral in cylindrical coordinates

the limit of a triple Riemann sum, provided the following limit exists:
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triple integral in spherical coordinates

the limit of a triple Riemann sum, provided the following limit exists:

This page titled 4.5: Triple Integrals in Cylindrical and Spherical Coordinates is shared under a CC BY-NC-SA 4.0 license and was authored,
remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

15.5: Triple Integrals in Cylindrical and Spherical Coordinates by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0.
Original source: https://openstax.org/details/books/calculus-volume-1.

li f( , , ) ΔrΔθΔzml,m,n→∞∑
i=1

l

∑
j=1

m

∑
k=1

n

r∗
ijk θ∗

ijk s∗
ijk r∗

ijk

li f( , , )( sin φΔρΔθΔφml,m,n→∞∑
i=1

l

∑
j=1

m

∑
k=1

n

ρ∗
ijk θ∗

ijk φ∗
ijk ρ∗

ijk)2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64015?pdf
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/04%3A_Multiple_Integration/4.05%3A_Triple_Integrals_in_Cylindrical_and_Spherical_Coordinates
https://creativecommons.org/licenses/by-nc-sa/4.0
https://openstax.org/
https://openstax.org/details/books/calculus-volume-1
https://math.libretexts.org/@go/page/2613
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


Access for free at OpenStax 4.6.1 https://math.libretexts.org/@go/page/64016

4.6: Calculating Centers of Mass and Moments of Inertia

Use double integrals to locate the center of mass of a two-dimensional object.
Use double integrals to find the moment of inertia of a two-dimensional object.
Use triple integrals to locate the center of mass of a three-dimensional object.

We have already discussed a few applications of multiple integrals, such as finding areas, volumes, and the average value of a
function over a bounded region. In this section we develop computational techniques for finding the center of mass and moments of
inertia of several types of physical objects, using double integrals for a lamina (flat plate) and triple integrals for a three-
dimensional object with variable density. The density is usually considered to be a constant number when the lamina or the object
is homogeneous; that is, the object has uniform density.

Center of Mass in Two Dimensions
The center of mass is also known as the center of gravity if the object is in a uniform gravitational field. If the object has uniform
density, the center of mass is the geometric center of the object, which is called the centroid. Figure  shows a point  as the
center of mass of a lamina. The lamina is perfectly balanced about its center of mass.

Figure : A lamina is perfectly balanced on a spindle if the lamina’s center of mass sits on the spindle.

To find the coordinates of the center of mass  of a lamina, we need to find the moment  of the lamina about the -axis
and the moment  about the -axis. We also need to find the mass  of the lamina. Then

and

Refer to Moments and Centers of Mass for the definitions and the methods of single integration to find the center of mass of a one-
dimensional object (for example, a thin rod). We are going to use a similar idea here except that the object is a two-dimensional
lamina and we use a double integral.

If we allow a constant density function, then  and  give the centroid of the lamina.

Suppose that the lamina occupies a region  in the -plane and let  be its density (in units of mass per unit area) at any
point . Hence,

where  and  are the mass and area of a small rectangle containing the point  and the limit is taken as the dimensions
of the rectangle go to  (see the following figure).
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Figure : The density of a lamina at a point is the limit of its mass per area in a small rectangle about the point as the area goes
to zero.

Just as before, we divide the region  into tiny rectangles  with area  and choose  as sample points. Then the mass 
 of each  is equal to  (Figure ). Let  and  be the number of subintervals in  and  respectively. Also,

note that the shape might not always be rectangular but the limit works anyway, as seen in previous sections.

Figure : Subdividing the lamina into tiny rectangles  each containing a sample point .

Hence, the mass of the lamina is

Let’s see an example now of finding the total mass of a triangular lamina.

Consider a triangular lamina  with vertices  and with density . Find the total mass.

Solution

A sketch of the region  is always helpful, as shown in the following figure.
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 Example : Finding the Total Mass of a Lamina4.6.1
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Figure : A lamina in the -plane with density .

Using the expression developed for mass, we see that

The computation is straightforward, giving the answer .

Consider the same region  as in the previous example, and use the density function . Find the total mass.

Answer

Now that we have established the expression for mass, we have the tools we need for calculating moments and centers of mass. The
moment  about the -axis for  is the limit of the sums of moments of the regions  about the -axis. Hence

Similarly, the moment  about the -axis for  is the limit of the sums of moments of the regions  about the -axis. Hence

Consider the same triangular lamina  with vertices  and with density . Find the moments 
 and .

Solution

Use double integrals for each moment and compute their values:
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The computation is quite straightforward.

Consider the same lamina  as above and use the density function . Find the moments  and .

Answer

 and 

Finally we are ready to restate the expressions for the center of mass in terms of integrals. We denote the x-coordinate of the center
of mass by  and the y-coordinate by . Specifically,

and

Again consider the same triangular region  with vertices  and with density function . Find
the center of mass.

Solution

Using the formulas we developed, we have

Therefore, the center of mass is the point 

Analysis

If we choose the density  instead to be uniform throughout the region (i.e., constant), such as the value 1 (any constant will
do), then we can compute the centroid,

Notice that the center of mass  is not exactly the same as the centroid  of the triangular region. This is due to the

variable density of  If the density is constant, then we just use  (constant). This value cancels out from the formulas,
so for a constant density, the center of mass coincides with the centroid of the lamina.
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Again use the same region  as above and use the density function . Find the center of mass.

Answer

 and .

Once again, based on the comments at the end of Example , we have expressions for the centroid of a region on the plane:

We should use these formulas and verify the centroid of the triangular region  referred to in the last three examples.

Find the mass, moments, and the center of mass of the lamina of density  occupying the region  under the
curve  in the interval  (see the following figure).

Figure : Locating the center of mass of a lamina  with density .

Solution

First we compute the mass . We need to describe the region between the graph of  and the vertical lines  and 
:

Now compute the moments  and :
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Finally, evaluate the center of mass,

Hence the center of mass is .

Calculate the mass, moments, and the center of mass of the region between the curves  and  with the density
function  in the interval .

Answer

 and 

Find the centroid of the region under the curve  over the interval  (Figure ).

Figure : Finding a centroid of a region below the curve .

Solution

To compute the centroid, we assume that the density function is constant and hence it cancels out:

Thus the centroid of the region is
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Calculate the centroid of the region between the curves  and  with uniform density in the interval .

Answer

 and 

Moments of Inertia
For a clear understanding of how to calculate moments of inertia using double integrals, we need to go back to the general
definition in Section . The moment of inertia of a particle of mass  about an axis is  where  is the distance of the particle
from the axis. We can see from Figure  that the moment of inertia of the subrectangle  about the -axis is 

. Similarly, the moment of inertia of the subrectangle  about the -axis is . The moment
of inertia is related to the rotation of the mass; specifically, it measures the tendency of the mass to resist a change in rotational
motion about an axis.

The moment of inertia  about the -axis for the region  is the limit of the sum of moments of inertia of the regions  about
the -axis. Hence

Similarly, the moment of inertia  about the -axis for  is the limit of the sum of moments of inertia of the regions  about the 
-axis. Hence

Sometimes, we need to find the moment of inertia of an object about the origin, which is known as the polar moment of inertia. We
denote this by  and obtain it by adding the moments of inertia  and . Hence

All these expressions can be written in polar coordinates by substituting , and . For
example, .

Use the triangular region  with vertices , and  and with density  as in previous examples. Find
the moments of inertia.

Solution

Using the expressions established above for the moments of inertia, we have

( , ) =( , e( +1)) .xc yc
2e2

−1e2

1

4
e2

 Exercise 4.6.5

y = x y = x−−√ 0 ≤ x ≤ 1

= = =xc
My

m

1/15

1/6

2

5
= = =yc

Mx

m

1/12

1/6

1

2

6.6 m mr2 r

4.6.3 Rij x

( ρ( , )ΔAy∗
ij)

2 x∗
ij y∗

ij Rij y ( ρ( , )ΔAx∗
ij)

2 x∗
ij y∗

ij

Ix x R Rij

x

= ( = ( ρ( , ) ΔA = ρ(x, y)dA.Ix lim
k,l→∞

∑
i=1

k

∑
j=1

l

y∗
ij)

2mij lim
k,l→∞

∑
i=1

k

∑
j=1

l

y∗
ij)

2 x∗
ij y∗

ij ∬
R

y2

Iy y R Rij

y

= ( = ( ρ( , ) ΔA = ρ(x, y)dA.Iy lim
k,l→∞

∑
i=1

k

∑
j=1

l

x∗
ij)

2mij lim
k,l→∞

∑
i=1

k

∑
j=1

l

x∗
ij)

2 x∗
ij y∗

ij ∬
R

x2

I0 Ix Iy

= + = ( + )ρ(x, y)dA.I0 Ix Iy ∬
R

x2 y2

x = r cos θ, y = r sin θ dA = r dr dθ

= ρ(r cos θ, r sin θ)dAI0 ∬R r2

 Example : Finding Moments of Inertia for a Triangular Lamina4.6.6

R (0, 0), (2, 2) (2, 0) ρ(x, y) = xy

= ρ(x, y)dA = x dy dx = ,Ix ∬
R

y2 ∫
x=2

x=0
∫

y=x

y=0
y3 8

3

= ρ(x, y)dA = y dy dx = ,Iy ∬
R

x2 ∫
x=2

x=0
∫

y=x

y=0
x3 16

3

= ( + )ρ(x, y)dA = ( + )xy dy dx = + = 8I0 ∬
R

x2 y2 ∫
2

0
∫

x

0
x2 y2 Ix Iy
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Again use the same region  as above and the density function . Find the moments of inertia.

Answer

and

Also,

As mentioned earlier, the moment of inertia of a particle of mass  about an axis is  where  is the distance of the particle
from the axis, also known as the radius of gyration.

Hence the radii of gyration with respect to the -axis, the -axis and the origin are

respectively. In each case, the radius of gyration tells us how far (perpendicular distance) from the axis of rotation the entire mass
of an object might be concentrated. The moments of an object are useful for finding information on the balance and torque of the
object about an axis, but radii of gyration are used to describe the distribution of mass around its centroidal axis. There are many
applications in engineering and physics. Sometimes it is necessary to find the radius of gyration, as in the next example.

Consider the same triangular lamina  with vertices , and  and with density  as in previous
examples. Find the radii of gyration with respect to the -axis the -axis and the origin.

Solution

If we compute the mass of this region we find that . We found the moments of inertia of this lamina in Example .
From these data, the radii of gyration with respect to the -axis, -axis and the origin are, respectively,

Use the same region  from Example  and the density function . Find the radii of gyration with respect to
the -axis, the -axis, and the origin.

Hint

Follow the steps shown in the previous example.

 Exercise 4.6.6

R ρ(x, y) = xy−−
√

= dy dx =Ix ∫
x=2

x=0
∫

y=x

y=0
y2 xy−−

√
64

35

= dy dx = .Iy ∫
x=2

x=0
∫

y=x

y=0
x2 xy−−

√
64

35

= ( + ) dy dx =I0 ∫
x=2

x=0
∫

y=x

y=0
x2 y2 xy−−

√
128

21

m mr2 r

x y

= , = , and = ,Rx

Ix

m

−−−
√ Ry

Iy

m

−−−
√ R0

I0

m

−−−
√

 Example : Finding the Radius of Gyration for a Triangular Lamina4.6.7

R (0, 0), (2, 2) (2, 0) ρ(x, y) = xy

x y

m = 2 4.6.4
x y

= = = = ,Rx

Ix

m

−−−
√

8/3

2

− −−−
√

8

6

−−
√

2 3
–

√

3

= = = = ,Ry

Iy

m

−−−
√

16/3

2

− −−−−
√ 8

3

−−
√

2 6
–

√

3

= = = = 2.R0
I0

m

−−−
√

8

2

−−
√ 4

–
√

(4.6.1)

(4.6.2)

(4.6.3)

 Exercise 4.6.7

R 4.6.7 ρ(x, y) = xy−−
√

x y
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Answer

 and .

Center of Mass and Moments of Inertia in Three Dimensions
All the expressions of double integrals discussed so far can be modified to become triple integrals.

If we have a solid object  with a density function  at any point  in space, then its mass is

Its moments about the -plane the -plane and the -plane are

If the center of mass of the object is the point , then

Also, if the solid object is homogeneous (with constant density), then the center of mass becomes the centroid of the solid.
Finally, the moments of inertia about the -plane, -plane, and the -plane are

Suppose that  is a solid region bounded by  and the coordinate planes and has density .
Find the total mass.

Solution

The region  is a tetrahedron (Figure ) meeting the axes at the points  and . To find the limits

of integration, let  in the slanted plane . Then for  and  find the projection of  onto the -plane,

which is bounded by the axes and the line . Hence the mass is

= , = ,Rx

6 35
−−

√

35
Ry

6 15
−−

√

15
=R0

4 42
−−

√

7

 Definition

Q ρ(x, y, z) (x, y, z)

m = ρ(x, y, z)dV .∭
Q

xy xz yz

= zρ(x, y, z)dV , = yρ(x, y, z)dV , = xρ(x, y, z)dV .Mxy ∭
Q

Mxz ∭
Q

Myz ∭
Q

( , , )x̄ ȳ z̄

= , = , = .x̄
Myz

m
ȳ

Mxz

m
z̄

Mxy

m

yz xz xy

= ( + )ρ(x, y, z)dV ,Ix ∭
Q

y2 z2

= ( + )ρ(x, y, z)dV ,Iy ∭
Q

x2 z2

= ( + )ρ(x, y, z)dV .Iz ∭
Q

x2 y2

 Example : Finding the Mass of a Solid4.6.8

Q x+2y+3z = 6 ρ(x, y, z) = yzx2

Q 4.6.7 (6, 0, 0), (0, 3, 0), (0, 0, 2)

z = 0 z = (6 −x−2y)
1

3
x y Q xy

x+2y = 6

m = ρ(x, y, z)dV = yz dz dy dx =∭
Q

∫
x=6

x=0
∫

y=1/2(6−x)

y=0
∫

z=1/3(6−x−2y)

z=0
x2 108

35
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Figure : Finding the mass of a three-dimensional solid .

Consider the same region  (Figure ), and use the density function . Find the mass.

Hint

Follow the steps in the previous example.

Answer

Suppose  is a solid region bounded by the plane  and the coordinate planes with density 
(see Figure ). Find the center of mass using decimal approximation.

Solution

We have used this tetrahedron before and know the limits of integration, so we can proceed to the computations right away.
First, we need to find the moments about the -plane, the -plane, and the -plane:

Hence the center of mass is

The center of mass for the tetrahedron  is the point .

4.6.7 Q

 Exercise 4.6.8

Q 4.6.7 ρ(x, y, z) = x zy2

= 1.543
54

35

 Example : Finding the Center of Mass of a Solid4.6.9

Q x+2y+3z = 6 ρ(x, y, z) = yzx2

4.6.7

xy xz yz

= zρ(x, y, z)dV = y dz dy dx = ≈ 1.543,Mxy ∭
Q

∫
x=6

x=0
∫

y= (6−x)
1

2

y=0
∫
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1

3

z=0
x2 z2 54

35
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Q

∫
x=6

x=0
∫
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2

y=0
∫
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3

z=0
x2y2 81

35

= xρ(x, y, z)dV = yz dz dy dx = ≈ 6.943.Myz ∭
Q

∫
x=6

x=0
∫

y= (6−x)1
2

y=0
∫

z= (6−x−2y)1
3

z=0
x3 243

35

= , = , = ,x̄
Myz

m
ȳ

Mxz

m
z̄

Mxy

m

= = = = 2.25,x̄
Myz

m

243/35

108/35

243

108

= = = = 0.75,ȳ
Mxz

m

81/35

108/35

81

108

= = = = 0.5z̄
Mxy

m

54/35

108/35
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108

Q (2.25, 0.75, 0.5)
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Consider the same region  (Figure ) and use the density function . Find the center of mass.

Hint

Check that  and . Then use  from a previous checkpoint question.

Answer

We conclude this section with an example of finding moments of inertia , and .

Suppose that  is a solid region and is bounded by  and the coordinate planes with density 
(see Figure ). Find the moments of inertia of the tetrahedron  about the -plane, the -plane, and the -plane.

Solution

Once again, we can almost immediately write the limits of integration and hence we can quickly proceed to evaluating the
moments of inertia. Using the formula stated before, the moments of inertia of the tetrahedron  about the -plane, the -
plane, and the -plane are

and

Proceeding with the computations, we have

Thus, the moments of inertia of the tetrahedron  about the -plane, the -plane, and the -plane are , and
, respectively.

 Exercise 4.6.9

Q 4.6.7 ρ(x, y, z) = x zy2

= , = ,Mxy

27

35
Mxz

243

140
=Myz

81

35
m

( , , )
3

2

9

8

1

2

,Ix Iy Iz

 Example : Finding the Moments of Inertia of a Solid4.6.10

Q x+2y+3z = 6 ρ(x, y, z) = yzx2

4.6.7 Q yz xz xy

Q yz xz

xy

= ( + )ρ(x, y, z)dV ,Ix ∭
Q

y2 z2

= ( + )ρ(x, y, z)dV ,Iy ∭
Q

x2 z2

= ( + )ρ(x, y, z)dV with ρ(x, y, z) = yz.Iz ∭
Q

x2 y2 x2

= ( + ) ρ(x, y, z)dVIx ∭
Q

y2 z2 x2

= ( + ) yz dz dy dx = ≈ 3.343,∫
x=6

x=0
∫

y= (6−x)
1

2

y=0
∫

z= (6−x−2y)
1

3

z=0
y2 z2 x2 117

35

= ( + ) ρ(x, y, z)dVIy ∭
Q

x2 z2 x2

= ( + ) yz dz dy dx = ≈ 19.543,∫
x=6

x=0
∫

y= (6−x)
1

2

y=0
∫

z= (6−x−2y)
1

3

z=0
x2 z2 x2 684

35

= ( + ) ρ(x, y, z)dVIz ∭
Q

x2 y2 x2

= ( + ) yz dz dy dx = ≈ 20.829.∫
x=6

x=0
∫

y= (6−x)1

2

y=0
∫

z= (6−x−2y)1

3

z=0
x2 y2 x2 729

35

Q yz xz xy 117/35, 684/35
729/35
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Consider the same region  (Figure ), and use the density function . Find the moments of inertia about
the three coordinate planes.

Answer

The moments of inertia of the tetrahedron  about the -plane, the -plane, and the -plane are  and 
, respectively.

Key Concepts

Finding the mass, center of mass, moments, and moments of inertia in double integrals:

For a lamina  with a density function  at any point  in the plane, the mass is

The moments about the -axis and -axis are

The center of mass is given by .

The center of mass becomes the centroid of the plane when the density is constant.
The moments of inertia about the -axis, -axis, and the origin are

Finding the mass, center of mass, moments, and moments of inertia in triple integrals:

For a solid object  with a density function  at any point  in space, the mass is

The moments about the -plane, the -plane, and the -plane are

The center of mass is given by 

The center of mass becomes the centroid of the solid when the density is constant.
The moments of inertia about the -plane, the -plane, and the -plane are

Key Equations
Mass of a lamina

Moment about the x-axis

 Exercise 4.6.10
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Moment about the y-axis

Center of mass of a lamina

Glossary

radius of gyration
the distance from an object’s center of mass to its axis of rotation
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4.7: Change of Variables in Multiple Integrals

Determine the image of a region under a given transformation of variables.
Compute the Jacobian of a given transformation.
Evaluate a double integral using a change of variables.
Evaluate a triple integral using a change of variables.

Recall from Substitution Rule the method of integration by substitution. When evaluating an integral such as

we substitute . Then  or  and the limits change to  and 
. Thus the integral becomes

and this integral is much simpler to evaluate. In other words, when solving integration problems, we make appropriate substitutions
to obtain an integral that becomes much simpler than the original integral.

We also used this idea when we transformed double integrals in rectangular coordinates to polar coordinates and transformed triple
integrals in rectangular coordinates to cylindrical or spherical coordinates to make the computations simpler. More generally,

Where , and  and  satisfy  and .

A similar result occurs in double integrals when we substitute

, and
.

Then we get

where the domain  is replaced by the domain  in polar coordinates. Generally, the function that we use to change the variables
to make the integration simpler is called a transformation or mapping.

Planar Transformations
A planar transformation  is a function that transforms a region  in one plane into a region  in another plane by a change of
variables. Both  and  are subsets of . For example, Figure  shows a region  in the -plane transformed into a region 

 in the -plane by the change of variables  and , or sometimes we write  and .
We shall typically assume that each of these functions has continuous first partial derivatives, which means  and  exist
and are also continuous. The need for this requirement will become clear soon.

 Learning Objectives

x( −4 dx,∫
3

2
x2 )5

u = g(x) = −4x2 du = 2x dx x dx = du1
2

u = g(2) = −4 = 022

u = g(3) = 9 −4 = 5

du∫
5

0

1

2
u5

f(x)dx = f(g(u)) (u)du,∫
b

a

∫
d

c

g′

x = g(u), dx = (u)dug′ u = c u = d c = g(a) d = g(b)

x = f(r, θ) = r cos θ
y = g(r, θ) = r sin θ

dA = dx dy = r dr dθ

f(x, y)dA = (r cos θ, r sin θ)r dr dθ∬
R

∬
S

R S

T G R

G R R2 4.7.1 G uv

R xy x = g(u, v) y = h(u, v) x = x(u, v) y = y(u, v)
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Figure : The transformation of a region  in the -plane into a region  in the -plane.

A transformation , defined as , is said to be a one-to-one transformation if no two points map to
the same image point.

To show that  s a one-to-one transformation, we assume  and show that as a consequence we obtain
. If the transformation  is one-to-one in the domain , then the inverse  exists with the domain  such

that  and  are identity functions.

Figure  shows the mapping  where  and  are related to  and  by the equations  and 
. The region  is the domain of  and the region  is the range of , also known as the image of  under the

transformation .

Suppose a transformation  is defined as  where . Find the image of the polar
rectangle  in the -plane to a region  in the -plane. Show that  is a one-to-one
transformation in  and find .

Solution

Since  varies from 0 to 1 in the -plane, we have a circular disc of radius 0 to 1 in the -plane. Because  varies from 0 to 
 in the -plane, we end up getting a quarter circle of radius  in the first quadrant of the -plane (Figure ). Hence 

is a quarter circle bounded by  in the first quadrant.

Figure : A rectangle in the -plane is mapped into a quarter circle in the -plane.

In order to show that  is a one-to-one transformation, assume  and show as a consequence that 
. In this case, we have

4.7.1 G uv R xy

 Definition: one-to-one transformation

T : G→ R T (u, v) = (x, y)

T T ( , ) = T ( , )u1 v1 u2 v2

( , ) = ( , )u1 v1 u2 v2 T G T −1 R

∘ TT −1 T ∘ T −1

4.7.2 T (u, v) = (x, y) x y u v x = g(u, v)
y = h(u, v) G T R T G

T

 Example : Determining How the Transformation Works4.7.1A

T T (r, θ) = (x, y) x = r cos θ, y = r sin θ

G= {(r, θ)|0 ≤ r ≤ 1, 0 ≤ θ ≤ π/2} rθ R xy T

G (x, y)T −1

r rθ xy θ

π/2 rθ 1 xy 4.7.2 R

+ = 1x2 y2

4.7.2 rθ xy

T T ( , ) = T ( , )r1 θ1 r2 θ2

( , ) = ( , )r1 θ1 r2 θ2

T ( , ) = T ( , ),r1 θ1 r2 θ2

( , ) = ( , ),x1 y1 x1 y1

( cos , sin ) = ( cos , sin ),r1 θ1 r1 θ1 r2 θ2 r2 θ2

cos = cos , sin = sin .r1 θ1 r2 θ2 r1 θ1 r2 θ2
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Dividing, we obtain

since the tangent function is one-one function in the interval . Also, since , we have .
Therefore,  and  is a one-to-one transformation from  to .

To find  solve for  in terms of . We already know that  and . Thus 
 is defined as  and .

Let the transformation  be defined by  where  and . Find the image of the triangle in the 
-plane with vertices , and .

Solution

The triangle and its image are shown in Figure . To understand how the sides of the triangle transform, call the side that
joins  and  side , the side that joins  and  side , and the side that joins  and  side .

Figure : A triangular region in the -plane is transformed into an image in the -plane.

For the side  transforms to  so this is the side  that joins  and .
For the side  transforms to  so this is the side  that joins  and .
For the side  transforms to  (hence  so this is the side  that makes
the upper half of the parabolic arc joining  and .

All the points in the entire region of the triangle in the -plane are mapped inside the parabolic region in the -plane.

Let a transformation  be defined as  where . Find the image of the rectangle 
 from the -plane after the transformation into a region  in the -plane. Show that 

 is a one-to-one transformation and find .

Hint

Follow the steps of Example .

Answer

=
cosr1 θ1

sinr1 θ1

cosr2 θ2

sinr2 θ2

=
cos θ1

sin θ1

cos θ2

sin θ2

tan = tanθ1 θ2

=θ1 θ2

0 ≤ θ ≤ π/2 0 ≤ r ≤ 1 = , =r1 r2 θ1 θ2

( , ) = ( , )r1 θ1 r2 θ2 T G R

(x, y)T −1 r, θ x, y = +r2 x2 y2 tan θ =
y

x

(x, y) = (r, θ)T −1 r = +x2 y2
− −−−−−

√ ( )tan−1 y

x

 Example : Finding the Image under 4.7.1B T

T T (u, v) = (x, y) x = −u2 v2 y = uv

uv (0, 0), (0, 1) (1, 1)

4.7.3
(0, 0) (0, 1) A (0, 0) (1, 1) B (1, 1) (0, 1) C

4.7.3 uv xy

A : u = 0, 0 ≤ v≤ 1 x = − , y = 0v2 A′ (−1, 0) (0, 0)
B : u = v, 0 ≤ u ≤ 1 x = 0, y = u2 B′ (0, 0) (0, 1)
C : 0 ≤ u ≤ 1, v= 1 x = −1, y = uu2 x = −1y2 C ′

(−1, 0) (0, 1)

uv xy

 Exercise 4.7.1

T T (u, v) = (x, y) x = u+v, y = 3v
G= {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v≤ 2} uv R xy

T (x, y)T −1

4.7.1B
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 where  and 

Jacobians

Recall that we mentioned near the beginning of this section that each of the component functions must have continuous first partial
derivatives, which means that  and  exist and are also continuous. A transformation that has this property is called a 
transformation (here  denotes continuous). Let , where  and  be a one-to-one

 transformation. We want to see how it transforms a small rectangular region  units by  units, in the -plane (Figure 
).

Figure : A small rectangle  in the -plane is transformed into a region  in the -plane.

Since  and , we have the position vector  of the image of the point .
Suppose that is the coordinate of the point at the lower left corner that mapped to  The line 
maps to the image curve with vector function , and the tangent vector at  to the image curve is

Similarly, the line  maps to the image curve with vector function , and the tangent vector at  to the image
curve is

Now, note that

Similarly,

This allows us to estimate the area  of the image  by finding the area of the parallelogram formed by the sides  and 
. By using the cross product of these two vectors by adding the kth component as , the area  of the image  (refer to

The Cross Product) is approximately . In determinant form, the cross product is

Since  we have

(x, y) = (u, v)T −1 u =
3x−y

3
v=

y

3

, ,gu gv hu hv C 1

C T (u, v) = (g(u, v), h(u, v)) x = g(u, v) y = h(u, v)
C 1 S, Δu Δv uv

4.7.4

4.7.4 S uv R xy

x = g(u, v) y = h(u, v) r(u, v) = g(u, v)i+h(u, v)j (u, v)
( , )u0 v0 ( , ) = T ( , )x0 y0 u0 v0 v= v0

r(u, )v0 ( , )x0 y0

= ( , )i+ ( , )j= i+ j.ru gu u0 v0 hv u0 v0
∂x

∂u

∂y

∂u

u = u0 r( , v)u0 ( , )x0 y0

= ( , )i+ ( , )j= i+ j.rv gv u0 v0 hu u0 v0
∂x

∂v

∂y

∂v

= sor( +Δu, ) −r( , ) ≈ Δu .ru lim
Δu→0

r( +Δu, ) −r( , )u0 v0 u0 v0

Δu
u0 v0 u0 v0 ru

= sor( , +Δv) −r( , ) ≈ Δv .rv lim
Δv→0

r( , +Δv) −r( , )u0 v0 u0 v0

Δv
u0 v0 u0 v0 rv

ΔA R Δvrv
Δuru 0 ΔA R

|Δu ×Δv | = | × |ΔuΔvru rv ru rv

× = = k =( − ) kru rv

∣

∣

∣
∣
∣

i

∂x
∂u

∂x
∂v

j
∂y

∂u
∂y

∂v

k

0

0

∣

∣

∣
∣
∣

∣

∣

∣
∣
∣

∂x

∂u
∂x

∂v

∂y

∂u
∂y

∂v

∣

∣

∣
∣
∣

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∂u

|k| = 1,

ΔA ≈ | × |ΔuΔv= ( − )ΔuΔv.ru rv
∂x
∂u

∂y

∂v
∂x
∂v

∂y

∂u
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The Jacobian of the  transformation  is denoted by  and is defined by the 
determinant

Using the definition, we have

Note that the Jacobian is frequently denoted simply by

Note also that

Hence the notation  suggests that we can write the Jacobian determinant with partials of  in the first row and

partials of  in the second row.

Find the Jacobian of the transformation given in Example .

Solution

The transformation in the example is  where  and . Thus the Jacobian is

Find the Jacobian of the transformation given in Example .

Solution

The transformation in the example is  where  and . Thus the Jacobian is

 Definition: Jacobian

C 1 T (u, v) = (g(u, v), h(u, v)) J(u, v) 2 ×2

J(u, v) = = =( − ) .
∣

∣
∣
∂(x, y)

∂(u, v)

∣

∣
∣

∣

∣

∣
∣
∣

∂x

∂u
∂x

∂v

∂y

∂u
∂y

∂v

∣

∣

∣
∣
∣

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∂u

ΔA ≈ J(u, v)ΔuΔv= ΔuΔv.
∣

∣
∣
∂(x, y)

∂(u, v)

∣

∣
∣

J(u, v) = .
∂(x, y)

∂(u, v)

=( − ) = .

∣

∣

∣
∣
∣

∂x

∂u
∂x

∂v

∂y

∂u
∂y

∂v

∣

∣

∣
∣
∣

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∂u

∣

∣

∣
∣
∣

∂x

∂u
∂y

∂u

∂x

∂v
∂y

∂v

∣

∣

∣
∣
∣

J(u, v) =
∂(x,y)

∂(u,v)
x

y

 Example : Finding the Jacobian4.7.2A

4.7.1A

T (r, θ) = (r cos θ, r sin θ) x = r cos θ y = r sin θ

J(r, θ) = = = = r θ+r θ = r( θ+ θ) = r.
∂(x, y)

∂(r, θ)

∣

∣

∣
∣
∣

∂x

∂r
∂y

∂r

∂x

∂θ
∂y

∂θ

∣

∣

∣
∣
∣

∣

∣
∣
cosθ

sinθ

−r sinθ

r cosθ

∣

∣
∣ cos2 sin2 cos2 sin2

 Example : Finding the Jacobian4.7.2B

4.7.1B

T (u, v) = ( − , uv)u2 v2 x = −u2 v2 y = uv

J(u, v) = = = = 2 +2 .
∂(x, y)

∂(u, v)

∣

∣

∣
∣
∣

∂x

∂u
∂y

∂u

∂x

∂v
∂y

∂v

∣

∣

∣
∣
∣

∣

∣
∣
2u

v

−2v

u

∣

∣
∣ u2 v2
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Find the Jacobian of the transformation given in the previous checkpoint: .

Hint

Follow the steps in the previous two examples.

Answer

Change of Variables for Double Integrals
We have already seen that, under the change of variables  where  and , a small region 
in the -plane is related to the area formed by the product  in the -plane by the approximation

Now let’s go back to the definition of double integral for a minute:

Referring to Figure , observe that we divided the region  in the -plane into small subrectangles  and we let the
subrectangles  in the -plane be the images of  under the transformation .

Figure : The subrectangles  in the -plane transform into subrectangles  in the -plane.

Then the double integral becomes

Notice this is exactly the double Riemann sum for the integral

Let  where  and  be a one-to-one  transformation, with a nonzero Jacobian on the
interior of the region  in the -plane it maps  into the region  in the -plane. If  is continuous on , then

 Exercise 4.7.2

T (u, v) = (u+v, 2v)

J(u, v) = = = = 2
∂(x, y)

∂(u, v)

∣

∣

∣
∣
∣

∂x

∂u
∂y

∂u

∂x

∂v
∂y

∂v

∣

∣

∣
∣
∣

∣

∣
∣
1

0

1

2

∣

∣
∣

T (u, v) = (x, y) x = g(u, v) y = h(u, v) ΔA

xy ΔuΔv uv

ΔA ≈ J(u, v)Δu, Δv.

f(x, y)fA = f( , )ΔA.∬
R

lim
m,n→∞

∑
i=1

m

∑
j=1

n

xij yij

4.7.5 S uv Sij

Rij xy Sij T (u, v) = (x, y)

4.7.5 Sij uv Rij xy

= f(x, y)dA = f( , )ΔA = f(g( , ), h( , ))|J( , )|ΔuΔv.∬
R

lim
m,n→∞

∑
i=1

m

∑
j=1

n

xij yij lim
m,n→∞

∑
i=1

m

∑
j=1

n

uij vij uij vij uij vij

f(g(u, v), h(u, v)) du dv.∬
S

∣

∣
∣
∂(x, y)

∂(u, v)

∣

∣
∣

 Change of Variables for Double Integrals

T (u, v) = (x, y) x = g(u, v) y = h(u, v) C 1

S uv S R xy f R
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With this theorem for double integrals, we can change the variables from  to  in a double integral simply by replacing

when we use the substitutions  and  and then change the limits of integration accordingly. This change of
variables often makes any computations much simpler.

Consider the integral

Use the change of variables  and , and find the resulting integral.

Solution

First we need to find the region of integration. This region is bounded below by  and above by  (Figure 
).

Figure : Changing a region from rectangular to polar coordinates.

Squaring and collecting terms, we find that the region is the upper half of the circle , that is 
. In polar coordinates, the circle is  so the region of integration in polar coordinates is bounded

by  and .

The Jacobian is , as shown in Example . Since , we have .

The integrand  changes to  in polar coordinates, so the double iterated integral is

Considering the integral  use the change of variables  and  and find the
resulting integral.

Hint

Follow the steps in the previous example.

Answer

f(x, y)dA = f(g(u, v), h(u, v)) du dv.∬
R

∬
S

∣

∣
∣
∂(x, y)

∂(u, v)

∣

∣
∣

(x, y) (u, v)

dA = dx dy = du dv
∣

∣
∣
∂(x, y)

∂(u, v)

∣

∣
∣

x = g(u, v) y = h(u, v)

 Example : Changing Variables from Rectangular to Polar Coordinates4.7.3

dy dx.∫
2

0
∫

2x−x2√

0
+x2 y2

− −−−−−
√

x = r cos θ y = r sin θ

y = 0 y = 2x−x2
− −−−−−

√

4.7.6

4.7.6

+ −2x = 0x2 y2

+(x−1 = 1y2 )2 r = 2 cos θ
0 ≤ r ≤ cos θ 0 ≤ θ ≤ π

2

J(r, θ) = r 4.7.2A r ≥ 0 |J(r, θ)| = r

+x2 y2
− −−−−−

√ r

dy dx = r|j(r, θ)|dr dθ = dr dθ.∫
2

0
∫

2x−x2√

0
+x2 y2

− −−−−−
√ ∫

π/2

0
∫

2 cos θ

0
∫

π/2

0
∫

2 cos θ

0
r2

 Exercise 4.7.3

( + )dy dx,∫
1

0 ∫
1−x2√

0 x2 y2 x = r cos θ y = r sin θ

dr dθ∫
π/2

0
∫

1

0
r3
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Notice in the next example that the region over which we are to integrate may suggest a suitable transformation for the integration.
This is a common and important situation.

Consider the integral

where  is the parallelogram joining the points , and  (Figure ). Make appropriate changes of
variables, and write the resulting integral.

Figure : The region of integration for the given integral.

Solution

First, we need to understand the region over which we are to integrate. The sides of the parallelogram are 
 and  (Figure ). Another way to look at them is 

, and .

Clearly the parallelogram is bounded by the lines , and .

Notice that if we were to make  and , then the limits on the integral would be  and 
.

To solve for  and , we multiply the first equation by  and subtract the second equation, 
. Then we have . Moreover, if we simply subtract the second equation from

the first, we get  and .

Figure : A parallelogram in the -plane that we want to transform by a change in variables.

Thus, we can choose the transformation

 Example : Changing Variables4.7.4

(x−y)dy dx,∬
R

R (1, 2), (3, 4), (4, 3) (6, 5) 4.7.7

4.7.7

x−y+1, x−y−1 = 0, x−3y+5 = 0 x−3y+9 = 0 4.7.8
x−y = −1, x−y = 1, x−3y = −5 x−3y = 9

y = x+1, y = x−1, y = (x+5)1
3

y = (x+9)1
3

u = x−y v= x−3y −1 ≤ u ≤ 1
−9 ≤ v≤ −5

x y 3

3u−v= (3x−3y) −(x−3y) = 2x x = 3u−v

2

u−v= (x−y) −(x−3y) = 2y y = u−v

2

4.7.8 xy

T (u, v) =( , )
3u−v

2

u−v

2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64017?pdf


Access for free at OpenStax 4.7.9 https://math.libretexts.org/@go/page/64017

and compute the Jacobian . We have

Therefore, . Also, the original integrand becomes

Therefore, by the use of the transformation , the integral changes to

which is much simpler to compute.

Make appropriate changes of variables in the integral

where  is the trapezoid bounded by the lines , and . Write the resulting integral.

Hint

Follow the steps in the previous example.

Answer

 and 

and

We are ready to give a problem-solving strategy for change of variables.

1. Sketch the region given by the problem in the -plane and then write the equations of the curves that form the boundary.
2. Depending on the region or the integrand, choose the transformations  and .
3. Determine the new limits of integration in the -plane.
4. Find the Jacobian .
5. In the integrand, replace the variables to obtain the new integrand.
6. Replace  or , whichever occurs, by .

In the next example, we find a substitution that makes the integrand much simpler to compute.

Using the change of variables  and , evaluate the integral

J(u, v)

J(u, v) = = = = − + = −
∂(x, y)

∂(u, v)

∣

∣

∣
∣
∣

∂x

∂u
∂y

∂u

∂x

∂v
∂y

∂v

∣

∣

∣
∣
∣

∣

∣
∣
3/2

1/2

−1/2

−1/2

∣

∣
∣

3

4

1

4

1

2

|J(u, v)| = 1
2

x−y = [3u−v−u+v] = [3u−u] = [2u] = u.
1

2

1

2

1

2

T

(x−y)dy dx = J(u, v)u du dv= ( )u du dv,∬
R

∫
−5

−9
∫

1

−1
∫

−5

−9
∫

1

−1

1

2

 Exercise 4.7.4

dy dx,∬
R

4

(x−y)2

R x−y = 2, x−y = 4, x = 0 y = 0

x = (v+u)1
2

y = (v−u)1
2

( ) ⋅ dvdu.∫
4

2
∫

u

−u

1

2

4

u2

 Problem-Solving Strategy: Change of Variables

xy

x = g(u, v) y = h(u, v)
uv

J(u, v)

dy dx dx dy J(u, v)du dv

 Example : Evaluating an Integral4.7.5

u = x−y v= x+y

(x−y) dA,∬
R

e −x2 y2
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where  is the region bounded by the lines  and  and the curves  and  (see the
first region in Figure ).

Solution

As before, first find the region  and picture the transformation so it becomes easier to obtain the limits of integration after the
transformations are made (Figure ).

Figure : Transforming the region  into the region  to simplify the computation of an integral.

Given  and , we have  and  and hence the transformation to use is 
. The lines  and  become  and , respectively. The curves 

and  become  and , respectively.

Thus we can describe the region  (see the second region Figure ) as

The Jacobian for this transformation is

Therefore, by using the transformation , the integral changes to

Doing the evaluation, we have

Using the substitutions  and , evaluate the integral  where  is the region bounded

by the lines  and .

Hint

Sketch a picture and find the limits of integration.

Answer

R x+y = 1 x+y = 3 − = −1x2 y2 − = 1x2 y2

4.7.9

R

4.7.9

4.7.9 R S

u = x−y v= x+y x = u+v

2
y = v−u

2

T (u, v) = ( , )u+v

2
v−u

2
x+y = 1 x+y = 3 v= 1 v= 3 − = 1x2 y2

− = −1x2 y2 uv= 1 uv= −1

S 4.7.9

S ={(u, v)|1 ≤ v≤ 3, ≤ u ≤ } .
−1

v

1

v

J(u, v) = = = = .
∂(x, y)

∂(u, v)

∣

∣

∣
∣
∣

∂x

∂u
∂y

∂u

∂x

∂v
∂y

∂v

∣

∣

∣
∣
∣

∣

∣
∣

1/2

−1/2

1/2

1/2

∣

∣
∣

1

2

T

(x−y) dA = u du dv.∬
R

e −x2 y2 1

2
∫

3

1
∫

1/v

−1/v
euv

u du dv= ≈ 0.245.
1

2
∫

3

1
∫

1/v

−1/v
euv

2

3e

 Exercise 4.7.5

x = v y = u+v
− −−−

√ y sin( −x)dA,∬
R

y2 R

y = , x = 2x−−√ y = 0

(sin2 −2)1
2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64017?pdf


Access for free at OpenStax 4.7.11 https://math.libretexts.org/@go/page/64017

Change of Variables for Triple Integrals
Changing variables in triple integrals works in exactly the same way. Cylindrical and spherical coordinate substitutions are special
cases of this method, which we demonstrate here.

Suppose that  is a region in -space and is mapped to  in -space (Figure ) by a one-to-one  transformation 
 where , and .

Figure : A region  in -space mapped to a region  in -space.

Then any function  defined on  can be thought of as another function  that is defined on :

Now we need to define the Jacobian for three variables.

The Jacobian determinant  in three variables is defined as follows:

This is also the same as

The Jacobian can also be simply denoted as .

With the transformations and the Jacobian for three variables, we are ready to establish the theorem that describes change of
variables for triple integrals.

Let  where , and , be a one-to-one  transformation,
with a nonzero Jacobian, that maps the region  in the -space into the region  in the -space. As in the two-
dimensional case, if  is continuous on , then

G uvw D xyz 4.7.10 C 1

T (u, v,w) = (x, y, z) x = g(u, v,w), y = h(u, v,w) z = k(u, v,w)

4.7.10 G uvw D xyz

F (x, y, z) D H(u, v,w) G

F (x, y, z) = F (g(u, v,w), h(u, v,w), k(u, v,w)) = H(u, v,w).

 Definition: Jacobian determinant

J(u, v,w)

J(u, v,w) = .

∣

∣

∣
∣
∣
∣
∣
∣

∂x

∂u
∂x

∂v
∂x

∂w

∂y

∂u
∂y

∂v
∂y

∂w

∂z

∂u
∂z

∂v
∂z

∂w

∣

∣

∣
∣
∣
∣
∣
∣

J(u, v,w) = .

∣

∣

∣
∣
∣
∣
∣
∣

∂x

∂u
∂y

∂u
∂z

∂u

∂x

∂v
∂y

∂v
∂z

∂v

∂x

∂w
∂y

∂w
∂z

∂w

∣

∣

∣
∣
∣
∣
∣
∣

∂(x,y,z)

∂(u,v,w)

 Change of Variables for Triple Integrals

T (u, v,w) = (x, y, z) x = g(u, v,w), y = h(u, v,w) z = k(u, v,w) C 1

G uvw D xyz

F D
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Let us now see how changes in triple integrals for cylindrical and spherical coordinates are affected by this theorem. We expect to
obtain the same formulas as in Triple Integrals in Cylindrical and Spherical Coordinates.

Derive the formula in triple integrals for

a. cylindrical and
b. spherical coordinates.

Solution

A.

For cylindrical coordinates, the transformation is  from the Cartesian -space to the Cartesian -
space (Figure ). Here  and . The Jacobian for the transformation is

We know that , so . Then the triple integral is

Figure : The transformation from rectangular coordinates to cylindrical coordinates can be treated as a change of
variables from region  in -space to region  in -space.

B.

For spherical coordinates, the transformation is  from the Cartesian -space to the Cartesian -space (Figure 
). Here , and . The Jacobian for the transformation is

F (x, y, z)dV = f(g(u, v,w)h(u, v,w), k(u, v,w)) du dvdw∭
D

∭
G

∣

∣
∣

∂(x, y, z)

∂(u, v,w)

∣

∣
∣

= H(u, v,w)|J(u, v,w)|du dvdw.∭
G

(4.7.1)

(4.7.2)

 Example : Obtaining Formulas in Triple Integrals for Cylindrical and Spherical Coordinates4.7.6A

T (r, θ, z) = (x, y, z) rθz xyz

4.7.11 x = r cos θ, y = r sinθ z = z

J(r, θ, z) = =
∂(x, y, z)

∂(r, θ, z)

∣

∣

∣
∣
∣
∣

∂x
∂r
∂y

∂r
∂z
∂r

∂x
∂θ
∂y

∂θ
∂z
∂θ

∂x
∂z
∂y

∂z
∂z
∂z

∣

∣

∣
∣
∣
∣

= r θ+r θ = r.

∣

∣

∣
∣

cosθ

sinθ

0

−r sinθ

r cosθ

0

0

0

1

∣

∣

∣
∣ cos2 sin2

r ≥ 0 |J(r, θ, z)| = r

f(x, y, z)dV = f(r cosθ, r sinθ, z)r dr dθdz.∭
D

∭
G

4.7.11
G rθz D xyz

T (ρ, θ,φ) ρθφ xyz

4.7.12 x = ρ sinφ cosθ, y = ρ sinφ sinθ z = ρ cosφ
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Expanding the determinant with respect to the third row:

Since , we must have . Thus 

Figure : The transformation from rectangular coordinates to spherical coordinates can be treated as a change of variables
from region  in -space to region  in -space.

Then the triple integral becomes

Let’s try another example with a different substitution.

Evaluate the triple integral

In -space by using the transformation

, and .

Then integrate over an appropriate region in -space.

Solution

J(ρ, θ,φ) = = = .
∂(x, y, z)

∂(ρ, θ,φ)

∣

∣

∣
∣
∣
∣

∂x
∂ρ

∂y

∂ρ

∂z
∂ρ

∂x
∂θ

∂y

∂θ

∂z
∂θ

∂x
∂φ

∂y

∂φ

∂z
∂φ

∣

∣

∣
∣
∣
∣

∣

∣

∣
∣

sinφ cosθ

sinφ sinθ

cosφ

−ρ sinφ sinθ

ρ sinφ cosθ

0

ρ cosφ cosθ

ρ cosφ sinθ

−ρ sinφ

∣

∣

∣
∣

= cosφ −ρ sinφ
∣

∣
∣
−ρ sinφ sinθ

ρ sinφ cosθ

ρ cosφ cosθ

ρ cosφ sinθ

∣

∣
∣

∣

∣
∣
sinφ cosθ

sinφ sinθ

−ρ sinφ sinθ

ρ sinφ cosθ

∣

∣
∣

= cosφ(− sinφ cosφ θ− sinφ cosφ θ)ρ2 sin2 ρ2 cos2

−ρ sinφ(ρ φ θ+ρ φ θ)sin2 cos2 sin2 sin2

= − sinφ φ( θ+ θ) − sinφ φ( θ+ θ)ρ2 cos2 sin2 cos2 ρ2 sin2 sin2 cos2

= − sinφ φ− sinφ φρ2 cos2 ρ2 sin2

= −ρ sinφ( φ+ φ) = − sinφ.cos2 sin2 ρ2

0 ≤ φ ≤ π sinφ ≥ 0 |J(ρ, θ,φ)| = | − sinφ| = sinφ.ρ2 ρ2

4.7.12
G ρθφ D xyz

f(x, y, z)dV = f(ρ sinφ cosθ, ρ sinφ sinθ, ρ cosφ) sinφ dρ dφ dθ.∭
D

∭
G

ρ2

 Example : Evaluating a Triple Integral with a Change of Variables4.7.6B

(x+ )dx dy dz∫
3

0
∫

4

0
∫

(y/2)+1

y/2

z

3

xyz

u = (2x−y)/2, v= y/2 w = z/3

uvw
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As before, some kind of sketch of the region  in -space over which we have to perform the integration can help identify
the region  in -space (Figure ). Clearly  in -space is bounded by the planes 

, and . We also know that we have to use , and
 for the transformations. We need to solve for  and . Here we find that , and .

Figure : The region  in -space is transformed to region  in -space.

Using elementary algebra, we can find the corresponding surfaces for the region  and the limits of integration in -space.
It is convenient to list these equations in a table.

Equations in  for the region Corresponding equations in  for the
region 

Limits for the integration in 

Now we can calculate the Jacobian for the transformation:

The function to be integrated becomes

We are now ready to put everything together and complete the problem.

G xyz

D uvw 4.7.13 G xyz

x = y/2, x = (y/2) +1, y = 0, y = 4, z = 0 z = 4 u = (2x−y)/2, v= y/2
w = z/3 x, y z x = u+v, y = 2v z = 3w

4.7.13 G uvw D xyz

G uvw

xyz D
uvw

G
uvw

x = y/2 u + v = 2v/2 = v u = 0

x = y/2 u + v = (2v/2) + 1 = v + 1 u = 1

y = 0 2v = 0 v = 0

y = 4 2v = 4 v = 2

z = 0 3w = 0 w = 0

z = 3 3w = 3 w = 1

J(u, v,w) = = = 6.

∣

∣

∣
∣
∣
∣
∣
∣

∂x

∂u
∂y

∂u
∂z

∂u

∂x

∂v
∂y

∂v
∂z

∂v

∂x

∂w
∂y

∂w
∂z

∂w

∣

∣

∣
∣
∣
∣
∣
∣

∣

∣

∣
∣

1

0

0

1

2

0

0

0

3

∣

∣

∣
∣

f(x, y, z) = x+ = u+v+ = u+v+w.
z

3

3w

3
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Let  be the region in -space defined by , and .

Evaluate  by using the transformation , and .

Hint

Make a table for each surface of the regions and decide on the limits, as shown in the example.

Answer

Key Concepts
A transformation  is a function that transforms a region  in one plane (space) into a region . in another plane (space) by a
change of variables.
A transformation  defined as  (or is said to be a one-to-one transformation
if no two points map to the same image point.
If  is continuous on , then

If  is continuous on , then

[T] Lamé ovals (or superellipses) are plane curves of equations , where a, b, and n are positive real numbers.

a. Use a CAS to graph the regions  bounded by Lamé ovals for  and  respectively.

b. Find the transformations that map the region  bounded by the Lamé oval  also called a squircle and graphed in the
following figure, into the unit disk.

(x+ )dx dy dz∫
3

0
∫

4

0
∫

(y/2)+1

y/2

z

3
= (u+v+w)|J(u, v,w)|du dvdw∫

1

0
∫

2

0
∫

1

0

= (u+v+w)|6|du dvdw∫
1

0
∫

2

0
∫

1

0

= 6 (u+v+w)du dvdw∫
1

0
∫

2

0
∫

1

0

= 6 dvdw∫
1

0
∫

2

0
[ +vu+wu]
u2

2

1

0

= 6 ( +v+u) dvdw∫
1

0
∫

2

0

1

2

= 6 dw∫
1

0
[ v+ +wv]

1

2

v2

2

2

0

= 6 (3 +2w)dw = 6[3w+ = 24.∫
1

0
w2]

1

0

 Exercise 4.7.6

D xyz 1 ≤ x ≤ 2, 0 ≤ xy ≤ 2 0 ≤ z ≤ 1

( y+3xyz)dx dy dz∭
D
x2 u = x, v= xy w = 3z

( + )du dvdw = 2 +ln8∫
3

0
∫

2

0
∫

2

1

v

3

vw

3u

T G R

T : G→ R T (u, v) = (x, y) T (u, v,w) = (x, y, z))

f R

f(x, y)dA = f(g(u, v), h(u, v)) du dv.∬
R

∬
S

∣

∣
∣
∂(x, y)

∂(u, v)

∣

∣
∣

F R

F (x, y, z)dV∭
R

= F (g(u, v,w), h(u, v,w), k(u, v,w) du dvdw∭
G

∣

∣
∣

∂(x, y, z)

∂(u, v,w)

∣

∣
∣

= H(u, v,w)|J(u, v,w)| du dvdw.∭
G

+ = 1( )x
a

n ( )y
b

n

R a = 1, b = 2, n = 4 n = 6

R + = 1x4 y4
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c. Use a CAS to find an approximation of the area  of the region  bounded by . Round your answer to two
decimal places.

[T] Lamé ovals have been consistently used by designers and architects. For instance, Gerald Robinson, a Canadian architect, has
designed a parking garage in a shopping center in Peterborough, Ontario, in the shape of a superellipse of the equation 

 with  and . Use a CAS to find an approximation of the area of the parking garage in the case 
 yards,  yards, and  yards.

[Hide Solution]

Chapter Review Exercises

True or False? Justify your answer with a proof or a counterexample.

Fubini’s theorem can be extended to three dimensions, as long as  is continuous in all variables.

[Hide solution]

True.

The integral

represents the volume of a right cone.

The Jacobian of the transformation for  is given by .

[Hide Solution]

False.

Evaluate the following integrals.

[Hide Solution]

A(R) R + = 1x4 y4

+ = 1( )x
a

n ( )y
b

n
=a

b

9
7

n = e

a = 900 b = 700 n = 2.72

A(R) ≃ 83, 999.2

f(x, y)dy dx = f(x, y)dy dx∫
b

a

∫
d

c

∫
d

c

∫
b

a

f

dz dr dθ∫
2π

0
∫

1

0
∫

1

0

x = −2v, y = 3v−2uvu2 −4 +6u+4vu2

(5 − )dA, R = {(x, y)|0 ≤ x ≤ 2, 1 ≤ y ≤ 4}∬
R

x3y2 y2

dA, D = {(x, y)|0 ≤ x ≤ 1, −x ≤ y ≤ x}∬
D

y

3 +1x2

0
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where  is a disk of radius  centered at the origin

[Hide Solution]

where 

[Hide Solution]

[Hide Solution]

For the following problems, find the specified area or volume.

The area of region enclosed by one petal of .

[Hide Solution]

The volume of the solid that lies between the paraboloid  and the plane .

The volume of the solid bounded by the cylinder  and from  to .

[Hide Solution]

The volume of the intersection between two spheres of radius 1, the top whose center is  and the bottom, which is
centered at .

For the following problems, find the center of mass of the region.

 on the circle with radius  in the first quadrant only.

[Hide Solution]

 in the region bounded by , and .

 on the inverted cone with radius  and height .

sin( + )dA∬
D

x2 y2

D 2

xy dx dy∫
1

0
∫

1

0
ex

2

1
4

6dy dx dz∫
1

−1
∫

z

0
∫

x−z

0

3y dV ,∭
R

R = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ }9 −y2
− −−−−

√

1.475

r dz dθdr∫
2

0
∫

2π

0
∫

1

r

sin(φ)dρ dφ, dθ∫
2π

0
∫

π/2

0
∫

3

1
ρ2

π52
3

dz dy sx∫
1

0
∫

1−x2√

− 1−x2√
∫

1− −x2 y2√

− 1− −x2 y2√

r = cos(4θ)

π
16

z = 2 +2x2 y2 z = 8

+ = 16x2 y2 z = 1 z+x = 2

93.291

(0, 0, 0.25)
(0, 0, 0)

ρ(x, y) = xy 1

( , )8
15

8
15

ρ(x, y) = (y+1) x−−√ y = , y = 0ex x = 1

ρ(x, y, z) = z 2 2
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The volume an ice cream cone that is given by the solid above  and below .

The following problems examine Mount Holly in the state of Michigan. Mount Holly is a landfill that was converted into a ski
resort. The shape of Mount Holly can be approximated by a right circular cone of height  ft and radius  ft.

If the compacted trash used to build Mount Holly on average has a density , find the amount of work required to
build the mountain.

[Hide Solution]

 ft-lb

In reality, it is very likely that the trash at the bottom of Mount Holly has become more compacted with all the weight of the
above trash. Consider a density function with respect to height: the density at the top of the mountain is still density 
and the density increases. Every  feet deeper, the density doubles. What is the total weight of Mount Holly?

The following problems consider the temperature and density of Earth’s layers.

[T] The temperature of Earth’s layers is exhibited in the table below. Use your calculator to fit a polynomial of degree  to the
temperature along the radius of the Earth. Then find the average temperature of Earth. (Hint: begin at  in the inner core and
increase outward toward the surface)

Layer Depth from center (km) Temperature 

Rocky Crust 0 to 40 0

Upper Mantle 40 to 150 870

Mantle 400 to 650 870

Inner Mantel 650 to 2700 870

Molten Outer Core 2890 to 5150 4300

Inner Core 5150 to 6378 7200

Source: http://www.enchantedlearning.com/sub...h/Inside.shtml

[Hide Solution]

; average temperature approximately 

[T] The density of Earth’s layers is displayed in the table below. Using your calculator or a computer program, find the best-fit
quadratic equation to the density. Using this equation, find the total mass of Earth.

Layer Depth from center (km) Density 

Inner Core 0 12.95

Outer Core 1228 11.05

Mantle 3488 5.00

Upper Mantle 6338 3.90

Crust 6378 2.55

Source: http://hyperphysics.phy-astr.gsu.edu...rthstruct.html

The following problems concern the Theorem of Pappus (see Moments and Centers of Mass for a refresher), a method for
calculating volume using centroids. Assuming a region , when you revolve around the -axis the volume is given by 

, and when you revolve around the -axis the volume is given by , where  is the area of . Consider
the region bounded by  and above .

Find the volume when you revolve the region around the -axis.

[Hide Solution]

(0, 0, )8
5

z = ( + )x2 y2
− −−−−−−−

√ + + = zz2 x2 y2

1100 6000

400 lb/ft3

1.452π×1015

400 lb/ft3

100

3
0

Co

y = −1.238 × +0.001196 −3.666x+720810−7x3 x2 C2800o

(g/c )m3

R x

= 2πAVx ȳ y = 2πAVy x̄ A R

+ = 1x2 y2 y = x+1

x
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Find the volume when you revolve the region around the -axis.

Glossary

Jacobian

the Jacobian  in two variables is a  determinant:

the Jacobian  in three variables is a  determinant:

one-to-one transformation
a transformation  defined as  is said to be one-to-one if no two points map to the same image point

planar transformation
a function  that transforms a region  in one plane into a region  in another plane by a change of variables

transformation
a function that transforms a region GG in one plane into a region RR in another plane by a change of variables

This page titled 4.7: Change of Variables in Multiple Integrals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or
curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

15.7: Change of Variables in Multiple Integrals by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

π

3

y

J(u, v) 2 ×2

J(u, v) = ;
∣

∣

∣
∣

∂x
∂u

∂y

∂u

∂x
∂v

∂y

∂v

∣

∣

∣
∣

J(u, v,w) 3 ×3

J(u, v,w) =

∣

∣

∣
∣
∣
∣

∂x
∂u

∂y

∂u
∂z
∂u

∂x
∂v

∂y

∂v
∂z
∂v

∂x
∂w

∂y

∂w
∂z
∂w

∣

∣

∣
∣
∣
∣

T : G→ R T (u, v) = (x, y)

T G R
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4.8: Multiple Integration (Exercises)

4.1: Iterated Integrals and Area 

 

In Exercises 1-6, a graph of a planar region  is given. Give the iterated integrals, with both orders of integration 
and , that give the area of . Evaluate one of the iterated integrals to find the area.

1. 

Answer:

2. 

3. 

Answer:

4. 

R dydx

dxdy R

Area = 9 units2

Area = 4 units2
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5. 

Answer:

6. 

In Exercises 7-12, iterated integrals are given that compute the area of a region R in the -plane. Sketch the region R, and
give the iterated integral(s) that give the area of R with the opposite order of integration.

7. 

Answer:

  

8. 

9. 

Answer:

Area =
7

15
units2

xy

dy dx∫
2

−2
∫

4−x2

0

dy dx∫
2

−2
∫

4−x2

0
= dx dy∫

4

0
∫

4−y√

− 4−y√

dy dx∫
1

0
∫

5−5x2

5−5x

dx dy∫
2

−2
∫

2 4−y2√

0
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10. 

11. 

Answer:

  

12. 

In exercises 13 - 18, evaluate the iterated integrals by choosing the order of integration.

13) 

Answer:

14) 

15) 

Answer:

dx dy∫
2

−2
∫

2 4−y2√

0
= dy dx∫

4

0
∫

1

2
16−x2√

− 1
2

16−x2√

dy dx∫
3

−3
∫

9−x2√

− 9−x2√

dx dy+ dx dy∫
1

0
∫

y√

− y√

∫
4

1
∫

y√

y−2

dx dy+ dx dy∫
1

0
∫

y√

− y√

∫
4

1
∫

y√

y−2
= dy dx∫

2

−1
∫

x+2

x2

dy dx∫
1

−1
∫

(1−x)/2

(x−1)/2

sin(2x) cos(3y)dx dy∫
π

0
∫

π/2

0

0

[cotx+tan(2y)] dx dy∫
π/8

π/12
∫

π/3

π/4

[ sin(lnx) + cos(lny)] dx dy∫
e

1
∫

e

1

1

x

1

y

(e−1)(1 +sin1 −cos 1)

https://libretexts.org/
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16) 

17) 

Answer:

18) 

 

Answer:

19. 

Answer:

20. 

Answer:

21. 

Answer:

In exercises 22 - 25, find the average value of the function over the given rectangles.

22) , 

Answer:

23) , 

24) , 

Answer:
.

25) , 

 

4.2: Double Integration and Volume 

1) The region  bounded by  and  as given in the following figure.

dx dy∫
e

1
∫

e

1

sin(lnx) cos(lny)

xy

( + ) dy dx∫
2

1
∫

2

1

lny

x

x

2y+1

ln( )+2(ln2 −ln23
4

5
3

)2

x dy dx∫
1

0
∫

2

1
ex+4y

( −1)1
4
e4 e4

(6 +4xy−3 )dy dx∫
2

−3
∫

5

2
x2 y2

−480

( y−y+2)dy dx∫
2

1
∫

x

1
x2

34

15

(cosx siny)dx dy∫
π

0
∫

y

0

π

2

f(x, y) = −x+2y R = [0, 1] ×[0, 1]

1
2

f(x, y) = +2x4 y3 R = [1, 2] ×[2, 3]

f(x, y) = sinhx+sinhy R = [0, 1] ×[0, 2]

(2  cosh1 +cosh2 −3)1
2

f(x, y) = arctan(xy) R = [0, 1] ×[0, 1]

D y = ,  y = +1,  x = 0,x3 x3 x = 1
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a. Classify this region as vertically simple (Type I) or horizontally simple (Type II).

Type:
Type I but not Type II

b. Find the area of the region .

c. Find the average value of the function  on the region graphed in the previous exercise.

Answer:

2) The region  bounded by , and  as given in the following figure.

a. Classify this region as vertically simple (Type I) or horizontally simple (Type II).

Type:
Type I but not Type II

b. Find the area of the region .

Answer:

c. Find the average value of the function  on the region .

3) The region  bounded by  and  as given in the following figure.

D

f(x, y) = 3xy

27
20

D y = sinx,  y = 1 +sinx,  x = 0 x = π

2

D

π

2
units2

f(x, y) = cosx D

D x = −1y2 x = 1 −y2
− −−−−

√
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https://math.libretexts.org/@go/page/83256?pdf


4.8.6 https://math.libretexts.org/@go/page/83256

a. Classify this region as vertically simple (Type I) or horizontally simple (Type II).

Type:
Type II but not Type I

b. Find the volume of the solid under the graph of the function  and above the region .

Answer:

4) The region  bounded by  and  as given in the following figure.

a. Classify this region as vertically simple (Type I) or horizontally simple (Type II).

Type:

f(x, y) = xy+1 D

(8 +3π)1
6

units3

D y = 0,  x = −10 +y, x = 10 −y
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Type II but not Type I

b. Find the volume of the solid under the graph of the function  and above the region in the figure from the
previous exercise.

Answer:

5) The region  bounded by  as given in the following figure.

Classify this region as vertically simple (Type I) or horizontally simple (Type II).

Type:
Type I and Type II

6) The region  bounded by  and  as given in the following figure.

Classify this region as vertically simple (Type I) or horizontally simple (Type II).

Type:
Type I and Type II

7) Let  be the region bounded by the curves of equations  and  and the -axis. Explain why  is neither of
Type I nor II.

Answer:
The region  is not of Type I: it does not lie between two vertical lines and the graphs of two continuous functions 
and . The region is not of Type II: it does not lie between two horizontal lines and the graphs of two continuous
functions  and .

8) Let  be the region bounded by the curves of equations  and . Explain why  is neither of Type I
nor II.

f(x, y) = x+y

1000
3

units3

D y = 0,  x = y−1,  x = π
2

D y = 0 y = −1x2

D y = cosx y = 4 −x2 x D

D (x)g1

(x)g2

(y)h1 (y)h2

D y = x,  y = −x y = 2 −x2 D
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In exercises 9 - 14, evaluate the double integral  over the region . Graph region D.

9)  and

Answer:

10)  and

11)  and

Answer:

12)  and  is the triangular region with vertices , and 

13)  and  is the triangular region with vertices , and 

Answer:

14)  and

In exercises 15 - 20, evaluate the iterated integrals.

15) 

Answer:

16) 

17) 

Answer:

18) 

19) 

Answer:

20) 

f(x,y)dA∬
D

D

f(x, y) = 1

D = {(x, y)| 0 ≤ x ≤ ,   sinx ≤ y ≤ 1 +sinx}π
2

π

2

f(x, y) = 2

D = {(x, y)| 0 ≤ y ≤ 1,  y−1 ≤ x ≤ arccosy}

f(x, y) = xy

D = {(x, y)| −1 ≤ y ≤ 1,   −1 ≤ x ≤ }y2 1 −y2
− −−−−

√

0

f(x, y) = siny D (0, 0),  (0, 3) (3, 0)

f(x, y) = −x+1 D (0, 0),  (0, 2) (2, 2)

2
3

f(x, y) = 2x+4y

D = {(x, y)| 0 ≤ x ≤ 1,   ≤ y ≤ +1}x3 x3

(xy+1)dy dx∫
1

0
∫

2 +1x√

2 x√

41
20

(x+ )dy dx∫
3

0
∫

3x

2x
y2

(8uv)dv du∫
2

1
∫

−u

− −1u2

−63

(v+lnu)dv du∫
e2

e

∫
2

ln u

4 dx dy∫
1/2

0
∫

1−4y2√

− 1−4y2√

π

(2x+4 )dx dy∫
1

0
∫

1−y2√

− 1−y2√
y3
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21) Let  be the region bounded by , and the - and -axes.

a. Show that  by dividing the region  into two regions of Type I.

b. Evaluate the integral 

22) Let  be the region bounded by , and the -axis.

a. Show that  by dividing the region  into two regions of Type I,

where .

b. Evaluate the integral 

23) Let  be the region bounded by , , and .

a. Show that  by dividing the region  into two regions of Type II, where 

.

b. Evaluate the integral 

Answer:
a. Answers may vary; 
b. 

24) The region  bounded by , and  is shown in the following figure. Find the area  of the
region .

25) The region  bounded by , and  is shown in the following figure. Find the area  of the
region .

Answer:

D y = 1 − ,  y = 4 −x2 x2 x y

x dA = x dy dx+ x dy dx∬
D

∫
1

0
∫

4−x2

1−x2

∫
2

1
∫

4−x2

0
D

x dA.∬
D

D y = 1,  y = x,  y = lnx x

dA = dy dx+ dy dx∬
D

y2 ∫
0

−1
∫

2−x2

−x

y2 ∫
1

0
∫

2−x2

x

y2 D

D = {(x, y) | y ≥ x, y ≥ −x,  y ≤ 2 − }x2

dA.∬
D

y2

D y = x2 y = x+2 y = −x

x dA = x dx dy+ x dx dy∬
D

∫
1

0
∫

y√

−y

∫
4

1
∫

y√

y−2
D

D = {(x, y) | y ≥ ,  y ≥ −x,  y ≤ x+2}x2

x dA.∬
D

7
3

D x = 0, y = +1x5 y = 3 −x2 A(D)
D

D y = cosx,  y = 4 +cosx x = ± π

3
A(D)

D
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26) Find the area  of the region .

27) Let  be the region bounded by , and the -axis. Find the area  of the region .

Answer:

28) Find the average value of the function  on the triangular region with vertices , and .

29) Find the average value of the function  on the triangular region with vertices , and .

Answer:
The average value of  on this triangular region is 

In exercises 30 - 33, change the order of integration and evaluate the integral.

30) 

31) 

Answer:

32) 

33) 

Answer:

34)   a. 

b. 

35) The region  is shown in the following figure. Evaluate the double integral  by using the easier order of

integration.

8π
3

A(D) D = {(x, y)| y ≥ 1 − , y ≤ 4 − ,  y ≥ 0,  x ≥ 0}x2 x2

D y = 1,  y = x,  y = lnx x A(D) D

(e− )3
2

units2

f(x, y) = siny (0, 0),  (0, 3) (3, 0)

f(x, y) = −x+1 (0, 0),  (0, 2) (2, 2)

f .1
3

sinx dy dx∫
π/2

−1
∫

x+1

0

x dy dx∫
1

0
∫

1−x

x−1

x dy dx = x dx dy+ x dx dy =∫
1

0
∫

1−x

x−1
∫

0

−1
∫

y+1

0
∫

1

0
∫

1−y

0

1

3

dx dy∫
0

−1
∫

y+1√

− y+1√

y2

y dx dy∫
1/2

−1/2
∫

+1y2√

− +1y2√

y dx dy = y dy dx = 0∫
1/2

−1/2
∫

+1y2√

− +1y2√
∫

2

1
∫

−1x2√

− −1x2√

 dx dy∫
4

0
∫

4

y

e−x2

 dy dx∫
4

0
∫

2

x√

1

1 +2y3

D ( +y)dA∬
D

x2
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36) The region  is shown in the following figure. Evaluate the double integral  by using the easier order of

integration.

Answer:

37) Find the volume of the solid under the surface  and above the region bounded by  and .

38) Find the volume of the solid under the plane  and above the region determined by  and .

Answer:

39) Find the volume of the solid under the plane  and above the region bounded by , and 
.

40) Find the volume of the solid under the surface  and above the plane region bounded by , and 
.

Answer:

41) Let  be a positive, increasing, and differentiable function on the interval . Show that the volume of the solid under the
surface  and above the region bounded by , and  is given by .

42) Let  be a positive, increasing, and differentiable function on the interval  and let  be a positive real number. Show that
the volume of the solid under the surface  and above the region bounded by , and 
is given by 

43) Find the volume of the solid situated in the first octant and determined by the planes , , and 
.

44) Find the volume of the solid situated in the first octant and bounded by the planes , , and .
Graph the solid and the region of integration.

Answer:

45) Find the volume of the solid bounded by the planes , and .

46) Find the volume of the solid bounded by the planes , and 

Answer:

D ( − )dA∬
D

x2 y2

( − )dA = ( − )dx dy =∬
D

x2 y2 ∫
1

−1
∫

1−y4

−1y4
x2 y2 464

4095

z = 2x+y2 y = x5 y = x

z = 3x+y y = x7 y = x

4
5

units3

z = 3x+y x = tany,  x = −tany
x = 1

z = x3 x = siny,  x = −siny
x = 1

5π
32

units3

g [a, b]
z = (x)g′ y = 0,  y = g(x),  x = a x = b ( (b) − (a))1

2
g2 g2

g [a, b] k

z = (x)g′ y = g(x),  y = g(x) +k,  x = a x = b

k(g(b) −g(a)).

z = 2 z = 0,  x+y = 1,  x = 0
y = 0

x+2y = 1 x = 0,  z = 4 z = 0

1 units3

x+y = 1,  x−y = 1,  x = 0,  z = 0 z = 10

x+y = 1,  x−y = 1,  x+y = −1 x−y = −1,  z = 1 z = 0

2 units3
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47) Let  and  be the solids situated in the first octant under the planes  and  respectively, and
let  be the solid situated between , and .

a. Find the volume of the solid .
b. Find the volume of the solid .
c. Find the volume of the solid  by subtracting the volumes of the solids  and .

48) Let  and  be the solids situated in the first octant under the planes  and  respectively, and
let  be the solid situated between , and .

a. Find the volume of the solid .
b. Find the volume of the solid .
c. Find the volume of the solid  by subtracting the volumes of the solids  and .

Answer:
a.  
b.  
c. 

49) Let  and  be the solids situated in the first octant under the plane  and under the sphere ,
respectively. If the volume of the solid  is  determine the volume of the solid  situated between  and  by subtracting the
volumes of these solids.

50) Let  and  be the solids situated in the first octant under the plane  and bounded by the cylinder 
, respectively.

a. Find the volume of the solid .
b. Find the volume of the solid .
c. Find the volume of the solid  situated between  and  by subtracting the volumes of the solids  and . Graph solid S.

Answer:
a.  
b.  
c. 

51) Find the volume of the solid in the first octant bounded by  , , . Graph the solid and the region of
integration. 

Answer: 

52) Find the volume V of the solid S bounded by the three coordinate planes, bounded above by the plane , and
bounded below by the plane . Graph the solid and the region of integration.

53) [T] The Reuleaux triangle consists of an equilateral triangle and three regions, each of them bounded by a side of the triangle
and an arc of a circle of radius s centered at the opposite vertex of the triangle. Show that the area of the Reuleaux triangle in the
following figure of side length  is .

S1 S2 x+y+z = 1 x+y+2z = 1
S ,   ,  x = 0S1 S2 y = 0

S1

S2

S S1 S2

S1 S2 2x+2y+z = 2 x+y+z = 1
S ,   ,  x = 0S1 S2 y = 0

S1

S2

S S1 S2

1
3

units3

1
6

units3

1
6

units3

S1 S2 x+y+z = 2 + + = 4x2 y2 z2

S2
4π
3

S S1 S2

S1 S2 x+y+z = 2
+ = 4x2 y2

S1

S2

S S1 S2 S1 S2

4
3

units3

2π units3

6π−4
3

units3

z = 4 −y2
− −−−−

√ x = 2 y = 2

2π

x+y+z = 2
z = x+y

s (π− )s2

2
3
–

√
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54) [T] Show that the area of the lunes of Alhazen, the two blue lunes in the following figure, is the same as the area of the right
triangle  The outer boundaries of the lunes are semicircles of diameters  and  respectively, and the inner boundaries
are formed by the circumcircle of the triangle .

4.3: Double Integrals in Polar Coordinates 

 

Terms and Concepts

1. When evaluating  using polar coordinates,  is replaced with _______ and  is replaced with _______.

Answer:
 is replaced with  and  is replaced with .

2. Why would one be interested in evaluating a double integral with polar coordinates?

Defining Polar Regions

In exercises 3 - 6, express the region  in polar coordinates.

3)  is the region of the disk of radius 2 centered at the origin that lies in the first quadrant.

Answer:

4)  is the region of the disk of radius 3 centered at the origin.

5)  is the region between the circles of radius 4 and radius 5 centered at the origin that lies in the second quadrant.

Answer:

6)  is the region bounded by the -axis and .

7)  is the region bounded by the -axis and .

Answer:

8) 

9) 

Answer:

In exercises 10 - 15, the graph of the polar rectangular region  is given. Express  in polar coordinates.

ABC. AB AC

ABC

∫ f(x, y)dA∫
R

f(x, y) dA

f(x, y) f(r cosθ, r sinθ) dA r dr dθ

R

R

R = {(r, θ) | 0 ≤ r ≤ 2,  0 ≤ θ ≤ }π
2

R

R

R = {(r, θ) | 4 ≤ r ≤ 5,   ≤ θ ≤ π}π

2

R y x = 1 −y2
− −−−−

√

R x y = 2 −x2
− −−−−

√

R = {(r, θ) | 0 ≤ r ≤ ,  0 ≤ θ ≤ π}2
–

√

R = {(x, y) | + ≤ 4x}x2 y2

R = {(x, y) | + ≤ 4y}x2 y2

R = {(r, θ) | 0 ≤ r ≤ 4  sinθ,  0 ≤ θ ≤ π}

D D
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10) 

11) 

Answer:

12)

D = {(r, θ) | 3 ≤ r ≤ 5,   ≤ θ ≤ }π

4
π

2
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13) 

Answer:

14) In the following graph, the region  is situated below  and is bounded by , and .

15) In the following graph, the region  is bounded by  and .

Answer:

D = {(r, θ) | 3 ≤ r ≤ 5,   ≤ θ ≤ }3π
4

5π
4

D y = x x = 1,  x = 5 y = 0

D y = x y = x2

D = {(r, θ) | 0 ≤ r ≤ tanθ  sec θ,  0 ≤ θ ≤ }π
4
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Evaluating Polar Double Integrals

In exercises 16 - 25, evaluate the double integral  over the polar rectangular region .

16) , 

17) , 

Answer:

18) 

19) 

Answer:

20) , where .

21) , where .

Answer:

22) , where 

23) , where 

Answer:

24) 

25) 

Answer:

Converting Double Integrals to Polar Form

In exercises 26 - 29, the integrals have been converted to polar coordinates. Verify that the identities are true and choose the
easiest way to evaluate the integrals, in rectangular or polar coordinates.

26) 

27) 

Answer:

28) 

f(x,y)dA∬
R

R

f(x, y) = +x2 y2 R = {(r, θ) | 3 ≤ r ≤ 5,  0 ≤ θ ≤ 2π}

f(x, y) = x+y R = {(r, θ) | 3 ≤ r ≤ 5,  0 ≤ θ ≤ 2π}

0

f(x, y) = +xy,  R = {(r, θ) | 1 ≤ r ≤ 2,  π ≤ θ ≤ 2π}x2

f(x, y) = + ,  R = {(r, θ) | 1 ≤ r ≤ 2,   ≤ θ ≤ 2π}x4 y4 3π
2

63π
16

f(x, y) = +x2 y2− −−−−−√3 R = {(r, θ) | 0 ≤ r ≤ 1,   ≤ θ ≤ π}π

2

f(x, y) = +2 +x4 x2y2 y4 R = {(r, θ) | 3 ≤ r ≤ 4,   ≤ θ ≤ }π

3
2π
3

3367π
18

f(x, y) = sin(arctan )
y

x
R = {(r, θ) | 1 ≤ r ≤ 2,   ≤ θ ≤ }π

6
π

3

f(x, y) = arctan( )y
x

R = {(r, θ) | 2 ≤ r ≤ 3,   ≤ θ ≤ }π
4

π
3

35π2

576

[1 +2  arctan( )] dA,  R = {(r, θ) | 1 ≤ r ≤ 2,   ≤ θ }∬
R

e +x2 y2 y

x

π

6

π

3

( + +2 + ) arctan( ) dA,  R = {(r, θ) | 1 ≤ r ≤ 2,   ≤ θ ≤ }∬
R

e +x2 y2

x4 x2y2 y4 y

x

π

4

π

3

(21 −e+ )7
576

π2 e4

( + )dy dx = dr dθ∫
2

1
∫

x

0
x2 y2 ∫

π

4

0
∫

2  sec θ

sec θ
r3

dy dx = r  cosθ dr dθ∫
3

2
∫

x

0

x

+x2 y2
− −−−−−

√
∫

π/4

0
∫

3 sec θ

2 sec θ

ln(1 + )5
2

2
–

√

dy dx =  dr dθ∫
1

0
∫

x

x2

1

+x2 y2
− −−−−−

√
∫

π/4

0
∫

tan θ  sec θ

0
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29) 

Answer:

In exercises 30 - 37, draw the region of integration, , labeling all limits of integration, convert the integrals to polar
coordinates and evaluate them.

30) 

31) 

Answer:

32) 

33) 

Answer:

34) 

35) 

Answer:

36) 

37) 

Answer:

38) Evaluate the integral  where  is the region bounded by the polar axis and the upper half of the cardioid 

.

39) Find the area of the region  bounded by the polar axis and the upper half of the cardioid .

dy dx = r  sinθ dr dθ∫
1

0
∫

x

x2

y

+x2 y2− −−−−−√
∫

π/4

0
∫

tan θ  sec θ

0

(2 − )1
6

2
–

√

R

( + ) dx dy∫
3

0
∫

9−y2√

0
x2 y2

dx dy∫
2

0
∫

4−y2√

− 4−y2√
( + )x2 y2 2

dr dθ =∫
π

0
∫

2

0
r5 32π

3

(x+y) dy dx∫
1

0
∫

1−x2√

0

sin( + ) dy dx∫
4

0
∫

16−x2√

− 16−x2√
x2 y2

r  sin( ) dr dθ = π  8∫
π/2

−π/2
∫

4

0
r2 sin2

dy dx∫
5

0
∫

25−x2√

− 25−x2√
+x2 y2

− −−−−−
√

(2y−x)dx dy∫
4

−4
∫

0

− 16−y2√

(2r sinθ−r cosθ) r dr dθ =∫

3π

2

π

2

∫
4

0

128

3

(x+y)dx dy∫
2

0
∫

8−y2√

y

(x+5)dy dx+ (x+5)dy dx+ (x+5)dy dx∫
−1

−2
∫

4−x2√

0
∫

1

−1
∫

4−x2√

1−x2√
∫

2

1
∫

4−x2√

0

(r cosθ+5) r dr dθ =∫
π

0
∫

2

1

15π

2

r dA∬
D

D

r = 1 +cosθ

D r = 1 +cosθ
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Answer:

40) Evaluate the integral  where  is the region bounded by the part of the four-leaved rose  situated in the

first quadrant (see the following figure).

41) Find the total area of the region enclosed by the four-leaved rose  (see the figure in the previous exercise).

Answer:

42) Find the area of the region  which is the region bounded by , , , and .

43) Find the area of the region , which is the region inside the disk  and to the right of the line .

Answer:

44) Determine the average value of the function  over the region  bounded by the polar curve ,
where  (see the following graph).

45) Determine the average value of the function  over the region  bounded by the polar curve ,
where  (see the following graph).

3π
4

r dA,∬
D

D r = sin2θ

r = sin2θ

π

2

D y = 4 −x2
− −−−−

√ x = 3
–

√ x = 2 y = 0

D + ≤ 4x2 y2 x = 1

(4π−3 )1
3

3
–

√

f(x, y) = +x2 y2 D r = cos 2θ
− ≤ θ ≤π

4
π

4

f(x, y) = +x2 y2− −−−−−
√ D r = 3 sin2θ

0 ≤ θ ≤ π

2
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Answer:

46) Find the volume of the solid situated in the first octant and bounded by the paraboloid  and the planes 
, and .

47) Find the volume of the solid bounded by the paraboloid  and the plane .

Answer:

48)

1. Find the volume of the solid  bounded by the cylinder  and the planes  and .
2. Find the volume of the solid  outside the double cone  inside the cylinder , and above the plane 

.
3. Find the volume of the solid inside the cone  and below the plane  by subtracting the volumes of the solids 

 and .

49)

1. Find the volume of the solid  inside the unit sphere  and above the plane .
2. Find the volume of the solid  inside the double cone  and above the plane .
3. Find the volume of the solid outside the double cone  and inside the sphere .

Answer:
a. ; b. ; c. 

In Exercises 50-51, special double integrals are presented that are especially well suited for evaluation in polar coordinates.

50) The surface of a right circular cone with height  and base radius  can be described by the equation 

, where the tip of the cone lies at  and the circular base lies in the -plane, centered at the

origin. 

Confirm that the volume of a right circular cone with height  and base radius  is  by evaluating  in

polar coordinates.

51) Consider  

(a) Why is this integral difficult to evaluate in rectangular coordinates, regardless of the region ? 

16
3π

z = 1 −4 −4x2 y2

x = 0,  y = 0 z = 0

z = 2 −9 −9x2 y2 z = 1

π

18

S1 + = 1x2 y2 z = 0 z = 1
S2 = +z2 x2 y2 + = 1x2 y2

z = 0
= +z2 x2 y2 z = 1

S1 S2

S1 + + = 1x2 y2 z2 z = 0
S2 (z−1 = +)2 x2 y2 z = 0

(z−1 = +)2 x2 y2 + + = 1x2 y2 z2

2π
3

π

3
π

3

h a

f(x, y) = h−h +x2

a2

y2

a2

− −−−−−
√ (0, 0,h) xy

h a V = π h1
3

a2 ∫ f(x, y)dA∫
R

∫ dA.∫
R

e−( + )x2 y2

R
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(b) Let  be the region bounded by the circle of radius  centered at the origin. Evaluate the double integral using polar
coordinates. 
(c) Take the limit of your answer from (b), as . What does this imply about the volume under the surface of  over
the entire -plane?

For the following two exercises, consider a spherical ring, which is a sphere with a cylindrical hole cut so that the axis of the
cylinder passes through the center of the sphere (see the following figure).

52) If the sphere has radius 4 and the cylinder has radius 2 find the volume of the spherical ring.

53) A cylindrical hole of diameter 6 cm is bored through a sphere of radius 5 cm such that the axis of the cylinder passes through
the center of the sphere. Find the volume of the resulting spherical ring.

Answer:

54) Find the volume of the solid that lies under the double cone , inside the cylinder , and above the
plane .

55) Find the volume of the solid that lies under the paraboloid , inside the cylinder  and above the plane 
.

Answer:

56) Find the volume of the solid that lies under the plane  and above the disk .

57) Find the volume of the solid that lies under the plane  and above the unit disk .

Answer:

58) A radial function  is a function whose value at each point depends only on the distance between that point and the origin of
the system of coordinates; that is, , where . Show that if  is a continuous radial function, then

and , with  and .

59) Use the information from the preceding exercise to calculate the integral  where  is the unit disk.

Answer:

60) Let  be a continuous radial function defined on the annular region 

, where , , and  is a differentiable function.

R a

a → ∞ e−( + )x2 y2

xy

 256π
3

cm3

= 4 +4z2 x2 y2 + = xx2 y2

z = 0

z = +x2 y2 + = 1x2 y2

z = 0

π

2

x+y+z = 10 + = 4xx2 y2

2x+y+2z = 8 + = 1x2 y2

4π

f

f(x, y) = g(r) r = +x2 y2− −−−−−
√ f

f(x, y)dA = ( − )[G( ) −G( )],  where  (r) = rg(r)∬
D

θ2 θ1 R2 R1 G′ (4.8.1)

(x, y) ∈ D = {(r, θ) | ≤ r ≤ ,  0 ≤ θ ≤ 2π}R1 R2 0 ≤ <R1 R2 0 ≤ < ≤ 2πθ1 θ2

( + dA,∬
D

x2 y2)3 D

π

4

f(x, y) =
(r)F ′

r
D = {(r, θ) | ≤ r ≤ ,  0 ≤ θ ≤ 2π}R1 R2 r = +x2 y2− −−−−−√ 0 < <R1 R2 F
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Show that 

61) Apply the preceding exercise to calculate the integral  where  is the annular region between the circles

of radii 1 and 2 situated in the third quadrant.

Answer:

62) Let  be a continuous function that can be expressed in polar coordinates as a function of  only; that is, , where
, with  and .

Show that , where  is an antiderivative of .

63) Apply the preceding exercise to calculate the integral  where 

Answer:

64) Let  be a continuous function that can be expressed in polar coordinates as a function of  only; that is ,
where  with  and . Show that

where  and  are antiderivatives of  and , respectively.

65) Evaluate  where .

Answer:

66) A spherical cap is the region of a sphere that lies above or below a given plane.

a. Show that the volume of the spherical cap in the figure below is .

b. A spherical segment is the solid defined by intersecting a sphere with two parallel planes. If the distance between the planes is 
show that the volume of the spherical segment in the figure below is .

f(x, y)dA = 2π[F ( ) −F ( )].∬
D

R2 R1

dx dy∬
D

e +x2 y2√

+x2 y2− −−−−−
√

D

πe(e−1)1
2

f θ f(x, y) = h(θ)
(x, y) ∈ D = {(r, θ) | ≤ r ≤ ,   ≤ θ ≤ }R1 R2 θ1 θ2 0 ≤ <R1 R2 0 ≤ < ≤ 2πθ1 θ2

f(x, y)dA = ( − )[H( ) −H( )]∬
D

1

2
R2

2 R2
1 θ2 θ1 H h

dA,∬
D

y2

x2
D = {(r, θ) | 1 ≤ r ≤ 2,   ≤ θ ≤ }.π

6
π

3

−3
–

√ π

4

f θ f(x, y) = g(r)h(θ)
(x, y) ∈ {(r, θ) | ≤ r ≤ ,   ≤ θ ≤ }R1 R2 θ1 θ2 0 ≤ <R1 R2 0 ≤ < ≤ 2πθ1 θ2

f(x, y)dA = [G( ) −G( )] [H( ) −H( )],∬
D

R2 R1 θ2 θ1 (4.8.2)

G H g h

arctan( ) dA,∬
D

y

x
+x2 y2

− −−−−−
√ D = {(r, θ) | 2 ≤ r ≤ 3,   ≤ θ ≤ }π

4
π
3

133
864

π2

πh(3 + )1
6

a2 h2

h

πh(3 +3 + )1
6

a2 b2 h2
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67) In statistics, the joint density for two independent, normally distributed events with a mean  and a standard distribution 

is defined by . Consider , the Cartesian coordinates of a ball in the resting position after it was
released from a position on the z-axis toward the -plane. Assume that the coordinates of the ball are independently normally
distributed with a mean  and a standard deviation of  (in feet). The probability that the ball will stop no more than  feet
from the origin is given by

where  is the disk of radius  centered at the origin. Show that

68) The double improper integral

may be defined as the limit value of the double integrals  over disks  of radii  centered at the origin, as 

increases without bound; that is,

Use polar coordinates to show that 

69) Show that  by using the relation

 

4.4: Triple Integrals 
 

Terms and Concepts

1. The strategy for establishing bounds for triple integrals is "from ________ to ________, then from ________ to ________ and
then from ________ to ________."

μ = 0 σ

p(x, y) = 1
2πσ2 e

−
+x2 y2

2σ2 (X,Y )

xy

μ = 0 σ a

P [ + ≤ ] = p(x, y)dy dx,X2 Y 2 a2 ∬
D

(4.8.3)

D a

P [ + ≤ ] = 1 − .X2 Y 2 a2 e− /2a2 σ2

(4.8.4)

dy dx∫
∞

−∞
∫

∞

−∞
e− + /2x2 y2

(4.8.5)

dA∬
D

e− + /2x2 y2

Da a a

dy dx = dA.∫
∞

−∞
∫

∞

−∞
e− + /2x2 y2

lim
a→∞

∬
Da

e− + /2x2 y2

(4.8.6)

dy dx = 2π.∫
∞

−∞
∫

∞

−∞
e− + /2x2 y2

dx =∫
∞

−∞
e− /2x2

2π
−−

√

dy dx =( dx)( dy) .∫
∞

−∞
∫

∞

−∞
e− + /2x2 y2

∫
∞

−∞
e− /2x2

∫
∞

−∞
e− /2y2

(4.8.7)
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Answer:
We integrate from surface to surface, then from curve to curve and then from point to point.

2. Give an informal interpretation of what  means.

Answer:

 = Volume of the solid region 

3. Give two uses of triple integration.

Answer:
To compute total mass or average density of a solid object, given a density function or to compute the average
temperature in a solid region or object.

4. If an object has a constant density  and a volume , what is its mass?

Answer:
It's mass is .

Volume of Solid Regions

In Exercises 5-8, two surfaces  and  and a region  in the -plane are given. Set up and evaluate the triple
integral that represents the volume between these surfaces over .

5.  
 is the square with corners  and .

Answer:

V =  

6.  
 is the square with corners  and .

7.  
 is the triangle with corners  and .

Answer:

V =   

8.  
 is the circle .

In Exercises 9-16, a solid  is described by its bounding surfaces. Graph the solid. Set up the triple integral that gives the
volume of  in the indicated order(s) of integration. Evaluate the triple integral to find this volume if instructed.

9.  is bounded by the coordinate planes and . 
Evaluate the triple integral with order . 
 

Answer:

V =  

dV∭
Q

dV∭
Q

Q

δ V

δV

(x, y)f1 (x, y)f2 R xy

R

(x, y) = 8 − − , (x, y) = 2x+y;f1 x2 y2 f2

R (−1, −1) (1, 1)

dz dy dx∫
1

−1
∫

1

−1
∫

8− −x2 y2

2x+y

=
88

3
units3

(x, y) = + , (x, y) = − − ;f1 x2 y2 f2 x2 y2

R (0, 0) (2, 3)

(x, y) = sinx cosy, (x, y) = cosx siny+2;f1 f2

R (0, 0), (π, 0) (π, π)

dz dy dx∫
π

0
∫

x

0
∫

cos x sin y+2

sin x cos y
= ( −π)π2 units3 ≈ 6.72801 units3

(x, y) = 2 +2 +3, (x, y) = 6 − − ;f1 x2 y2 f2 x2 y2

R + = 1x2 y2

D

D

D z = 2 − x−2y2
3

dz dy dx

dz dy dx∫
3

0
∫

1− x

3

0
∫

2− x−2y2
3

0
= 1 unit3
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10.  is bounded by the planes  and . 
Evaluate the triple integral with order . 
 

11.  is bounded by the planes  and by . 
Evaluate the triple integral with orders  and  to verify that you obtain the same volume either way. 
 

Answer:

V =   

V =  

12.  is bounded by the planes  and by . 
Do not evaluate any triple integral. Just set this one up. 
 

13.  is bounded by the planes  and . 
Evaluate the triple integral with orders  and  to verify that you obtain the same volume either way. 
 

Answer:

V =   

V =  

14.  is bounded by the plane  and by . 
Evaluate the triple integral with order . 
 

15.  is bounded by the coordinate planes and  and . 
Do not evaluate any triple integral. Which order would be easier to evaluate:  or ? Explain why. 
 

Answer:

V =  

V =  

The first one is easier since it only requires evaluation of a single integral, although both can be evaluated fairly easily.

16.  is bounded by the coordinate planes and by  and .
Evaluate the triple integral with order . 
 

Evaluating General Triple Integrals

In exercises 17 - 20, evaluate the triple integrals over the rectangular solid box .

17.  where 

Answer:

D y = 0, y = 2, x = 1, z = 0 z = (2 −x)/2
dx dy dz

D x = 0, x = 2, z = −y z = /2y2

dy dz dx dz dy dx

dy dz dx∫
2

0
∫

2

0
∫

−z

− 2z√
=

4

3
unit3

dz dy dx∫
2

0
∫

0

−2
∫

−y

y2

2

=
4

3
unit3

D y = 0, y = 9, x = 0 z = −9y2 x2
− −−−−−−

√

D x = 2, y = 1, z = 0 z = 2x+4y−4
dz dy dx dx dy dz

dz dy dx∫
2

0
∫

1

1−
x

2

∫
2x+4y−4

0
=

4

3
units3

dx dy dz∫
4

0
∫

1

z

4

∫
2

(z−4y+4)/2
=

4

3
units3

D z = 2y y = 4 −x2

dz dy dx

D y = 1 −x2 y = 1 −z2

dz dy dx dy dz dx

dz dy dx∫
1

0
∫

1−x2

0
∫

1−y√

0

dy dz dx+ dy dz dx∫
1

0
∫

x

0
∫

1−x2

0
∫

1

0
∫

1

x

∫
1−z2

0

D z = 1 −y/3 z = 1 −x

dx dy dz

B

(2x+3 +4 ) dV ,∭
B

y2 z3 B = {(x, y, z) | 0 ≤ x ≤ 1,  0 ≤ y ≤ 2,  0 ≤ z ≤ 3}

192
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18.  where 

19.  where 

Answer:

20.  where 

In Exercises 21 - 24, evaluate the triple integral.

21. 

Answer:

22. 

23. 

Answer:

24. 

Average Value of a Function

25. Find the average value of the function  over the parallelepiped determined by 
, and .

Answer:

26. Find the average value of the function  over the solid  situated in the first octant.

Approximating Triple Integrals

27. The midpoint rule for the triple integral  over the rectangular solid box  is a generalization of the midpoint

rule for double integrals. The region  is divided into subboxes of equal sizes and the integral is approximated by the triple
Riemann sum

where  is the center of the box  and  is the volume of each subbox. Apply the midpoint rule to approximate

over the solid  by using a partition of eight cubes of equal size. Round your
answer to three decimal places.

Answer:

(xy+yz+xz) dV ,∭
B

B = {(x, y, z) | 1 ≤ x ≤ 2,  0 ≤ y ≤ 2,  1 ≤ z ≤ 3}

(x cos y+z) dV ,∭
B

B = {(x, y, z) | 0 ≤ x ≤ 1,  0 ≤ y ≤ π,   −1 ≤ z ≤ 1}

0

(z sin x+ ) dV ,∭
B

y2 B = {(x, y, z) | 0 ≤ x ≤ π,  0 ≤ y ≤ 1,   −1 ≤ z ≤ 2}

(cosx siny sinz)dz dy dx∫
π/2

−π/2
∫

π

0
∫

π

0

8

(x+y+z)dz dy dx∫
1

0
∫

x

0
∫

x+y

0

(sin(yz))dx dy dz∫
π

0
∫

1

0
∫

z

0

π

(cosx siny sinz)dz dy dx∫
π2

π

∫
x3

x

∫
y2

−y2

f(x, y, z) = x+y+z

x = 0,  x = 1,  y = 0,  y = 3,  z = 0 z = 5

9
2

f(x, y, z) = xyz E = [0, 1] ×[0, 1] ×[0, 1]

f(x, y, z)dV∭
B

B

B

f( , , )ΔV ,∑
i=1

l

∑
j=1

m

∑
k=1

n

xī yj̄ zk̄

( , , )xī yj̄ zk̄ Bijk ΔV

dV∭
B

x2

B = {(x, y, z) | 0 ≤ x ≤ 1,  0 ≤ y ≤ 1,  0 ≤ z ≤ 1}
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28. [T] a. Apply the midpoint rule to approximate

over the solid  by using a partition of eight cubes of equal size. Round your
answer to three decimal places.

b. Use a CAS to improve the above integral approximation in the case of a partition of  cubes of equal size, where 
.

Applications

29. Suppose that the temperature in degrees Celsius at a point  of a solid  bounded by the coordinate planes and the plane
 is given by:

Find the average temperature over the solid.

Answer:
 C

30. Suppose that the temperature in degrees Fahrenheit at a point  of a solid  bounded by the coordinate planes and the
plane  is given by:

Find the average temperature over the solid.

31. If the charge density at an arbitrary point  of a solid  is given by the function , then the total charge inside

the solid is defined as the triple integral  Assume that the charge density of the solid  enclosed by the

paraboloids  and  is equal to the distance from an arbitrary point of  to the origin. Set up the
integral that gives the total charge inside the solid .

Answer:

Total Charge inside the Solid  

32. Show that the volume of a regular right hexagonal pyramid of edge length  is  by using triple integrals.

 

4.5: Triple Integrals in Cylindrical and Spherical Coordinates 

 

In exercises 1 - 8, evaluate the triple integrals  over the solid .

1. 

Answer:

2. 

f(x, y, z)dV∭
B

≈ ≈ 0.3135
16

dV∭
B

e−x2

B = {(x, y, z)|0 ≤ x ≤ 1,  0 ≤ y ≤ 1,  0 ≤ z ≤ 1}

n3

n = 3, 4, . . . , 10

(x, y, z) E

x+y+z = 5

T (x, y, z) = xz+5z+10

17.5∘

(x, y, z) E

x+y+z = 5

T (x, y, z) = x+y+xy

(x, y, z) E ρ(x, y, z)

ρ(x, y, z)dV .∭
E

E

x = 5 − −y2 z2 x = + −5y2 z2 E

E

E = dx dz dy∫
5√

− 5√
∫

5−y2√

− 5−y2√
∫

5− −y2 z2

+ −5y2 z2
+ +x2 y2 z2

− −−−−−−−−−
√

a
a3 3

–
√

2

f(x,y,z)dV∭
E

E

f(x, y, z) = z, E = {(x, y, z) | + ≤ 9, x ≤ 0, y ≤ 0, 0 ≤ z ≤ 1}x2 y2

9π
8

f(x, y, z) = x ,  E = {(x, y, z) | + ≤ 16,  x ≥ 0,  y ≤ 0,   −1 ≤ z ≤ 1}z2 x2 y2
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3. 

Answer:

4. 

5. 

Answer:

6. 

7. a. Let  be a cylindrical shell with inner radius  outer radius , and height  where  and . Assume that a
function  defined on  can be expressed in cylindrical coordinates as , where  and  are

differentiable functions. If  and , where  and  are antiderivatives of  and , respectively, show that 

b. Use the previous result to show that  where  is a cylindrical shell with

inner radius  outer radius , and height .

8. a. Let  be a cylindrical shell with inner radius  outer radius  and height  where  and . Assume that a
function  defined on  can be expressed in cylindrical coordinates as , where  and  are

differentiable functions. If  where  is an antiderivative of , show that 

 where  and  are antiderivatives of  and , respectively.

b. Use the previous result to show that  where  is a cylindrical shell with inner radius 

 outer radius , and height .

 

In exercises 9 - 12, the boundaries of the solid  are given in cylindrical coordinates.

a. Graph solid E

b. Express the region  in cylindrical coordinates.

c. Convert the integral  to cylindrical coordinates.

9.  is bounded by the right circular cylinder , the -plane, and the sphere .

Answer:

a. 

b. 

10.  is bounded by the right circular cylinder , the -plane, and the sphere .

11.  is located in the first octant and is bounded by the circular paraboloid , the cylinder , and the plane 
.

Answer:

f(x, y, z) = xy,  E = {(x, y, z) | + ≤ 1,  x ≥ 0,  x ≥ y,   −1 ≤ z ≤ 1}x2 y2

− 1
8

f(x, y, z) = + ,  E = {(x, y, z) | + ≤ 4,  x ≥ 0,  x ≤ y,  0 ≤ z ≤ 3}x2 y2 x2 y2

f(x, y, z) = ,  E = {(x, y, z) | 1 ≤ + ≤ 4,  y ≤ 0,  x ≤ y ,  2 ≤ z ≤ 3}e +x2 y2√ x2 y2 3
–

√

πe2

6

f(x, y, z) = ,  E = {(x, y, z) | 1 ≤ + ≤ 9,  y ≤ 0,  0 ≤ z ≤ 1}+x2 y2
− −−−−−

√ x2 y2

B a b c 0 < a < b c > 0
F B F (x, y, z) = f(r) +h(z) f h

(r)dr = 0∫
b

a

f̄ (0) = 0h̄ f̄ h̄ f h

F (x, y, z)dV = 2πc(b (b) −a (a)) +π( − ) (c).∭
B

f̄ f̄ b2 a2 h̄

(z+sin ) dx dy dz = 6 (π−2),∭
B

+x2 y2
− −−−−−

√ π2 B

π 2π 2

B a b c 0 < a < b c > 0
F B F (x, y, z) = f(r)g(θ)f(z) f ,  g, h

(r)dr = 0,∫
b

a

f
~

f
~

f

F (x, y, z)dV = [b (b) −a (a)][ (2π) − (0)][ (c) − (0)],∭
B

f
~

f
~

g~ g~ h
~

h
~

g~ h
~

g h

z sin dx dy dz = −12 ,∭
B

+x2 y2
− −−−−−

√ π2 B

π 2π 2

E

E

f(x, y, z)dV∭
E

E r = 4 sinθ rθ + = 16r2 z2

E = {(r, θ, z) | 0 ≤ θ ≤ π,  0 ≤ r ≤ 4 sinθ,  0 ≤ z ≤ }16 −r2
− −−−−−

√

f(r, θ, z)r dz dr dθ∫
π

0
∫

4 sin θ

0
∫

16−r2√

0

E r = cosθ rθ + = 9r2 z2

E z = 9 −3r2 r = 3
–

√
r(cosθ+sinθ) = 20 −z
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a. 

b. 

12.  is located in the first octant outside the circular paraboloid  and inside the cylinder  and is bounded also
by the planes  and .

 

In exercises 13 - 16, the function  and solid  are given.

a. Graph solid E

b. Express the solid  and the function  in cylindrical coordinates.

c. Convert the integral  into cylindrical coordinates and evaluate it.

13. , 

Answer:

c. 

14. 

15. 

Answer:

a. ;

b. 

16. 

 

In exercises 17 - 24, find the volume of the solid  whose boundaries are given in rectangular coordinates. Graph solid E.

17.  is above the -plane, inside the cylinder , and below the plane .

Answer:

18.  is below the plane  and inside the paraboloid .

19.  is bounded by the circular cone  and .

Answer:

20.  is located above the -plane, below , outside the one-sheeted hyperboloid , and inside the cylinder 
.

21.  is bounded by   and .

Answer:

22.  is located inside the sphere , above the -plane, and inside the circular cone .

23.  is located outside the circular cone  and inside the right circular cylinder .

E = {(r, θ, z) | 0 ≤ θ ≤ ,  0 ≤ r ≤ ,  9 − ≤ z ≤ 10 −r(cosθ+sinθ)}π

2
3
–

√ r2

f(r, θ, z)r dz dr dθ∫
π/2

0
∫

3√

0
∫

10−r(cos θ+sin θ)

9−r2

E z = 10 −2r2 r = 5
–

√
z = 20 θ = π

4

f E

E f

f(x, y, z)dV∭
E

f(x, y, z) = +x2 y2 E = {(x, y, z) | 0 ≤ + ≤ 9,  x ≥ 0,  y ≥ 0,  0 ≤ z ≤ x+3}x2 y2

+35

5
π35

8

f(x, y, z) = + ,  E = {(x, y, z)|0 ≤ + ≤ 4,  y ≥ 0,  0 ≤ z ≤ 3 −x}x2 y2 x2 y2

f(x, y, z) = x,  E = {(x, y, z) | 1 ≤ + ≤ 9,  0 ≤ x ≤ 1 − − }y2 z2 y2 z2

y = r  cosθ,  z = r  sinθ,  x = z,  E = {(r, θ, z) | 1 ≤ r ≤ 3,  0 ≤ θ ≤ 2π,  0 ≤ z ≤ 1 − },  f(r, θ, z) = zr2

zr dz dθ dr =∫
3

1
∫

2π

0
∫

1−r2

0

356π

3

f(x, y, z) = y,  E = {(x, y, z) | 1 ≤ + ≤ 9,  0 ≤ y ≤ 1 − − }x2 z2 x2 z2

E

E xy + = 1x2 y2 z = 1

π

E z = 1 z = +x2 y2

E z = +x2 y2− −−−−−
√ z = 1

π

3

E xy z = 1 + − = 1x2 y2 z2

+ = 2x2 y2

E z = 1 − −x2 y2 z = +x2 y2

π

4

E + + = 1x2 y2 z2 xy z = +x2 y2
− −−−−−

√

E + = (z−1x2 y2 )2 + = 1x2 y2
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Answer:

24.  is located outside the circular cone , above the -plane, below the circular paraboloid, and between the
planes  and .

 

25. [T] Use a computer algebra system (CAS) to graph the solid whose volume is given by the iterated integral in cylindrical

coordinates   Find the volume  of the solid. Round your answer to four decimal places.

Answer:

26. [T] Use a CAS to graph the solid whose volume is given by the iterated integral in cylindrical coordinates 

  Find the volume  of the solid. Round your answer to four decimal places.

27. Convert the integral  into an integral in cylindrical coordinates.

Answer:

28. Convert the integral  into an integral in cylindrical coordinates.

 

In exercises 29 - 32, evaluate the triple integral  over the solid .

29. 

4π
3

E z = 1 − +x2 y2− −−−−−
√ xy

z = 0 z = 2

r dz dr dθ.∫
π/2

−π/2
∫

1

0
∫

r

r2

V

V = ≈ 0.2618
pi

12

r dz dr dθ.∫
π/2

0
∫

1

0
∫

r

r4

E

xz dz dx dy∫
1

0
∫

1−y2√

− 1−y2√
∫

+x2 y2√

+x2 y2

z   cosθ dz dθ dr∫
1

0
∫

π

0
∫

r

r2
r2

(xy+z)dz dx dy∫
2

0
∫

y

0
∫

1

0

f(x,y,z)dV∭
B

B

f(x, y, z) = 1,  B = {(x, y, z) | + + ≤ 90,  z ≥ 0}x2 y2 z2
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[Hide Solution]

Answer:

30. 

31.  is bounded above by the half-sphere  with  and below by the cone 
.

Answer:

32.  is bounded above by the half-sphere  with  and below by the cone 
.

 

33. Show that if  is a continuous function on the spherical box 
, then 

34. A function  is said to have spherical symmetry if it depends on the distance to the origin only, that is, it can be expressed in
spherical coordinates as , where . Show that 

 where  is the region between the upper concentric hemispheres of radii  and 

centered at the origin, with  and  a spherical function defined on .

180π 10
−−

√

f(x, y, z) = 1 − ,  B = {(x, y, z) | + + ≤ 9,  y ≥ 0,  z ≥ 0}+ +x2 y2 z2− −−−−−−−−−√ x2 y2 z2

f(x, y, z) = ,  B+x2 y2− −−−−−
√ + + = 9x2 y2 z2 z ≥ 0

3 = +z2 x2 y2

π( − )81
4

π

3

3√

4

f(x, y, z) = ,  B+x2 y2− −−−−−
√ + + = 16x2 y2 z2 z ≥ 0

2 = +z2 x2 y2

F (ρ, θ,φ) = f(ρ)g(θ)h(φ)
B = {(ρ, θ,φ) | a ≤ ρ ≤ b,  α ≤ θ ≤ β,  γ ≤ φ ≤ ψ}

F  dV =( f(ρ) dr)( g(θ) dθ)( h(φ)  sinφ dφ) .∭
B

∫
b

a

ρ2 ∫
β

α

∫
ψ

γ

F

F (x, y, z) = f(ρ) ρ = + +x2 y2 z2− −−−−−−−−−
√

F (x, y, z)dV = 2π f(ρ)dρ,∭
B

∫
b

a

ρ2 B a b

0 < a < b F B
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Use the previous result to show that  where 

.

35. Let  be the region between the upper concentric hemispheres of radii a and b centered at the origin and situated in the first
octant, where . Consider F a function defined on B whose form in spherical coordinates  is 

. Show that if  and  then 

 where  is an antiderivative of  and  is an antiderivative of .

Use the previous result to show that  where  is the region between the upper

concentric hemispheres of radii  and  centered at the origin and situated in the first octant.

 

In exercises 36 - 39, the function  and region  are given.

a. Express the region  and function  in cylindrical coordinates.

b. Convert the integral  into cylindrical coordinates and evaluate it.

36. 

37. 

Answer:

a. ;

b. 

38. 

39. 

Answer:

a. ;

b. 

 

In exercises 40 - 41, find the volume of the solid  whose boundaries are given in rectangular coordinates.

40. 

41. 

Answer:

 

42. Use spherical coordinates to find the volume of the solid situated outside the sphere  and inside the sphere ,
with .

43. Use spherical coordinates to find the volume of the ball  that is situated between the cones  and .

Answer:

( + + ) dV = 21π,∭
B

x2 y2 z2 + +x2 y2 z2
− −−−−−−−−−

√

B = {(x, y, z) | 1 ≤ + + ≤ 2,  z ≥ 0}x2 y2 z2

B

0 < a < b (ρ, θ,φ)

F (x, y, z) = f(ρ) cosφ g(a) = g(b) = 0 h(ρ)dρ = 0,∫
b

a

F (x, y, z)dV = [ah(a) −bh(b)],∭
B

π2

4
g f h g

= dV = ,∭
B

z cos + +x2 y2 z2− −−−−−−−−−
√

+ +x2 y2 z2
− −−−−−−−−−

√

3π2

2
B

π 2π

f E

E f

f(x, y, z)dV∭
B

f(x, y, z) = z;  E = {(x, y, z) | 0 ≤ + + ≤ 1,  z ≥ 0}x2 y2 z2

f(x, y, z) = x+y;  E = {(x, y, z) | 1 ≤ + + ≤ 2,  z ≥ 0,  y ≥ 0}x2 y2 z2

f(ρ, θ,φ) = ρ  sinφ (cosθ+sinθ),  E = {(ρ, θ,φ) | 1 ≤ ρ ≤ 2,  0 ≤ θ ≤ π,  0 ≤ φ ≤ }π
2

cosφ  sinφ dρ dφ dθ =∫
π

0
∫

π/2

0
∫

2

1
ρ3 15π

8

f(x, y, z) = 2xy;  E = {(x, y, z) | ≤ z ≤ ,  x ≥ 0,  y ≥ 0}+x2 y2− −−−−−√ 1 − −x2 y2− −−−−−−−−√

f(x, y, z) = z;  E = {(x, y, z) | + + −2x ≤ 0,   ≤ z}x2 y2 z2 +x2 y2
− −−−−−

√

f(ρ, θ,φ) = ρ  cosφ;  E = {(ρ, θ,φ) | 0 ≤ ρ ≤ 2  cosφ,  0 ≤ θ ≤ ,  0 ≤ φ ≤ }π

2
π

4

sinφ  cosφ dρ dφ dθ =∫
π/2

0
∫

π/4

0
∫

2  cos φ

0
ρ3 7π

24

E

E = {(x, y, z) | ≤ z ≤ ,  x ≥ 0,  y ≥ 0}+x2 y2
− −−−−−

√ 16 − −x2 y2
− −−−−−−−−−

√

E = {(x, y, z) | + + −2z ≤ 0,   ≤ z}x2 y2 z2 +x2 y2− −−−−−
√

π

4

ρ = 1 ρ = cosφ
φ ∈ [0, ]π

2

ρ ≤ 3 φ = π
4

φ = π
3
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44. Convert the integral  into an integral in spherical coordinates.

45. Convert the integral  into an integral in spherical coordinates.

Answer:

46. Convert the integral  into an integral in spherical coordinates and evaluate it.

47. [T] Use a CAS to graph the solid whose volume is given by the iterated integral in spherical coordinates 

 Find the volume  of the solid. Round your answer to three decimal places.

Answer:

48. [T] Use a CAS to graph the solid whose volume is given by the iterated integral in spherical coordinates as 

 Find the volume  of the solid. Round your answer to three decimal places.

49. [T] Use a CAS to evaluate the integral  where  lies above the paraboloid  and below the

plane .

Answer:

50. [T]

a. Evaluate the integral  where  is bounded by spheres  and .

b. Use a CAS to find an approximation of the previous integral. Round your answer to two decimal places.

51. Express the volume of the solid inside the sphere  and outside the cylinder  as triple integrals
in cylindrical coordinates and spherical coordinates, respectively.

9π( −1)2
–

√

( + + )dz dx dy∫
4

−4
∫

16−y2√

− 16−y2√
∫

16− −x2 y2√

− 16− −x2 y2√
x2 y2 z2

( + + dz dy dx∫
4

0
∫

16−x2√

0
∫

16− −x2 y2√

− 16− −x2 y2√
x2 y2 z2)2

sinφ dρ dϕ dθ∫
π/2

0
∫

π/2

0
∫

4

0
ρ6

dz dy dx∫
2

−2
∫

4−x2√

− 4−x2√
∫

16− −x2 y2√

+x2 y2√

sinφ dρ dφ dθ.∫
π

π/2
∫

π/6

5π
∫

2

0
ρ2 V

V = ≈ 7.255
4π 3√

3

sinφ dρ dφ dθ.∫
2π

0
∫

π/4

3π/4
∫

1

0
ρ2 V

( + )dV∭
E

x2 y2 E z = +x2 y2

z = 3y

343π
32

dV ,∭
E

e + +x2 y2 z2√ E 4 +4 +4 = 1x2 y2 z2 + + = 1x2 y2 z2

+ + = 16x2 y2 z2 + = 4x2 y2
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Answer:

  and  

52. Express the volume of the solid inside the sphere  and outside the cylinder  that is located in
the first octant as triple integrals in cylindrical coordinates and spherical coordinates, respectively.

53. The power emitted by an antenna has a power density per unit volume given in spherical coordinates by 
, where  is a constant with units in watts. The total power within a sphere  of radius  meters is

defined as  Find the total power .

Answer:

 watts

54. Use the preceding exercise to find the total power within a sphere  of radius 5 meters when the power density per unit volume
is given by .

55. A charge cloud contained in a sphere  of radius  centimeters centered at the origin has its charge density given by 

, where .  The total charge contained in  is given by  Find the

total charge .

Answer:

56. Use the preceding exercise to find the total charge cloud contained in the unit sphere if the charge density is 
.

 

4.6: Calculating Centers of Mass and Moments of Inertia 
 

In exercises 1 - 12, the region  occupied by a lamina is shown in a graph. Find the mass of  with the density function .

1.  is the triangular region with vertices , and .

Answer:

2.  is the triangular region with vertices , and .

r dz dr dθ∫
2π

0
∫

4

2
∫

16−r2√

− 16−r2√
sinρ dρ dθdϕ∫

5π/6

π/6
∫

2π

0
∫

4

2 csc ϕ
ρ2

+ + = 16x2 y2 z2 + = 4x2 y2

p(ρ, θ,φ) = θ  φ
P0

ρ2 cos2 sin4 P0 B r

P = p(ρ, θ,φ)dV .∭
B

P

P =
32 πP0

3

B

p(ρ, θ,φ) = θ φ30
ρ2 cos2 sin4

B r

q(x, y, z) = k + +x2 y2 z2− −−−−−−−−−
√ μC

cm3 k > 0 B Q = q(x, y, z)dV .∭
B

Q

Q = k πμCr4

q(x, y, z) = 20 + +x2 y2 z2
− −−−−−−−−−

√ μC

cm3

R R ρ

R (0, 0),  (0, 3) (6, 0);  ρ(x, y) = xy

27
2

R (0, 0),  (1, 1) (0, 5);  ρ(x, y) = x+y
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3.  is the rectangular region with vertices  and .

Answer:

4.  is the rectangular region with vertices  and .

5.  is the trapezoidal region determined by the lines , and .

Answer:

6.  is the trapezoidal region determined by the lines  and .

R (0, 0),  (0, 3),  (6, 3) (6, 0);  ρ(x, y) = xy−−
√

24 2
–

√

R (0, 1),  (0, 3),  (3, 3) (3, 1);  ρ(x, y) = yx2

R y = − x+ ,  y = 0,  y = 21
4

5
2

x = 0;  ρ(x, y) = 3xy

76

R y = 0,  y = 1,  y = x y = −x+3;  ρ(x, y) = 2x+y
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7.  is the disk of radius  centered at .

 

 

 

Answer:

8.  is the unit disk; .

9.  is the region enclosed by the ellipse .

R 2 (1, 2);  ρ(x, y) = + −2x−4y+5x2 y2

8π

R ρ(x, y) = 3 +6 +3x4 x2y2 y4

R +4 = 1;  ρ(x, y) = 1x2 y2

https://libretexts.org/
https://math.libretexts.org/@go/page/83256?pdf


4.8.36 https://math.libretexts.org/@go/page/83256

Answer:

10. .

11.  is the region bounded by .

Answer:

12.  is the region bounded by , and .

π

2

R = {(x, y) | 9 + ≤ 1,  x ≥ 0,  y ≥ 0};  ρ(x, y) =x2 y2 9 +x2 y2− −−−−−−√

R y = x,  y = −x,  y = x+2,  y = −x+2;  ρ(x, y) = 1

2

R y = ,  y = ,  y = 11
x

2
x

y = 2;  ρ(x, y) = 4(x+y)
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Answer:

 

In exercises 13 - 24, consider a lamina occupying the region  and having the density function  given in the preceding
group of exercises. Use a computer algebra system (CAS) to answer the following questions.

a. Find the moments  and  about the -axis and -axis, respectively.

b. Calculate and plot the center of mass of the lamina.

c. [T] Use a CAS to locate the center of mass on the graph of .

13. [T]  is the triangular region with vertices , and .

Answer:

a. ; 
b. ; 
c.

14. [T]  is the triangular region with vertices , and .

15. [T]  is the rectangular region with vertices , and .

Answer:

a. ; 
b. ; 
c.

16. [T]  is the rectangular region with vertices , and .

17. [T]  is the trapezoidal region determined by the lines , and .

7

R ρ

Mx My x y

R

R (0, 0),  (0, 3) (6, 0);  ρ(x, y) = xy

= ,   =Mx
81
5

My
162
5

= ,   =x̄ 12
5

ȳ 6
5

R (0, 0),  (1, 1) (0, 5);  ρ(x, y) = x+y

R (0, 0),  (0, 3),  (6, 3) (6, 0);  ρ(x, y) = xy−−
√

= ,   =Mx
216 2√

5
My

432 2√

5

= ,   =x̄ 18
5

ȳ 9
5

R (0, 1),  (0, 3),  (3, 3) (3, 1);  ρ(x, y) = yx2

R y = − x+ ,  y = 0,  y = 21
4

5
2

x = 0;  ρ(x, y) = 3xy
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Answer:

a. ; 
b. ; 
c.

18. [T]  is the trapezoidal region determined by the lines  and .

19. [T]  is the disk of radius  centered at .

Answer:

a. ; 
b. ; 
c.

20. [T]  is the unit disk; .

21. [T]  is the region enclosed by the ellipse .

Answer:

a. ; 
b. ; 
c.

= ,   =Mx
368
5

My
1552

5

= ,   =x̄ 92
95

ȳ 388
95

R y = 0,  y = 1,  y = x, y = −x+3;  ρ(x, y) = 2x+y

R 2 (1, 2);  ρ(x, y) = + −2x−4y+5x2 y2

= 16π,   = 8πMx My

= 1,   = 2x̄ ȳ

R ρ(x, y) = 3 +6 +3x4 x2y2 y4

R +4 = 1;  ρ(x, y) = 1x2 y2

= 0,   = 0)Mx My

= 0,   = 0x̄ ȳ
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22. [T] .

23. [T]  is the region bounded by , and .

Answer:

a. ; 
b. ; 
c.

24. [T]  is the region bounded by , and .

 

In exercises 25 - 36, consider a lamina occupying the region  and having the density function  given in the first two
groups of Exercises.

a. Find the moments of inertia  and  about the -axis, -axis, and origin, respectively.

b. Find the radii of gyration with respect to the -axis, -axis, and origin, respectively.

25.  is the triangular region with vertices , and .

Answer:

a. , and ; 

b. , and 

26.  is the triangular region with vertices , and .

27.  is the rectangular region with vertices , and .

Answer:

a. , and ; 

b. , and 

28.  is the rectangular region with vertices , and .

29.  is the trapezoidal region determined by the lines , and x = 0; \space \rho (x,y) = 3xy\).

Answer:
a. , and ; 

b. , and 

30.  is the trapezoidal region determined by the lines , and y = -x + 3; \space \rho (x,y) = 2x + y\).

31.  is the disk of radius  centered at .

R = {(x, y) | 9 + ≤ 1,  x ≥ 0,  y ≥ 0};  ρ(x, y) =x2 y2 9 +x2 y2
− −−−−−−

√

R y = x,  y = −x,  y = x+2 y = −x+2;  ρ(x, y) = 1

= 2,   = 0)Mx My

= 0,   = 1x̄ ȳ

R y = ,  y = ,  y = 11
x

2
x

y = 2;  ρ(x, y) = 4(x+y)

R ρ

,  Ix Iy I0 x y

x y

R (0, 0),  (0, 3) (6, 0);  ρ(x, y) = xy

= ,   =Ix
243
10

Iy
486
5

=I0
243
2

= ,   =Rx
3 5√

5
Ry

6 5√

5
= 3R0

R (0, 0),  (1, 1) (0, 5);  ρ(x, y) = x+y

R (0, 0),  (0, 3),  (6, 3) (6, 0);  ρ(x, y) = xy−−
√

= ,   =Ix
2592 2√

7
Iy

648 2√

7
=I0

3240 2√

7

= ,   =Rx
6 21√

7
Ry

3 21√

7
=R0

3 106√

7

R (0, 1),  (0, 3),  (3, 3) (3, 1);  ρ(x, y) = yx2

R y = − x+ ,  y = 0,  y = 21
4

5
2

= 88,   = 1560Ix Iy = 1648I0

= ,   =Rx
418√

19
Ry

7410√

10
=R0

2 1957√

19

R y = 0,  y = 1,  y = x

R 2 (1, 2);  ρ(x, y) = + −2x−4y+5x2 y2
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Answer:
a. , and ; 

b. , and 

32.  is the unit disk; .

33.  is the region enclosed by the ellipse .

Answer:
a. , and ; 

b. , and 

34. .

35.  is the region bounded by , and .

Answer:
a. , and ; 

b. , and 

36.  is the region bounded by , and .

 

37. Let  be the solid unit cube. Find the mass of the solid if its density  is equal to the square of the distance of an arbitrary point
of  to the -plane.

Answer:

38. Let  be the solid unit hemisphere. Find the mass of the solid if its density  is proportional to the distance of an arbitrary point
of  to the origin.

39. The solid  of constant density  is situated inside the sphere  and outside the sphere .
Show that the center of mass of the solid is not located within the solid.

40. Find the mass of the solid  whose density is , where 
.

41. The solid  has density at each point equal to the distance to the -
plane. 

a. Find the mass of .

b. Find the moments  and  about the -plane, -plane, and -plane, respectively.

c. Find the center of mass of .

d. Graph  and locate its center of mass.

Answer:

a. ; 
b. ; 
c. ; 
d.

= ,   =Ix
128π

3
Iy

56π
3

=I0
184π

3

= ,   =Rx
4 3√

3
Ry

21√

2
=R0

69√

3

R ρ(x, y) = 3 +6 +3x4 x2y2 y4

R +4 = 1;  ρ(x, y) = 1x2 y2

= ,   =Ix
π

32
Iy

π

8
=I0

5π
32

= ,   =Rx
1
4

Ry
1
2

=R0
5√

4

R = {(x, y) | 9 + ≤ 1,  x ≥ 0,  y ≥ 0};  ρ(x, y) =x2 y2 9 +x2 y2
− −−−−−−

√

R y = x,  y = −x,  y = x+2 y = −x+2;  ρ(x, y) = 1

= ,   =Ix
7
3

Iy
1
3

=I0
8
3

= ,   =Rx
42√

6
Ry

6√

6
=R0

2 3√

3

R y = ,  y = ,  y = 11
x

2
x

y = 2;  ρ(x, y) = 4(x+y)

Q ρ

Q xy

m = 1
3

Q ρ

Q

Q 1 + + = 16x2 y2 z2 + + = 1x2 y2 z2

Q = {(x, y, z) | 1 ≤ + ≤ 25,  y ≤ 1 − − }x2 z2 x2 z2 ρ(x, y, z) = k

k > 0

Q = {(x, y, z) | + ≤ 9,  0 ≤ z ≤ 1,  x ≥ 0,  y ≥ 0}x2 y2 xy

Q

,  Mxy Mxz Myz xy xz yz

Q

Q

m = 9π
8

= ,   = ,   =Mxy
3π
4

Mxz
9
2

Myz
9
2

= ,   = ,   =x̄ 4
π

ȳ 4
π

z̄ 2
3
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42. Consider the solid  with the density function .

a. Find the mass of .

b. Find the moments  and  about the -plane, -plane, and -plane, respectively.

c. Find the center of mass of .

43. [T] The solid  has the mass given by the triple integral 

Use a CAS to answer the following questions.

Show that the center of mass of  is located in the -plane.
Graph  and locate its center of mass.

Answer:

, ; 2. the solid  and its center of mass are shown in the following figure.

44. The solid  is bounded by the planes , and . Its density at any point is equal to the
distance to the -plane. Find the moments of inertia of the solid about the -plane.

45. The solid  is bounded by the planes , and . Its density is , where 
. Show that the center of mass of the solid is located in the plane  for any value of .

46. Let  be the solid situated outside the sphere  and inside the upper hemisphere , where 
. If the density of the solid is , find  such that the mass of the solid is 

Q = {(x, y, z) | 0 ≤ x ≤ 1,  0 ≤ y ≤ 2,  0 ≤ z ≤ 3} ρ(x, y, z) = x+y+1

Q

,  Mxy Mxz Myz xy xz yz

Q

Q dr dθ dz.∫
1

−1
∫

π/4

0
∫

1

0
r2

Q xy

Q

=x̄
3 2√

2π
= ,   = 0ȳ

3(2− )2√

2π
z̄ Q

Q x+4y+z = 8,  x = 0,  y = 0 z = 0
xz xz

Q x+y+z = 3,  x = 0,  y = 0 z = 0 ρ(x, y, z) = x+ay

a > 0 z = 3
5

a

Q + + = zx2 y2 z2 + + =x2 y2 z2 R2

R > 1 ρ(x, y, z) = 1
+ +x2 y2 z2√

R .7π
2
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47. The mass of a solid  is given by  where  is an integer. Determine 

such the mass of the solid is .

Answer:

48. Let  be the solid bounded above the cone  and below the sphere . Its density is a
constant . Find  such that the center of mass of the solid is situated  units from the origin.

49. The solid  has the density . Show that the
moment  about the -plane is half of the moment  about the -plane.

50. The solid  is bounded by the cylinder , the paraboloid , and the -plane, where .
Find the mass of the solid if its density is given by .

51. Let  be a solid of constant density , where , that is located in the first octant, inside the circular cone 
, and above the plane . Show that the moment  about the -plane is the same as the moment 

about the -plane.

52. The solid  has the mass given by the triple integral 

a. Find the density of the solid in rectangular coordinates.

b. Find the moment  about the -plane.

53. The solid  has the moment of inertia  about the -plane given by the triple integral 

a. Find the density of .

b. Find the moment of inertia  about the -plane.

Answer:
a. ; 
b. 

54. The solid  has the mass given by the triple integral 

a. Find the density of the solid in rectangular coordinates.

b. Find the moment  about the -plane.

55. Let  be the solid bounded by the -plane, the cylinder , and the plane , where  is a real number.

Find the moment  of the solid about the -plane if its density given in cylindrical coordinates is , where 
is a differentiable function with the first and second derivatives continuous and differentiable on .

Answer:

56. A solid  has a volume given by , where  is the projection of the solid onto the -plane and  are real

numbers, and its density does not depend on the variable . Show that its center of mass lies in the plane .

57. Consider the solid enclosed by the cylinder  and the planes  and , where  and  are real
numbers. The density of  is given by , where  is a differential function whose derivative is continuous on 

. Show that if , then the moment of inertia about the -plane of  is null.

Q ( + + dz dy dx,∫
2

0
∫

4−x2√

0
∫

16− −x2 y2√

+x2 y2√
x2 y2 z2)n n n

(2 − )π2
–

√

n = −2

Q + =x2 y2 z2 + + −4z = 0x2 y2 z2

k > 0 k 7

Q = {(x, y, z) | 0 ≤ + ≤ 16,  x ≥ 0,  y ≥ 0,  0 ≤ z ≤ x}x2 y2 ρ(x, y, z) = k

Mxy xy Myz yz

Q + =x2 y2 a2 −z = +b2 x2 y2 xy 0 < a < b

ρ(x, y, z) = +x2 y2
− −−−−−

√

Q k k > 0
+ = 9(z−1x2 y2 )2 z = 0 Mxy xy Myz

xz

Q ( +r) dz dθ dr.∫
1

0
∫

π/2

0
∫

r3

0
r4

Mxy xy

Q Ix yz

( + )( + )dz dx dy.∫
2

0
∫

4−y2√

− 4−y2√
∫

+x2 y2√

( + )
1

2
x2 y2

y2 z2 x2 y2

Q

Iz xy

ρ(x, y, z) = +x2 y2

16π
7

Q ( cosθ sinθ+2r)dz dr dθ.∫
π/4

0
∫

2 sec θ

0
∫

1

0
r3

Mxz xz

Q xy + =x2 y2 a2 z = 1 a > 1

Mxy xy ρ(x, y, z) = (r)
fd2

dr2 f

(0, a)

= π(f(0) −f(a) +a (a))Mxy f ′

Q dA dz∬
D

∫
b

a

D xy a < b

z z = a+b

2

+ =x2 z2 a2 y = b y = c a > 0 b < c

Q ρ(x, y, z) = (y)f ′ f

(b, c) f(b) = f(c) xz Q
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58. [T] The average density of a solid  is defined as  where  and  are the

volume and the mass of , respectively. If the density of the unit ball centered at the origin is , use a CAS
to find its average density. Round your answer to three decimal places.

59. Show that the moments of inertia , and  about the -plane, -plane, and -plane, respectively, of the unit ball
centered at the origin whose density is  are the same. Round your answer to two decimal places.

Answer:

 

4.7: Change of Variables in Multiple Integrals 
 

In exercises 1 - 6, the function  on the region 
bounded by the unit square is given, where  is the image of  under .

a. Justify that the function  is a  transformation.

b. Find the images of the vertices of the unit square  through the function .

c. Determine the image  of the unit square  and graph it.

1. 

2. 

Answer:

a.  and . The functions  and  are continuous and
differentiable, and the partial derivatives  and  are continuous
on ;

b. , and ;

c.  is the rectangle of vertices , and  in the -plane; the following figure.

3. 

4. 

Answer:

a.  and . The functions  and  are
continuous and differentiable, and the partial derivatives  and 

Q = ρ(x, y, z)dV = ,ρave
1

V (Q)
∭

Q

m

V (Q)
V (Q) m

Q ρ(x, y, z) = e− − −x2 y2 z2

,  Ix Iy Iz yz xz xy

ρ(x, y, z) = e− − −x2 y2 z2

= = ≈ 0.84Ix Iy Iz

T :S →R,  T(u,v) = (x,y) S = {(u,v) | 0 ≤ u ≤ 1,  0 ≤ v ≤ 1}
R ∈R2 S T

T C1

S T

R S

x = 2u,  y = 3v

x = ,  y =u

2
v

3

T (u, v) = (g(u, v),  h(u, v),  x = g(u, v) = u

2
y = h(u, v) = v

3
g h

(u, v) = ,   (u, v) = 0,   (u, v) = 0gu
1
2

gv hu (u, v) =hv
1
3

S

T (0, 0) = (0, 0),  T (1, 0) = ( , 0) ,  T (0, 1) = (0, )1
2

1
3

T (1, 1) = ( , )1
2

1
3

R (0, 0),  (0, ) ,  ( , )1
3

1
2

1
3

(0, )1
3

xy

x = u−v,  y = u+v

x = 2u−v,  y = u+2v

T (u, v) = (g(u, v),  h(u, v),  x = g(u, v) = 2u−v y = h(u, v) = u+2v g h

(u, v) = 2,   (u, v) = −1,   (u, v) = 1gu gv hu (u, v) = 2hv
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are continuous on ;

b. , and ;

c.  is the parallelogram of vertices , and  in the -plane; the following figure.

5. 

6. 

Answer:

a.  and . The functions  and  are continuous and
differentiable, and the partial derivatives  and  are
continuous on ;

b. , and ;

c.  is the unit square in the -plane see the figure in the answer to the previous exercise.

 

In exercises 7 - 12, determine whether the transformations  are one-to-one or not.

7. , where  is the rectangle of vertices , and .

8. , where  is the triangle of vertices , and .

Answer:
 is not one-to-one: two points of  have the same image. Indeed, .

9. , where  is the square of vertices , and .

10.  where  is the triangle with vertices , and .

Answer:
 is one-to-one: We argue by contradiction.  implies  and . Thus, 

 and .

11. , where .

12. , where .

Answer:
 is not one-to-one: 

 

In exercises 13 - 18, the transformations  are one-to-one. Find their related inverse transformations 
.

13. , where .

S

T (0, 0) = (0, 0),  T (1, 0) = (2, 1),  T (0, 1) = (−1, 2) T (1, 1) = (1, 3)

R (0, 0),  (2, 1) (1, 3) (−1, 2) xy

x = ,  y =u2 v2

x = ,  y =u3 v3

T (u, v) = (g(u, v),  h(u, v),  x = g(u, v) = u3 y = h(u, v) = v3 g h

(u, v) = 3 ,   (u, v) = 0,   (u, v) = 0gu u2 gv hu (u, v) = 3hv v2

S

T (0, 0) = (0, 0),  T (1, 0) = (1, 0),  T (0, 1) = (0, 1) T (1, 1) = (1, 1)

R xy

T :S →R

x = ,  y =u2 v2 S (−1, 0),  (1, 0),  (1, 1) (−1, 1)

x = ,  y = +vu4 u2 S (−2, 0),  (2, 0) (0, 2)

T S T (−2, 0) = T (2, 0) = (16, 4)

x = 2u,  y = 3v S (−1, 1),  (−1, −1),  (1, −1) (1, 1)

T (u, v) = (2u−v, u), S (−1, 1), (−1, −1) (1, −1)

T T ( , ) = T ( , )u1 v1 u2 v2 2 − = 2 −u1 v1 u2 v2 =u1 u2

= u+2u1 =v1 v2

x = u+v+w,  y = u+v,  z = w S = R = R3

x = +v+w,  y = +v,  z = wu2 u2 S = R = R3

T T (1, v,w) = (−1, v,w)

T :R →S

:R →ST −1

x = 4u,  y = 5v S = R = R2
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14. , where .

Answer:

15. , where  and 

16. , where  and .

Answer:

17. , where .

18. , where .

Answer:

 

In exercises 19 - 22, the transformation  and the region  are given. Find the region 
.

19.  where 

20. , where 

Answer:

21. , where 

22. , where 

Answer:

 

In exercises 23 - 32, find the Jacobian  of the transformation.

23. 

24. 

Answer:

25. 

26. 

Answer:

27. 

28. 

Answer:

x = u+2v,  y = −u+v S = R = R2

u = ,  v=
x−2y

3

x+y

3

x = ,  y =e2u+v eu−v S = R2 R = {(x, y) | x > 0,  y > 0}

x = lnu,  y = ln(uv) S = {(u, v) | u > 0,  v> 0} R = R2

u = ,  v=ex e−x+y

x = u+v+w,  y = 3v,  z = 2w S = R = R3

x = u+v,  y = v+w,  z = u+w S = R = R3

u = ,  v= ,  w =
x−y+z

2

x+y−z

2

−x+y+z

2

T :S →R,  T(u,v) = (x,y) R ⊂ R2

S ⊂ R2

x = au,  y = bv,  R = {(x, y) | + ≤ }x2 y2 a2b2 a, b > 0

x = au,  y = bc,  R = {(x, y) | + ≤ 1}x2

a2

y2

b2
a, b > 0

S = {(u, v) | + ≤ 1}u2 v2

x = ,  y = ,  z = ,  R = {(x, y) | + + ≤ 1}u
a

v

b

w
c x2 y2 z2 a, b, c > 0

x = au,  y = bv,  z = cw,  R = {(x, y) | − − ≤ 1,  z > 0}x2

a2

y2

b2

z2

c2
a, b, c > 0

R = {(u, v,w) | − − ≤ 1,  w > 0}u2 v2 w2

J

x = u+2v,  y = −u+v

x = ,  y =u3

2
v

u2

3
2

x = ,  y =e2u−v eu+v

x = u ,  y =ev e−v

−1

x = u  cos( ),  y = u  sin( )ev ev

x = v  sin( ),  y = v  cos( )u2 u2
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29. 

30. 

Answer:

31. 

32. 

Answer:

 

33. The triangular region  with the vertices , and  is shown in the following figure.

a. Find a transformation , where , and  are real numbers with 
 such that , and .

b. Use the transformation  to find the area  of the region .

34. The triangular region  with the vertices , and  is shown in the following figure.

a. Find a transformation , where , and  are real numbers with 
 such that , and .

b. Use the transformation  to find the area  of the region .

Answer:

2uv

x = u  coshv,  y = u  sinhv,  z = w

x = v  cosh( ),  y = v  sinh( ),  z = u+1
u

1
u w2

v

u2

x = u+v,  y = v+w,  z = u

x = u−v,  y = u+v,  z = u+v+w

2

R (0, 0),  (1, 1) (1, 2)

T : S → R,  T (u, v) = (x, y) = (au+bv+dv) a, b, c d

ad−bc ≠ 0 (0, 0) = (0, 0),   (1, 1) = (1, 0)T −1 T −1 (1, 2) = (0, 1)T −1

T A(R) R

R (0, 0),  (2, 0) (1, 3)

T : S → R,  T (u, v) = (x, y) = (au+bv+dv) a, b, c d

ad−bc ≠ 0 (0, 0) = (0, 0),   (2, 0) = (1, 0)T −1 T −1 (1, 3) = (0, 1)T −1

T A(R) R
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a.  

b. The area of  is 

 

In exercises 35 - 36, use the transformation , to evaluate the integrals on the parallelogram  of vertices 
, and  shown in the following figure.

35. 

36. 

Answer:

 

In exercises 37 - 38, use a change of variables to evaluate the double integrals over the given region R. Graph the region.

37.  where  is bounded by 

Answer:

38.  where  is the square with the vertices , 

Answer:

 

In exercises 39 - 40, use the transformation  to evaluate the integrals on the region  bounded by the ellipse
 shown in the following figure.

T (u, v) = (2u+v,  3v)

R A(R) = dx dy = dv du = 6 dvdu = 3.∫
3

0
∫

(6−y)/3

y/3
∫

1

0
∫

1−u

0

∣

∣
∣
∂(x, y)

∂(u, v)

∣

∣
∣ ∫

1

0
∫

1−u

0

u = y−x,  v = y R

(0, 0),  (1, 0),  (2, 1) (1, 1)

(y−x)dA∬
R

( −xy)dA∬
R

y2

− 1
4

dA∬
R

exy R y = 4x,  y = x,  y = 4/x and y = 1/x

( −e) ln2e4

sin(x−y)dA∬
R

R (0, 0),  (1, 1) (2, 0),  and(1, −1)

1 −cos 2

x = u,  5y = v R

+ 25 = 1x2 y2
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39. 

40. 

Answer:

 

In exercises 41 - 42, use the transformation  to evaluate the integrals on the trapezoidal region 
determined by the points , and  shown in the following figure.

41. 

42. 

Answer:

 

43. The circular annulus sector  bounded by the circles  and , the line , and the -axis is
shown in the following figure. Find a transformation  from a rectangular region  in the -plane to the region  in the -plane.
Graph .

dA∬
R

+25x2 y2
− −−−−−−−

√

( +25 dA∬
R

x2 y2)2

π

15

u = x+y,  v = x−y R

(1, 0),  (2, 0),  (0, 2) (0, 1)

( −2xy+ )  dA∬
R

x2 y2 ex+y

( +3 y+3x + )dA∬
R

x3 x2 y2 y3

31
5

R 4 +4 = 1x2 y2 9 +9 = 64x2 y2 x = y 3
–

√ y

T S rθ R xy

S
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44. The solid  bounded by the circular cylinder  and the planes , and  is shown in the
following figure. Find a transformation  from a cylindrical box  in -space to the solid  in -space.

Answer:
 in the -space

45. Show that

where  is a continuous function on  and  is the region bounded by the ellipse .

46. Show that

where  is a continuous function on  and  is the region bounded by the ellipsoid .

47. [T] Find the area of the region bounded by the curves , and  by using the transformation 
 and . Use a computer algebra system (CAS) to graph the boundary curves of the region .

48. [T] Find the area of the region bounded by the curves , and  by using the transformation 
 and . Use a CAS to graph the boundary curves of the region .

Answer:

The area of  is ; the boundary curves of  are graphed in the following figure.

R + = 9x2 y2 z = 0,  z = 1,  x = 0 y = 0
T S rθz R xyz

T (r, θ, z) = (r  cosθ,  r  sinθ,  z);  S = [0, 3] ×[0, ] ×[0, 1]π

2
rθz

f ( ) dA = 2π f(ρ)ρ dρ,∬
R

+
x2

3

y2

3

− −−−−−−
√ 15

−−
√ ∫

1

0
(4.8.8)

f [0, 1] R 5 +3 = 15x2 y2

f ( )dV = f(ρ) dρ,∭
R

16 +4 +x2 y2 z2
− −−−−−−−−−−−−

√
π

2
∫

1

0
ρ2 (4.8.9)

f [0, 1] R 16 +4 + = 1x2 y2 z2

xy = 1,  xy = 3,  y = 2x y = 3x

u = xy v=
y

x R

y = 2,   y = 3,  y = xx2 x2 y = 2x

u = yx2 v=
y

x R

R 10 −4 6
–

√ R
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49. Evaluate the triple integral

by using the transformation , and .

50. Evaluate the triple integral

by using the transformation , and .

Answer:

51. A transformation  of the form , where , and  are real
numbers, is called linear. Show that a linear transformation for which  maps parallelograms to parallelograms.

52. A transformation  of the form , is called a
rotation angle . Show that the inverse transformation of  satisfies  where  is the rotation of angle .

53. [T] Find the region  in the -plane whose image through a rotation of angle  is the region  enclosed by the ellipse 
. Use a CAS to answer the following questions.

a. Graph the region .

b. Evaluate the integral  Round your answer to two decimal places.

54. [T] The transformations  defined by 
, and  are called reflections about the -axis, -

axis origin, and the line , respectively.

a. Find the image of the region  in the -plane through the transformation 
.

b. Use a CAS to graph .

c. Evaluate the integral  by using a CAS. Round your answer to two decimal places.

Answer:

a. ; 
b.  is graphed in the following figure;

(y+1) dx dy dz∫
1

0
∫

2

1
∫

z+1

z

(4.8.10)

u = x−z,  v= 3y w = z

2

(5 −4y) dx dy dz∫
2

0
∫

6

4
∫

3z+2

3z
(4.8.11)

u = x−3z,  v= 4y w = z

8

T : → ,  T (u, v) = (x, y)R2 R2 x = au+bv,  y = cu+dv a, b, c d

ad−bc ≠ 0

: → ,   (u, v) = (x, y)Tθ R2 R2 Tθ x = u  cosθ−v  sinθ,  y = u  sinθ+v  cosθ
θ Tθ =T −1

θ
T−θ T−θ −θ

S uv π

4
R

+4 = 1x2 y2

S

du dv.∬
S

e−2uv

: → ,  i = 1, . . . , 4,Ti R
2

R
2

(u, v) = (u, −v),   (u, v) = (−u, v),   (u, v) = (−u, −v)T1 T2 T3 (u, v) = (v, u)T4 x y

y = x

S = {(u, v) | + −2u−4v+1 ≤ 0}u2 v2 xy

∘ ∘ ∘T1 T2 T3 T4

R

sin( )du dv∬
S

u2

R = {(x, y) | + −2y−4x+1 ≤ 0}y2 x2

R
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c. 

55. [T] The transformations  of the form , where  is a
positive real number, is called a stretch if  and a compression if  in the -direction. Use a CAS to evaluate the

integral  on the solid  by considering the compression 

 defined by , and . Round your answer to four decimal places.

 

56. [T] The transformation , where  is a real number, is called a shear in the -
direction. The transformation, , where  is a real number, is called a shear in the -
direction.

a. Find transformations .

b. Find the image  of the trapezoidal region  bounded by , and  through the
transformation .

c. Use a CAS to graph the image  in the -plane.

d. Find the area of the region  by using the area of region .

Answer:

a. ;

b. The image  is the quadrilateral of vertices , and ;

c.  is graphed in the following figure;

d. 

3.16

: → ,   (u, v,w) = (x, y, z)Tk,1,1 R
3

R
3 Tk,1,1 x = ku,  y = v,  z = w k ≠ 1

k > 1 0 < k < 1 x

dx dy dz∭
S

e−(4 +9 +25 )x2 y2 z2

S = {(x, y, z) | 4 +9 +25 ≤ 1}x2 y2 z2

(u, v,w) = (x, y, z)T2,3,5 x = ,  y =u

2
v

3
z = w

5

: → ,   (u, v) = (u+av, v)Ta,0 R
2

R
2 Ta,0 a ≠ 0 x

: → ,   (u, v) = (u, bu+v)Tb,0 R2 R2 To,b b ≠ 0 y

∘T0,2 T3,0

R S u = 0,  v= 0,  v= 1 v= 2 −u

∘T0,2 T3,0

R xy

R S

∘ (u, v) = (u+3v, 2u+7v)T0,2 T3,0

S (0, 0),  (3, 7),  (2, 4) (4, 9)

S

3
2
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57. Use the transformation,  and spherical coordinates to show that the volume of a region bounded by

the spheroid  is .

58. Find the volume of a football whose shape is a spheroid  whose length from tip to tip is  inches and
circumference at the center is  inches. Round your answer to two decimal places.

Answer:
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CHAPTER OVERVIEW

5: Vector Calculus
In this chapter, we learn to model new kinds of integrals over fields such as magnetic fields, gravitational fields, or velocity fields.
We also learn how to calculate the work done on a charged particle traveling through a magnetic field, the work done on a particle
with mass traveling through a gravitational field, and the volume per unit time of water flowing through a net dropped in a river.
All these applications are based on the concept of a vector field. The content in this Textmap's chapter is complemented by Vector
Calculus Modules in the Core and the Vector Calculus (UCD Mat 21D) Libretext.

5.1: Prelude to Vector Calculus
5.2: Vector Fields
5.3: Line Integrals
5.4: Conservative Vector Fields
5.5: Green’s Theorem
5.6: Divergence and Curl
5.7: Surface Integrals
5.8: Stokes’ Theorem
5.9: The Divergence Theorem
5.E: Vector Calculus (Exercises)

Thumbnail: Surface  with closed boundary .  could be the  or  fields.  is the unit normal. (Public Domain; Maschen).
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5.1: Prelude to Vector Calculus
Hurricanes are huge storms that can produce tremendous amounts of damage to life and property, especially when they reach land.
Predicting where and when they will strike and how strong the winds will be is of great importance for preparing for protection or
evacuation. Scientists rely on studies of rotational vector fields for their forecasts.

Figure : Hurricanes form from rotating winds driven by warm temperatures over the ocean. Meteorologists forecast the
motion of hurricanes by studying the rotating vector fields of their wind velocity. Shown is Cyclone Catarina in the South Atlantic
Ocean in 2004, as seen from the International Space Station. (credit: modification of work by NASA)

In this chapter, we learn to model new kinds of integrals over fields such as magnetic fields, gravitational fields, or velocity fields.
We also learn how to calculate the work done on a charged particle traveling through a magnetic field, the work done on a particle
with mass traveling through a gravitational field, and the volume per unit time of water flowing through a net dropped in a river.

All these applications are based on the concept of a vector field, which we explore in this chapter. Vector fields have many
applications because they can be used to model real fields such as electromagnetic or gravitational fields. A deep understanding of
physics or engineering is impossible without an understanding of vector fields. Furthermore, vector fields have mathematical
properties that are worthy of study in their own right. In particular, vector fields can be used to develop several higher-dimensional
versions of the Fundamental Theorem of Calculus.

This page titled 5.1: Prelude to Vector Calculus is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

16.0: Prelude to Vector Calculus by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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5.2: Vector Fields

Recognize a vector field in a plane or in space.
Sketch a vector field from a given equation.
Identify a conservative field and its associated potential function.
Explain how to find a potential function for a conservative vector field.
Explain how to test a vector field to determine whether it is conservative.

Vector fields are an important tool for describing many physical concepts, such as gravitation and electromagnetism, which affect
the behavior of objects over a large region of a plane or of space. They are also useful for dealing with large-scale behavior such as
atmospheric storms or deep-sea ocean currents. In this section, we examine the basic definitions and graphs of vector fields so we
can study them in more detail in the rest of this chapter.

Examples of Vector Fields 

How can we model the gravitational force exerted by multiple astronomical objects? How can we model the velocity of water
particles on the surface of a river? Figure  gives visual representations of such phenomena.

Figure  (a) The gravitational field exerted by two astronomical bodies on a small object. (b) The vector velocity field of water
on the surface of a river shows the varied speeds of water. Red indicates that the magnitude of the vector is greater, so the water
flows more quickly; blue indicates a lesser magnitude and a slower speed of water flow.

Figure  shows a gravitational field exerted by two astronomical objects, such as a star and a planet or a planet and a moon.
At any point in the figure, the vector associated with a point gives the net gravitational force exerted by the two objects on an
object of unit mass. The vectors of largest magnitude in the figure are the vectors closest to the larger object. The larger object has
greater mass, so it exerts a gravitational force of greater magnitude than the smaller object.

Figure  shows the velocity of a river at points on its surface. The vector associated with a given point on the river’s surface
gives the velocity of the water at that point. Since the vectors to the left of the figure are small in magnitude, the water is flowing
slowly on that part of the surface. As the water moves from left to right, it encounters some rapids around a rock. The speed of the
water increases, and a whirlpool occurs in part of the rapids.

Learning Objectives

5.2.1

5.2.1

5.2.1a

5.2.1b
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Each figure illustrates an example of a vector field. Intuitively, a vector field is a map of vectors. In this section, we study vector
fields in  and .

A vector field  in  is an assignment of a two-dimensional vector  to each point  of a subset  of . The
subset  is the domain of the vector field.
A vector field  in  is an assignment of a three-dimensional vector  to each point  of a subset  of 

. The subset  is the domain of the vector field.

Vector Fields in  

A vector field in  can be represented in either of two equivalent ways. The first way is to use a vector with components that are
two-variable functions:

The second way is to use the standard unit vectors:

A vector field is said to be continuous if its component functions are continuous.

Let  be a vector field in . Note that this is an example of a continuous vector field
since both component functions are continuous. What vector is associated with point ?

Solution

Substitute the point values for  and :

Let  be a vector field in . What vector is associated with the point ?

Hint

Substitute the point values into the vector function.

Answer

Drawing a Vector Field 

We can now represent a vector field in terms of its components of functions or unit vectors, but representing it visually by
sketching it is more complex because the domain of a vector field is in , as is the range. Therefore the “graph” of a vector field
in  lives in four-dimensional space. Since we cannot represent four-dimensional space visually, we instead draw vector fields in 

 in a plane itself. To do this, draw the vector associated with a given point at the point in a plane. For example, suppose the
vector associated with point  is . Then, we would draw vector  at point .

We should plot enough vectors to see the general shape, but not so many that the sketch becomes a jumbled mess. If we were to
plot the image vector at each point in the region, it would fill the region completely and is useless. Instead, we can choose points at
the intersections of grid lines and plot a sample of several vectors from each quadrant of a rectangular coordinate system in .

R
2

R
3

DEFINITION: vector field

F
⇀

R
2 (x, y)F

⇀
(x, y) D R

2

D

F
⇀

R
3 (x, y, z)F

⇀
(x, y, z) D

R
3 D

R
2

R
2

(x, y) = ⟨P (x, y),Q(x, y)⟩F
⇀

(5.2.1)

(x, y) = P (x, y) +Q(x, y) .F
⇀

î ĵ (5.2.2)

Example : Finding a Vector Associated with a Given Point5.2.1

(x, y) = (2 +x−4) +cos(x)F
⇀

y2 î ĵ R
2

(0, −1)

x y

(0, −1)F
⇀

= (2 +0 −4) +cos(0)(−1)
2

î ĵ

= −2 + .î ĵ

Exercise 5.2.1

(x, y) = y −(x+y)G
⇀

x2 î ĵ R
2 (−2, 3)

(−2, 3) = 12 −G
⇀

î ĵ

R
2

R
2

R
2

(4, −1) ⟨3, 1⟩ ⟨3, 1⟩ (4, −1)

R
2
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There are two types of vector fields in  on which this chapter focuses: radial fields and rotational fields. Radial fields model
certain gravitational fields and energy source fields, and rotational fields model the movement of a fluid in a vortex. In a radial
field, all vectors either point directly toward or directly away from the origin. Furthermore, the magnitude of any vector depends
only on its distance from the origin. In a radial field, the vector located at point  is perpendicular to the circle centered at the
origin that contains point , and all other vectors on this circle have the same magnitude.

Sketch the vector field .

Solution

To sketch this vector field, choose a sample of points from each quadrant and compute the corresponding vector. The following
table gives a representative sample of points in a plane and the corresponding vectors.

Table 

Figure  shows the vector field. To see that each vector is perpendicular to the corresponding circle, Figure  shows
circles overlain on the vector field.

Figure : (a) A visual representation of the radial vector field . (b) The radial vector field 

 with overlaid circles. Notice that each vector is perpendicular to the circle on which it is located.

Draw the radial field .

Hint

Sketch enough vectors to get an idea of the shape.

Answer

R
2

(x, y)
(x, y)

Example : Drawing a Radial Vector Field5.2.2

(x, y) = +F
⇀ x

2
î

y

2
ĵ

5.2.1

(x,y) (x,y)F
⇀

(x,y) (x,y)F
⇀

(x,y) (x,y)F
⇀

(1,0) ⟨ ,0⟩
1

2
(2,0) ⟨1,0⟩ (1,1) ⟨ , ⟩

1

2

1

2

(0,1) ⟨0, ⟩
1

2
(0,2) ⟨0,1⟩ (−1,1) ⟨− , ⟩

1

2

1

2

(−1,0) ⟨− ,0⟩
1

2
(−2,0) ⟨−1,0⟩ (−1,−1) ⟨− ,− ⟩

1

2

1

2

(0,−1) ⟨0,− ⟩
1

2
(0,−2) ⟨0,−1⟩ (1,−1) ⟨ ,− ⟩

1

2

1

2

5.2.2a 5.2.2b

5.2.2 (x,y) = +F
⇀ x

2
î

y

2
ĵ

(x,y) = +F ⃗  x

2
î

y

2
ĵ

Exercise 5.2.2

(x, y) = − −F
⇀ x

3
î

y

3
ĵ
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In contrast to radial fields, in a rotational field, the vector at point  is tangent (not perpendicular) to a circle with radius 
. In a standard rotational field, all vectors point either in a clockwise direction or in a counterclockwise direction,

and the magnitude of a vector depends only on its distance from the origin. Both of the following examples are clockwise rotational
fields, and we see from their visual representations that the vectors appear to rotate around the origin.

Sketch the vector field .

Solution

Create a table (see the one that follows) using a representative sample of points in a plane and their corresponding vectors.
Figure  shows the resulting vector field.

Table 

(x, y)
r = +x2 y2

− −−−−−
√

Example : Drawing a Rotational Vector Field5.2.3

(x, y) = ⟨y, −x⟩F
⇀

5.2.3

5.2.2

(x,y) (x,y)F
⇀

(x,y) (x,y)F
⇀

(x,y) (x,y)F
⇀

(1,0) ⟨0,−1⟩ (2,0) ⟨0,−2⟩ (1,1) ⟨1,−1⟩

(0,1) ⟨1,0⟩ (0,2) ⟨2,0⟩ (−1,1) ⟨1,1⟩

(−1,0) ⟨0,1⟩ (−2,0) ⟨0,2⟩ (−1,−1) ⟨−1,1⟩

(0,−1) ⟨−1,0⟩ (0,−2) ⟨−2,0⟩ (1,−1) ⟨−1,−1⟩
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Figure : (a) A visual representation of vector field . (b) Vector field  with circles
centered at the origin. (c) Vector  is perpendicular to radial vector  at point .

Analysis

Note that vector  points clockwise and is perpendicular to radial vector . (We can verify this assertion
by computing the dot product of the two vectors: .) Furthermore, vector  has length 

. Thus, we have a complete description of this rotational vector field: the vector associated with point  is
the vector with length r tangent to the circle with radius r, and it points in the clockwise direction.

Sketches such as that in Figure  are often used to analyze major storm systems, including hurricanes and cyclones. In the
northern hemisphere, storms rotate counterclockwise; in the southern hemisphere, storms rotate clockwise. (This is an effect caused
by Earth’s rotation about its axis and is called the Coriolis Effect.)

Figure : (credit: modification of work by NASA)

Sketch vector field .

Solution

5.2.3 (x,y) = ⟨y, −x⟩F
⇀

(x,y) = ⟨y, −x⟩F
⇀

(a, b)F
⇀

⟨a, b⟩ (a, b)

(a, b) = ⟨b, −a⟩F
⇀

⟨a, b⟩
⟨a, b⟩ ⋅ ⟨−b, a⟩ = −ab+ab = 0 ⟨b, −a⟩

r = +a2 b2
− −−−−−

√ (a, b)

5.2.3

5.2.4

Example : Sketching a Vector Field5.2.4

(x, y) = , −F
⇀ y

+x2 y2
î

x

+x2 y2
ĵ
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To visualize this vector field, first note that the dot product  is zero for any point . Therefore, each
vector is tangent to the circle on which it is located. Also, as , the magnitude of  goes to infinity. To see
this, note that

.

Since  as , then  as . This vector field looks similar to the vector

field in Example , but in this case the magnitudes of the vectors close to the origin are large. Table  shows a sample
of points and the corresponding vectors, and Figure  shows the vector field. Note that this vector field models the
whirlpool motion of the river in Figure (b). The domain of this vector field is all of  except for point .

Table 

Figure : A visual representation of vector field . This vector field could be used to

model whirlpool motion of a fluid.

Sketch vector field . Is the vector field radial, rotational, or neither?

Hint

Substitute enough points into  to get an idea of the shape.

Answer

Rotational

(a, b) ⋅ (a +b )F
⇀

î ĵ (a, b)

(a, b) → (0, 0) (a, b)F
⇀

|| (a, b)|| = =F
⇀ +a2 b2

( + )a2 b2 2

− −−−−−−−−

√
1

+a2 b2

− −−−−−
√

→ ∞
1

+a2 b2
(a, b) → (0, 0) || (a, b)|| → ∞F

⇀
(a, b) → (0, 0)

5.2.3 5.2.3
5.2.5

5.2.5 R
2 (0, 0)

5.2.3

(x,y) (x,y)F
⇀

(x,y) (x,y)F
⇀

(x,y) (x,y)F
⇀

(1,0) ⟨0,−1⟩ (2,0) ⟨0,− ⟩
1

2
(1,1) ⟨ ,− ⟩

1

2

1

2

(0,1) ⟨1,0⟩ (0,2) ⟨ ,0⟩
1

2
(−1,1) ⟨ , ⟩

1

2

1

2

(−1,0) ⟨0,1⟩ (−2,0) ⟨0, ⟩
1

2
(−1,−1) ⟨− , ⟩

1

2

1

2

(0,−1) ⟨−1,0⟩ (0,−2) ⟨− ,0⟩
1

2
(1,−1) ⟨− ,− ⟩

1

2

1

2

5.2.5 (x,y) = −F
⇀ y

+x2 y2
î

x

+x2 y2
ĵ

Exercise 5.2.4

(x, y) = ⟨−2y, 2x⟩F
⇀

F
⇀
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Suppose that  is the velocity field of a fluid. How fast is the fluid moving at point 

? (Assume the units of speed are meters per second.)

Solution

To find the velocity of the fluid at point , substitute the point into :

.

The speed of the fluid at  is the magnitude of this vector. Therefore, the speed is  m/sec.

Vector field  models the velocity of water on the surface of a river. What is the speed of the water at point 
? Use meters per second as the units.

Hint

Remember, speed is the magnitude of velocity.

Answer

 m/sec

We have examined vector fields that contain vectors of various magnitudes, but just as we have unit vectors, we can also have a
unit vector field. A vector field  is a unit vector field if the magnitude of each vector in the field is 1. In a unit vector field, the
only relevant information is the direction of each vector.

Show that vector field  is a unit vector field.

Solution

To show that  is a unit field, we must show that the magnitude of each vector is . Note that

Example : Velocity Field of a Fluid5.2.5

(x, y) = − +v⇀
2y

+x2 y2
î

2x

+x2 y2
ĵ

(1, −1)

(1, −1) v⇀

(1, −1) = + = +v⇀
−2(−1)

1 +1
î

2(1)

1 +1
ĵ î ĵ

(1, −1) || + || =î ĵ 2
–

√

Exercise 5.2.5

(x, y) = ⟨4|x|, 1⟩v⇀

(2, 3)

65
−−

√

F
⇀

Example : A Unit Vector Field5.2.6

(x, y) = ⟨ , − ⟩F
⇀ y

+x2 y2− −−−−−√

x

+x2 y2− −−−−−√

F
⇀

1
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Therefore,  is a unit vector field.

Is vector field  a unit vector field?

Hint

Calculate the magnitude of  at an arbitrary point .

Answer

No.

Why are unit vector fields important? Suppose we are studying the flow of a fluid, and we care only about the direction in which
the fluid is flowing at a given point. In this case, the speed of the fluid (which is the magnitude of the corresponding velocity
vector) is irrelevant, because all we care about is the direction of each vector. Therefore, the unit vector field associated with
velocity is the field we would study.

If  is a vector field, then the corresponding unit vector field is . Notice that if 

is the vector field from Example , then the magnitude of  is , and therefore the corresponding unit vector field is
the field  from the previous example.

If  is a vector field, then the process of dividing  by its magnitude to form unit vector field  is called normalizing the
field .

Vector Fields in  

We have seen several examples of vector fields in ; let’s now turn our attention to vector fields in . These vector fields can be
used to model gravitational or electromagnetic fields, and they can also be used to model fluid flow or heat flow in three
dimensions. A two-dimensional vector field can really only model the movement of water on a two-dimensional slice of a river
(such as the river’s surface). Since a river flows through three spatial dimensions, to model the flow of the entire depth of the river,
we need a vector field in three dimensions.

The extra dimension of a three-dimensional field can make vector fields in  more difficult to visualize, but the idea is the same.
To visualize a vector field in , plot enough vectors to show the overall shape. We can use a similar method to visualizing a vector
field in  by choosing points in each octant.

Just as with vector fields in , we can represent vector fields in  with component functions. We simply need an extra
component function for the extra dimension. We write either

or

+( )
y

+x2 y2− −−−−−√

2

(− )
x

+x2 y2− −−−−−√

2
− −−−−−−−−−−−−−−−−−−−−−−−−−−

⎷


 = +

y2

+x2 y2

x2

+x2 y2

− −−−−−−−−−−−−−−

√

=
+x2 y2

+x2 y2

− −−−−−−

√

= 1

F
⇀

Exercise 5.2.6

(x, y) = ⟨−y, x⟩F
⇀

F
⇀

(x, y)

= ⟨P ,Q,R⟩F
⇀

⟨ , , ⟩P

|| ||F
⇀

Q

|| ||F
⇀

R

|| ||F
⇀ (x, y) = ⟨y, −x⟩F

⇀

5.2.6 F
⇀

+x2 y2− −−−−−
√

G
⇀

F
⇀

F
⇀

/|| ||F
⇀

F
⇀

F
⇀

R
3

R
2

R
3

R
3

R
3

R
2

R
2

R
3

(x, y, z) = ⟨P (x, y, z),Q(x, y, z),R(x, y, z)⟩F
⇀

(5.2.3)

(x, y, z) = P (x, y, z) +Q(x, y, z) +R(x, y, z) .F
⇀

î ĵ k̂ (5.2.4)
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Describe vector field .

Solution

For this vector field, the - and -components are constant, so every point in  has an associated vector with - and -
components equal to one. To visualize , we first consider what the field looks like in the -plane. In the -plane, .
Hence, each point of the form  has vector  associated with it. For points not in the -plane but slightly above
it, the associated vector has a small but positive -component, and therefore the associated vector points slightly upward. For
points that are far above the -plane, the -component is large, so the vector is almost vertical. Figure  shows this vector
field.

Figure : A visual representation of vector field .

Sketch vector field .

Hint

Substitute enough points into the vector field to get an idea of the general shape.

Answer

Example : Sketching a Vector Field in Three Dimensions5.2.7

(x, y, z) = ⟨1, 1, z⟩F
⇀

x y R
3 x y

F
⇀

xy xy z = 0
(a, b, 0) ⟨1, 1, 0⟩ xy

z

xy z 5.2.6

5.2.6 (x, y, z) = ⟨1, 1, z⟩F
⇀

Exercise 5.2.7

(x, y, z) = ⟨2, , 1⟩G
⇀ z

2
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In the next example, we explore one of the classic cases of a three-dimensional vector field: a gravitational field.

Newton’s law of gravitation states that , where G is the universal gravitational constant. It describes the

gravitational field exerted by an object (object 1) of mass  located at the origin on another object (object 2) of mass 
located at point . Field  denotes the gravitational force that object 1 exerts on object 2,  is the distance between the
two objects, and  indicates the unit vector from the first object to the second. The minus sign shows that the gravitational
force attracts toward the origin; that is, the force of object 1 is attractive. Sketch the vector field associated with this equation.

Solution

Since object 1 is located at the origin, the distance between the objects is given by . The unit vector from

object 1 to object 2 is , and hence . Therefore, gravitational vector field  exerted by object 1

on object 2 is

This is an example of a radial vector field in .

Figure  shows what this gravitational field looks like for a large mass at the origin. Note that the magnitudes of the
vectors increase as the vectors get closer to the origin.

Example : Describing a Gravitational Vector Field5.2.8

= −GF
⇀ m1m2

r2
r̂

m1 m2

(x, y, z) F
⇀

r

r̂

r = + +x2 y2 z2
− −−−−−−−−−

√

=r̂
⟨x, y, z⟩

||⟨x, y, z⟩||
= ⟨ , , ⟩r̂

x

r

y

r

z

r
F
⇀

= −G ⟨ , , ⟩.F
⇀

m1m2
x

r3

y

r3

z

r3

R
3

5.2.7
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Figure : A visual representation of gravitational vector field  for a large mass at the origin.

The mass of asteroid 1 is 750,000 kg and the mass of asteroid 2 is 130,000 kg. Assume asteroid 1 is located at the origin, and
asteroid 2 is located at , measured in units of 10 to the eighth power kilometers. Given that the universal
gravitational constant is , find the gravitational force vector that asteroid 1 exerts on
asteroid 2.

Hint

Follow Example  and first compute the distance between the asteroids.

Answer

, ,  N

Gradient Fields (Conservative Fields) 

In this section, we study a special kind of vector field called a gradient field or a conservative field. These vector fields are
extremely important in physics because they can be used to model physical systems in which energy is conserved. Gravitational
fields and electric fields associated with a static charge are examples of gradient fields.

Recall that if  is a (scalar) function of  and , then the gradient of  is

We can see from the form in which the gradient is written that  is a vector field in . Similarly, if  is a function of , , and ,
then the gradient of  is

The gradient of a three-variable function is a vector field in . A gradient field is a vector field that can be written as the gradient
of a function, and we have the following definition.

A vector field  in  or in  is a gradient field if there exists a scalar function  such that .

Use technology to plot the gradient vector field of .

Solution

5.2.7 = −G ⟨ , , ⟩F
⇀

m1m2
x

r3

y

r3

z

r3

Exercise 5.2.8

(15, −5, 10)

G= 6.67384 ×10−11m3kg−1s−2

5.2.8

1.49063 ×10−18 4.96876 ×10−19 9.93752 ×10−19

f x y f

gradf = f(x, y) = (x, y) + (x, y) .∇
⇀

fx î fy ĵ (5.2.5)

f∇
⇀

R
2 f x y z

f

gradf = f(x, y, z) = (x, y, z) + (x, y, z) + (x, y, z) .∇
⇀

fx î fy ĵ fz k̂ (5.2.6)

R
3

DEFINITION: Gradient Field

F
⇀

R
2

R
3 f f =∇

⇀
F
⇀

Example : Sketching a Gradient Vector Field5.2.9

f(x, y) = x2y2
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The gradient of  is . To sketch the vector field, use a computer algebra system such as
Mathematica. Figure  shows .

Figure : The gradient vector field is , where .

Use technology to plot the gradient vector field of .

Hint

Find the gradient of .

Answer

Consider the function  from Example . Figure  shows the level curves of this function overlaid on the
function’s gradient vector field. The gradient vectors are perpendicular to the level curves, and the magnitudes of the vectors get
larger as the level curves get closer together, because closely grouped level curves indicate the graph is steep, and the magnitude of
the gradient vector is the largest value of the directional derivative. Therefore, you can see the local steepness of a graph by
investigating the corresponding function’s gradient field.

f f(x, y) = ⟨2x , 2 y⟩∇
⇀

y2 x2

5.2.8 f∇
⇀

5.2.8 f∇
⇀

f(x,y) = x2y2

Exercise 5.2.9

f(x, y) = sinx cosy

f

f(x, y) = x2y2 5.2.9 5.2.9

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64021?pdf


Access for free at OpenStax 5.2.13 https://math.libretexts.org/@go/page/64021

Figure : The gradient field of  and several level curves of . Notice that as the level curves get closer together,
the magnitude of the gradient vectors increases.

As we learned earlier, a vector field  is a conservative vector field, or a gradient field if there exists a scalar function  such that 
. In this situation,  is called a potential function for . Conservative vector fields arise in many applications,

particularly in physics. The reason such fields are called conservative is that they model forces of physical systems in which energy
is conserved. We study conservative vector fields in more detail later in this chapter.

You might notice that, in some applications, a potential function  for  is defined instead as a function such that . This
is the case for certain contexts in physics, for example.

Is  a potential function for vector field

?

Solution

We need to confirm whether . We have

Therefore,  and  is a potential function for .

Is  a potential function for ?

Hint

Compute the gradient of .

Answer

No

The velocity of a fluid is modeled by field . Verify that  is a potential function

for .

5.2.9 f(x,y) = x2y2 f

F
⇀

f

f =∇
⇀

F
⇀

f F
⇀

f F
⇀

− f =∇
⇀

F
⇀

Example : Verifying a Potential Function5.2.10

f(x, y, z) = yz−sin(xy)x2

(x, y, z) = ⟨2xyz−y cos(xy), z−x cos(xy), y⟩F
⇀

x2 x2

f =∇
⇀

F
⇀

.

(x, y) = 2xyz−y cos(xy)fx

(x, y) = z−x cos(xy)fy x2

(x, y) = yfz x2

f =∇
⇀

F
⇀

f F
⇀

Exercise 5.2.10

f(x, y, z) = cos(yz) +x2 y2z2 (x, y, z) = ⟨2x cos(yz), − z sin(yz) +2y , ⟩F
⇀

x2 z2 y2

f

Example : Verifying a Potential Function5.2.11

(x, y) = ⟨xy, −y⟩v⇀ x2

2
f(x, y) = −

yx2

2

y2

2
v⇀
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Solution

To show that  is a potential function, we must show that . Note that  and .

Therefore,  and  is a potential function for  (Figure ).

Figure : Velocity field  has a potential function and is a conservative field.

Verify that  is a potential function for velocity field .

Hint

Calculate the gradient.

Answer

If  is a conservative vector field, then there is at least one potential function  such that . But, could there be more than
one potential function? If so, is there any relationship between two potential functions for the same vector field? Before answering
these questions, let’s recall some facts from single-variable calculus to guide our intuition. Recall that if  is an integrable
function, then  has infinitely many antiderivatives. Furthermore, if  and  are both antiderivatives of , then  and  differ
only by a constant. That is, there is some number  such that .

Now let  be a conservative vector field and let  and  be potential functions for . Since the gradient is like a derivative, 
being conservative means that  is “integrable” with “antiderivatives”  and . Therefore, if the analogy with single-variable
calculus is valid, we expect there is some constant  such that . The next theorem says that this is indeed the
case.

To state the next theorem with precision, we need to assume the domain of the vector field is connected and open. To be connected
means if  and  are any two points in the domain, then you can walk from  to  along a path that stays entirely inside the
domain.

Let  be a conservative vector field on an open and connected domain and let  and  be functions such that  and 
. Then, there is a constant  such that .

f f =∇
⇀

v⇀ (x, y) = xyfx (x, y) = −yfy
x2

2
f(x, y) = ⟨xy, −y⟩∇

⇀ x2

2
f v⇀ 5.2.10

5.2.10 (x,y)v⇀

Exercise 5.2.11

f(x, y) = +xx2y2 (x, y) = ⟨3 +1, 2 y⟩v⇀ x2y2 x3

f(x, y) = (x, y)∇
⇀

v⇀

F
⇀

f f =∇
⇀

F
⇀

k(x)

k F
⇀

G
⇀

k F
⇀

G
⇀

C (x) = (x) +CF
⇀

G
⇀

F
⇀

f g F
⇀

F
⇀

F
⇀

f g

C f(x) = g(x) +C

P1 P2 P1 P2

UNIQUENESS OF POTENTIAL FUNCTIONS

F
⇀

f g f =∇
⇀

F
⇀

g =∇
⇀

G
⇀

C f = g+C
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Since  and  are both potential functions for , then . Let , then we have 
.We would like to show that  is a constant function.

Assume  is a function of  and  (the logic of this proof extends to any number of independent variables). Since , we
have  and . The expression  implies that  is a constant function with respect to —
that is,  for some function . Similarly,  implies  for some function .
Therefore, function  depends only on  and also depends only on . Thus,  for some constant  on the
connected domain of . Note that we really do need connectedness at this point; if the domain of  came in two separate
pieces, then  could be a constant  on one piece but could be a different constant  on the other piece. Since 

, we have that , as desired.

Conservative Vector Fields and Potential Functions 

As we have learned, the Fundamental Theorem for Line Integrals says that if  is conservative, then calculating  has two
steps: first, find a potential function  for  and, second, calculate , where  is the endpoint of  and  is the
starting point. To use this theorem for a conservative field , we must be able to find a potential function  for . Therefore, we
must answer the following question: Given a conservative vector field , how do we find a function  such that ? Before
giving a general method for finding a potential function, let’s motivate the method with an example.

Find a potential function for , thereby showing that  is conservative.

Solution

Suppose that  is a potential function for . Then, , and therefore

Integrating the equation  with respect to  yields the equation

Notice that since we are integrating a two-variable function with respect to , we must add a constant of integration that is a
constant with respect to , but may still be a function of . The equation  can be confirmed by taking
the partial derivative with respect to :

Since  is a potential function for ,

and therefore

This implies that , so . Therefore, any function of the form  is a
potential function. Taking, in particular,  gives the potential function .

To verify that  is a potential function, note that .

Proof

f g F
⇀

(f −g) = f − g = − =∇
⇀

∇
⇀

∇
⇀

F
⇀

F
⇀

0
⇀

h = f −g

h =∇
⇀

0
⇀

h

h x y h =∇
⇀

0
⇀

(x, y) = 0hx (x, y) = 0hy (x, y) = 0hx h x

h(x, y) = (y)k1 k1 (x, y) = 0hy h(x, y) = (x)k2 k2

h y x h(x, y) = C C

F
⇀

F
⇀

k C1 C2

f −g = h = C f = g+C

□

F
⇀

⋅ d∫C F
⇀

r⇀

f F
⇀

f( ) −f( )P1 P0 P1 C P0

F
⇀

f F
⇀

F
⇀

f f =∇
⇀

F
⇀

Example : Finding a Potential Function5.2.5

(x, y) = ⟨2x , 3 +cos(y)⟩F
⇀

y3 x2y2 F
⇀

f(x, y) F
⇀

f =∇
⇀

F
⇀

(x, y) = 2x and (x, y) = 3 +cosy.fx y3 fy x2y2

(x, y) = 2xfx y3 x

f(x, y) = +h(y).x2y3

x

x y f(x, y) = +h(y)x2y3

x

= ( ) + (h(y)) = 2x +0 = 2x .
∂f

∂x

∂

∂x
x2y3 ∂

∂x
y3 y3

f F
⇀

(x, y) = 3 +cos(y),fy x2y2

3 +g'(y) = 3 +cos(y).x2y2 x2y2

h'(y) = cosy h(y) = siny+C f(x, y) = +sin(y) +Cx2y3

C = 0 f(x, y) = +sin(y)x2y3

f f(x, y) = ⟨2x , 3 +cosy⟩ =∇
⇀

y3 x2y2 F
⇀
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Find a potential function for .

Hint

Follow the steps in Example .

Answer

The logic of the previous example extends to finding the potential function for any conservative vector field in . Thus, we have
the following problem-solving strategy for finding potential functions:

1. Integrate  with respect to . This results in a function of the form , where  is unknown.
2. Take the partial derivative of  with respect to , which results in the function .
3. Use the equation  to find .
4. Integrate  to find .
5. Any function of the form , where  is a constant, is a potential function for .

We can adapt this strategy to find potential functions for vector fields in , as shown in the next example.

Find a potential function for , thereby showing that  is conservative.

Solution

Suppose that  is a potential function. Then,  and therefore . Integrating this equation with respect
to  yields the equation  for some function . Notice that, in this case, the constant of integration
with respect to  is a function of  and .

Since  is a potential function,

Therefore,

Integrating this function with respect to  yields

for some function  of  alone. (Notice that, because we know that  is a function of only  and , we do not need to write 
.) Therefore,

To find , we now must only find . Since  is a potential function,

This implies that , so . Letting  gives the potential function

To verify that  is a potential function, note that .

Exercise 5.2.5

(x, y) = ⟨ +y, 3 +x⟩F
⇀

exy3 exy2

5.2.5

f(x, y) = +xyexy3

R
2

PROBLEM-SOLVING STRATEGY: FINDING A POTENTIAL FUNCTION FOR A CONSERVATIVE VECTOR
FIELD (x, y) = ⟨P (x, y),Q(x, y)⟩F

⇀

P x g(x, y) +h(y) h(y)
g(x, y) +h(y) y gy(x, y) +h'(y)

gy(x, y) +h'(y) = Q(x, y) h'(y)
h'(y) h(y)

f(x, y) = g(x, y) +h(y) +C C F
⇀

R
3

Example : Finding a Potential Function in 5.2.6 R
3

F (x, y, z) = ⟨2xy, +2y , 3 +2z⟩x2 z3 y2z2 F
⇀

f f =∇
⇀

F
⇀

(x, y, z) = 2xyfx
x f(x, y, z) = y+g(y, z)x2 g

x y z

f

+2y = (x, y, z) = + (y, z).x2 z3 fy x2 gy

(y, z) = 2y .gy z3

y

g(y, z) = +h(z)y2z3

h(z) z g y z

g(y, z) = +h(x, z)y2z3

f(x, y, z) = y+g(y, z) = y+ +h(z).x2 x2 y2z3

f h f

3 +2z = (y, z) = 3 +h'(z).y2z2 gz y2z2

h'(z) = 2z h(z) = +Cz2 C = 0

f(x, y, z) = y+ + .x2 y2z3 z2

f f(x, y, z) = ⟨2xy, +2y , 3 +2z⟩ = (x, y, z)∇
⇀

x2 z3 y2z2 F
⇀
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Find a potential function for .

Hint

Following Example , begin by integrating with respect to .

Answer

We can apply the process of finding a potential function to a gravitational force. Recall that, if an object has unit mass and is
located at the origin, then the gravitational force in  that the object exerts on another object of unit mass at the point  is
given by vector field

,

where  is the universal gravitational constant. In the next example, we build a potential function for , thus confirming what we
already know: that gravity is conservative.

Find a potential function  for .

Solution

Suppose that  is a potential function. Then,  and therefore

To integrate this function with respect to , we can use -substitution. If , then , so

for some function . Therefore,

Since  is a potential function for ,

.

Since ,  also equals .

Therefore,

Exercise 5.2.6

(x, y, z) = ⟨12 , cosy cosz, 1 −siny sinz⟩F
⇀

x2

5.2.6 x

f(x, y, z) = 4 +siny cosz+zx3

R
2 (x, y)

(x, y) = −G⟨ , ⟩F
⇀ x

( + )x2 y2 3/2

y

( + )x2 y2 3/2

G F
⇀

Example : Finding a Potential Function5.2.7

f (x, y) = −G⟨ , ⟩F
⇀ x

( + )x2 y2 3/2

y

( + )x2 y2 3/2

f f =∇
⇀

F
⇀

(x, y) = .fx
−Gx

( + )x2 y2 3/2

x u u = +x2 y2 = x dx
du

2

∫ dx
−Gx

( + )x2 y2 3/2
= ∫ du

−G

2u3/2

= +h(y)
G

u−−√

= +h(y)
G

+x2 y2
− −−−−−

√

h(y)

f(x, y) = +h(y).
G

+x2 y2− −−−−−√

f F
⇀

(x, y) =fy
−Gy

( + )x2 y2 3/2

f(x, y) = +h(y)
G

+x2 y2
− −−−−−

√
(x, y)fy +h'(y)

−Gy

( + )x2 y2 3/2
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which implies that . Thus, we can take  to be any constant; in particular, we can let . The function

is a potential function for the gravitational field . To confirm that  is a potential function, note that

Find a potential function  for the three-dimensional gravitational force 

.

Hint

Follow the Problem-Solving Strategy.

Answer

Testing a Vector Field 

Until now, we have worked with vector fields that we know are conservative, but if we are not told that a vector field is
conservative, we need to be able to test whether it is conservative. Recall that, if  is conservative, then  has the cross-partial
property (see The Cross-Partial Property of Conservative Vector Fields). That is, if  is conservative, then , 

, and . So, if  has the cross-partial property, then is  conservative? If the domain of  is open and simply
connected, then the answer is yes.

If  is a vector field on an open, simply connected region  and , , and  throughout 
, then  is conservative.

Although a proof of this theorem is beyond the scope of the text, we can discover its power with some examples. Later, we see why
it is necessary for the region to be simply connected.

Combining this theorem with the cross-partial property, we can determine whether a given vector field is conservative:

Let  be a vector field on an open, simply connected region . Then , , and 
throughout  if and only if  is conservative.

The version of this theorem in  is also true. If  is a vector field on an open, simply connected domain in ,
then  is conservative if and only if .

+h'(y) = ,
−Gy

( + )x2 y2 3/2

−Gy

( + )x2 y2 3/2

h'(y) = 0 h(y) h(y) = 0

f(x, y) =
G

+x2 y2− −−−−−
√

F
⇀

f

f(x, y)∇
⇀

= ⟨− (2x), − (2y)⟩
1

2

G

( + )x2 y2 3/2

1

2

G

( + )x2 y2 3/2

= ⟨ , ⟩
−Gx

( + )x2 y2 3/2

−Gy

( + )x2 y2 3/2

= (x, y).F
⇀

Exercise 5.2.7

f

(x, y, z) = ⟨ , , ⟩F
⇀ −Gx

( + + )x2 y2 z2 3/2

−Gy

( + + )x2 y2 z2 3/2

−Gz

( + + )x2 y2 z2 3/2

f(x, y, z) =
G

+ +x2 y2 z2− −−−−−−−−−
√

F
⇀

F
⇀

= ⟨P ,Q,R⟩F
⇀

=Py Qx

=Pz Rx =Qz Ry F
⇀

F
⇀

F
⇀

Theorem: THE CROSS-PARTIAL TEST FOR CONSERVATIVE FIELDS

= ⟨P ,Q,R⟩F
⇀

D =Py Qx =Pz Rx =Qz Ry

D F
⇀

Theorem: CROSS-PARTIAL PROPERTY OF CONSERVATIVE FIELDS

= ⟨P ,Q,R⟩F
⇀

D =Py Qx =Pz Rx =Qz Ry

D F
⇀

R
2 (x, y) = ⟨P ,Q⟩F

⇀
R

2

F
⇀

=Py Qx
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Determine whether vector field  is conservative.

Solution

Note that the domain of  is all of  and  is simply connected. Therefore, we can use The Cross-Partial Property of
Conservative Vector Fields to determine whether  is conservative. Let

and

Since  and , the vector field is not conservative.

Determine vector field  is conservative.

Solution

Note that the domain of  is the part of  in which . Thus, the domain of  is part of a plane above the -axis, and this
domain is simply connected (there are no holes in this region and this region is connected). Therefore, we can use The Cross-
Partial Property of Conservative Vector Fields to determine whether  is conservative. Let

Then  and thus  is conservative.

Determine whether  is conservative.

Hint

Use The Cross-Partial Property of Conservative Vector Fields from the previous section.

Answer

It is conservative.

When using The Cross-Partial Property of Conservative Vector Fields, it is important to remember that a theorem is a tool, and
like any tool, it can be applied only under the right conditions. In the case of The Cross-Partial Property of Conservative Vector
Fields, the theorem can be applied only if the domain of the vector field is simply connected.

To see what can go wrong when misapplying the theorem, consider the vector field from Example :

This vector field satisfies the cross-partial property, since

and

Example : Determining Whether a Vector Field Is Conservative5.2.8

(x, y, z) = ⟨x z, yz, ⟩F
⇀

y2 x2 z2

F
⇀

R
2

R
3

F
⇀

P (x, y, z) = x zy2

Q(x, y, z) = yzx2

R(x, y, z) = .z2

(x, y, z) = yQz x2 (x, y, z) = 0Ry

Example : Determining Whether a Vector Field Is Conservative5.2.9

(x, y) = ⟨x ln(y), ⟩F
⇀ x2

2y

F
⇀

R
2 y > 0 F

⇀
x

F
⇀

P (x, y) = x ln(y) and  Q(x, y) = .
x2

2y

(x, y) = = (x, y)Py

x

y
Qx F

⇀

Exercise 5.2.8

(x, y) = ⟨sinx cosy, cosx siny⟩F
⇀

5.2.4

(x, y) = + .F
⇀ y

+x2 y2
î

−x

+x2 y2
ĵ (5.2.7)

( ) = =
∂

∂y

y

+x2 y2

( + ) −y(2y)x2 y2

( + )x2 y2 2

−x2 y2

( + )x2 y2 2
(5.2.8)
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Since  satisfies the cross-partial property, we might be tempted to conclude that  is conservative. However,  is not
conservative. To see this, let

be a parameterization of the upper half of a unit circle oriented counterclockwise (denote this ) and let

be a parameterization of the lower half of a unit circle oriented clockwise (denote this ). Notice that  and  have the same
starting point and endpoint. Since ,

and

Therefore,

and

Thus,  and  have the same starting point and endpoint, but . Therefore,  is not independent of path

and  is not conservative.

To summarize:  satisfies the cross-partial property and yet  is not conservative. What went wrong? Does this contradict The
Cross-Partial Property of Conservative Vector Fields? The issue is that the domain of  is all of  except for the origin. In
other words, the domain of  has a hole at the origin, and therefore the domain is not simply connected. Since the domain is not
simply connected, The Cross-Partial Property of Conservative Vector Fields does not apply to .

Key Concepts 
A vector field assigns a vector  to each point  in a subset  of  or .  to each point  in a
subset  of .
Vector fields can describe the distribution of vector quantities such as forces or velocities over a region of the plane or of space.
They are in common use in such areas as physics, engineering, meteorology, oceanography.
We can sketch a vector field by examining its defining equation to determine relative magnitudes in various locations and then
drawing enough vectors to determine a pattern.
A vector field  is called conservative if there exists a scalar function  such that .

Key Equations 
Vector field in  

 
or 

Vector field in  
 

or 

( ) = = .
∂

∂x

−x

+x2 y2

−( + ) +x(2x)x2 y2

( + )x2 y2 2

−x2 y2

( + )x2 y2 2
(5.2.9)

F
⇀

F
⇀

F
⇀

(t) = ⟨cos t, sin t⟩, 0 ≤ t ≤ πr⇀ (5.2.10)

C1

(t) = ⟨cos t, −sin t⟩, 0 ≤ t ≤ πs⇀ (5.2.11)

C2 C1 C2

t+ t = 1sin2 cos2

( (t)) ⋅ '(t) = ⟨sin(t), −cos(t)⟩ ⋅ ⟨−sin(t), cos(t)⟩ = −1F
⇀

r⇀ r⇀ (5.2.12)

( (t)) ⋅ '(t) = ⟨−sin t, −cos t⟩ ⋅ ⟨−sin t, −cos t⟩ = t+ t = 1.F
⇀

s⇀ s⇀ sin2 cos2 (5.2.13)

⋅ d = −1 dt = −π∫
C1

F
⇀

r⇀ ∫
π

0
(5.2.14)

⋅ d = 1 dt = π.∫
C2

F
⇀

r⇀ ∫
π

0
(5.2.15)

C1 C2 ⋅ d ≠ ⋅ d∫
C1

F
⇀

r⇀ ∫
C2

F
⇀

r⇀ F
⇀

F
⇀

F
⇀

F
⇀

F
⇀

R
2

F
⇀

F
⇀

(x, y)F
⇀

(x, y) D R
2

R
3 (x, y, z)F

⇀
(x, y, z)

D R
3

F
⇀

f f =∇
⇀

F
⇀

R
2

(x, y) = ⟨P (x, y), Q(x, y)⟩F
⇀

(x, y) = P (x, y) +Q(x, y)F
⇀

î ĵ

R
3

(x, y, z) = ⟨P (x, y, z), Q(x, y, z), R(x, y, z)⟩F
⇀

(x, y, z) = P (x, y, z) +Q(x, y, z) +R(x, y, z)F
⇀

î ĵ k̂
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Glossary 

conservative field

a vector field for which there exists a scalar function  such that 

gradient field

a vector field  for which there exists a scalar function  such that ; in other words, a vector field that is the gradient
of a function; such vector fields are also called conservative

potential function

a scalar function  such that 

radial field
a vector field in which all vectors either point directly toward or directly away from the origin; the magnitude of any vector
depends only on its distance from the origin

rotational field
a vector field in which the vector at point  is tangent to a circle with radius ; in a rotational field, all
vectors flow either clockwise or counterclockwise, and the magnitude of a vector depends only on its distance from the origin

unit vector field
a vector field in which the magnitude of every vector is 1

vector field

measured in , an assignment of a vector  to each point  of a subset  of ; in , an assignment of a vector 
 to each point  of a subset  of 
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5.3: Line Integrals

Calculate a scalar line integral along a curve.
Calculate a vector line integral along an oriented curve in space.
Use a line integral to compute the work done in moving an object along a curve in a vector field.
Describe the flux and circulation of a vector field.

We are familiar with single-variable integrals of the form , where the domain of integration is an interval . Such

an interval can be thought of as a curve in the -plane, since the interval defines a line segment with endpoints  and —
in other words, a line segment located on the -axis. Suppose we want to integrate over any curve in the plane, not just over a line
segment on the -axis. Such a task requires a new kind of integral, called a line integral.

Line integrals have many applications to engineering and physics. They also allow us to make several useful generalizations of the
Fundamental Theorem of Calculus. And, they are closely connected to the properties of vector fields, as we shall see.

Scalar Line Integrals

A line integral gives us the ability to integrate multivariable functions and vector fields over arbitrary curves in a plane or in space.
There are two types of line integrals: scalar line integrals and vector line integrals. Scalar line integrals are integrals of a scalar
function over a curve in a plane or in space. Vector line integrals are integrals of a vector field over a curve in a plane or in space.
Let’s look at scalar line integrals first.

A scalar line integral is defined just as a single-variable integral is defined, except that for a scalar line integral, the integrand is a
function of more than one variable and the domain of integration is a curve in a plane or in space, as opposed to a curve on the -
axis.

For a scalar line integral, we let  be a smooth curve in a plane or in space and let  be a function with a domain that includes .
We chop the curve into small pieces. For each piece, we choose point  in that piece and evaluate  at . (We can do this because
all the points in the curve are in the domain of .) We multiply  by the arc length of the piece , add the product 
over all the pieces, and then let the arc length of the pieces shrink to zero by taking a limit. The result is the scalar line integral of
the function over the curve.

For a formal description of a scalar line integral, let  be a smooth curve in space given by the parameterization 
, . Let  be a function with a domain that includes curve . To define the line integral

of the function  over , we begin as most definitions of an integral begin: we chop the curve into small pieces. Partition the
parameter interval  into  subintervals  of equal width for , where  and  (Figure ). Let 
be a value in the  interval . Denote the endpoints of , ,…,  by ,…, . Points P  divide curve  into 

 pieces , ,…, ,with lengths , ,…, , respectively. Let  denote the endpoint of  for . Now,
we evaluate the function  at point  for . Note that  is in piece , and therefore  is in the domain of .
Multiply  by the length  of , which gives the area of the “sheet” with base , and height . This is analogous to

using rectangles to approximate area in a single-variable integral. Now, we form the sum .
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Figure : Curve  has been divided into n pieces, and a point inside each piece has been chosen.

Note the similarity of this sum versus a Riemann sum; in fact, this definition is a generalization of a Riemann sum to arbitrary

curves in space. Just as with Riemann sums and integrals of form , we define an integral by letting the width of the

pieces of the curve shrink to zero by taking a limit. The result is the scalar line integral of  along .

You may have noticed a difference between this definition of a scalar line integral and a single-variable integral. In this definition,
the arc lengths , ,…,  aren’t necessarily the same; in the definition of a single-variable integral, the curve in the -axis
is partitioned into pieces of equal length. This difference does not have any effect in the limit. As we shrink the arc lengths to zero,
their values become close enough that any small difference becomes irrelevant.

Let  be a function with a domain that includes the smooth curve  that is parameterized by , 
. The scalar line integral of  along  is

if this limit exists (  and  are defined as in the previous paragraphs). If  is a planar curve, then  can be represented by
the parametric equations , , and . If  is smooth and  is a function of two variables, then the
scalar line integral of  along  is defined similarly as

if this limit exists.

If  is a continuous function on a smooth curve , then  always exists. Since  is defined as a limit of Riemann

sums, the continuity of  is enough to guarantee the existence of the limit, just as the integral  exists if  is continuous

over .

Before looking at how to compute a line integral, we need to examine the geometry captured by these integrals. Suppose that 
 for all points  on a smooth planar curve . Imagine taking curve  and projecting it “up” to the surface defined

by , thereby creating a new curve  that lies in the graph of  (Figure ). Now we drop a “sheet” from  down

to the -plane. The area of this sheet is . If  for some points in , then the value of  is the

area above the -plane less the area below the -plane. (Note the similarity with integrals of the form .)
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lim
n→∞

∑
i=1

n

P ∗
i si (5.3.2)

f C f ds∫
C

f ds∫
C

f g(x)dx∫
b

a

g

[a, b]

f(x, y) ≥ 0 (x, y) C C

f(x, y) C' f(x, y) 5.3.2 C'

xy f(x, y)ds∫
C

f(x, y) ≤ 0 C f(x, y)ds∫
C

xy xy g(x)dx∫
b

a
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Figure : The area of the blue sheet is .

From this geometry, we can see that line integral  does not depend on the parameterization  of . As long as the

curve is traversed exactly once by the parameterization, the area of the sheet formed by the function and the curve is the same. This
same kind of geometric argument can be extended to show that the line integral of a three-variable function over a curve in space
does not depend on the parameterization of the curve.

Find the value of integral , where  is the upper half of the unit circle.

Solution

The integrand is . Figure  shows the graph of , curve C, and the sheet formed by them. Notice that

this sheet has the same area as a rectangle with width  and length . Therefore, .

Figure : The sheet that is formed by the upper half of the unit circle in a plane and the graph of .

To see that  using the definition of line integral, we let  be a parameterization of . Then,  for

any number  in the domain of . Therefore,

5.3.2 f(x,y) ds∫
C

f(x, y)ds∫
C

(t)r
⇀ C

 Example :       Finding the Value of a Line Integral5.3.1

2 ds∫
C

C

f(x, y) = 2 5.3.3 f(x, y) = 2

π 2 2 ds = 2π∫
C

units2

5.3.3 f(x,y) = 2

2 ds = 2π∫
C

(t)r
⇀ C f( ( )) = 2r

⇀ ti

ti r⇀
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Find the value of , where  is the curve parameterized by , , .

Hint

Find the shape formed by  and the graph of function .

Answer

Note that in a scalar line integral, the integration is done with respect to arc length , which can make a scalar line integral difficult

to calculate. To make the calculations easier, we can translate  to an integral with a variable of integration that is .

Let  for  be a parameterization of . Since we are assuming that  is smooth, 
 is continuous for all  in . In particular, , , and  exist for all  in . According

to the arc length formula, we have

If width  is small, then function ,  is almost constant over the interval 

.Therefore,

and we have

See Figure .

Figure : If we zoom in on the curve enough by making  very small, then the corresponding piece of the curve is
approximately linear.

f ds∫
C

= f( ( )) Δlim
n→∞

∑
i=1

n

r
⇀ t∗

i si

= 2 Δlim
n→∞

∑
i=1

n

si

= 2 Δlim
n→∞

∑
i=1

n

si

= 2(length of C)

= 2π .units2

 Exercise 5.3.1

(x+y)ds∫
C

C x = t y = t 0 ≤ t ≤ 1

C f(x, y) = x+y

2
–√

s

f ds∫
C

t

(t) = ⟨x(t), y(t), z(t)⟩r
⇀ a ≤ t ≤ b C C

'(t) = ⟨x'(t), y'(t), z'(t)⟩r
⇀ t [a, b] x'(t) y'(t) z'(t) t [a, b]

length( ) = Δ = ∥ '(t)∥ dt.Ci si ∫
ti

ti−1

r
⇀

Δ = −ti ti ti−1 ∥ '(t)∥ dt ≈ ∥ '( )∥ Δ∫
ti

ti−1

r⇀ r⇀ t∗
i ti ∥ '(t)∥r⇀

[ , ]ti−1 ti

∥ '(t)∥ dt ≈ ∥ '( )∥ Δ ,∫
ti

ti−1

r
⇀

r
⇀ t∗

i ti (5.3.3)

f( ( )) Δ ≈ f( ( ))∥ '( )∥ Δ .∑
i=1

n

r⇀ t∗
i si ∑

i=1

n

r⇀ t∗
i r⇀ t∗

i ti

5.3.4

5.3.4 Δti
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Note that

In other words, as the widths of intervals  shrink to zero, the sum  converges to the integral 

. Therefore, we have the following theorem.

Let  be a continuous function with a domain that includes the smooth curve  with parameterization , . Then

Although we have labeled Equation  as an equation, it is more accurately considered an approximation because we can show
that the left-hand side of Equation  approaches the right-hand side as . In other words, letting the widths of the pieces
shrink to zero makes the right-hand sum arbitrarily close to the left-hand sum. Since

we obtain the following theorem, which we use to compute scalar line integrals.

Let  be a continuous function with a domain that includes the smooth curve  with parameterization 
, . Then

Similarly,

if  is a planar curve and  is a function of two variables.

Note that a consequence of this theorem is the equation . In other words, the change in arc length can be viewed as
a change in the -domain, scaled by the magnitude of vector .

Find the value of integral , where  is part of the helix parameterized by , 

.

Solution

To compute a scalar line integral, we start by converting the variable of integration from arc length  to . Then, we can use
Equation  to compute the integral with respect to . Note that

and

f( ( ))∥ '( )∥ Δ = f( (t))∥ '(t)∥ dt.lim
n→∞

∑
i=1

n

r
⇀ t∗

i r
⇀ t∗

i ti ∫
b

a

r
⇀

r
⇀

[ , ]ti−1 ti f( ( ))∥ '( )∥ Δ∑
i=1

n

r
⇀ t∗

i r
⇀ t∗

i ti

f( (t))∥ '(t)∥ dt∫
b

a

r⇀ r⇀

 Theorem: Evaluating a Scalar Line Integral

f C (t)r
⇀ a ≤ t ≤ b

f ds = f( (t))∥ '(t)∥ dt.∫
C

∫
b

a

r⇀ r⇀ (5.3.4)

5.3.3
5.3.3 n → ∞

∥ '(t)∥ = ,r
⇀ + +(x'(t))2 (y'(t))2 (z'(t))2

− −−−−−−−−−−−−−−−−−−−−−
√

 Theorem: Scalar Line Integral Calculation

f C

(t) = ⟨x(t), y(t), z(t)⟩r
⇀ a ≤ t ≤ b

f(x, y, z)ds = f( (t)) dt.∫
C

∫
b

a

r
⇀ ( + +x'(t))2 (y'(t))2 (z'(t))2

− −−−−−−−−−−−−−−−−−−−−−
√

f(x, y)ds = f( (t)) dt∫
C

∫
b

a

r
⇀ +(x'(t))2 (y'(t))2

− −−−−−−−−−−−−−
√

C f

ds = ∥ '(t)∥ dtr⇀

t '(t)r⇀

 Example : Evaluating a Line Integral5.3.2

( + +z)ds∫
C

x2 y2 C (t) = ⟨cos t, sin t, t⟩r
⇀

0 ≤ t ≤ 2π

s t

5.3.1 t

f( (t)) = t+ t+ t = 1 + tr
⇀ cos2 sin2

= = .+ +(x'(t))2 (y'(t))2 (z'(t))2
− −−−−−−−−−−−−−−−−−−−−−

√ + (t) +1(−sin(t))2 cos2
− −−−−−−−−−−−−−−−−−−

√ 2–√
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Therefore,

Notice that Equation  translated the original difficult line integral into a manageable single-variable integral. Since

we have

Evaluate , where C is the curve with parameterization , .

Hint

Use the two-variable version of scalar line integral definition (Equation ).

Answer

Find the value of integral , where  is part of the helix parameterized by , 

. Notice that this function and curve are the same as in the previous example; the only difference is that the curve has
been reparameterized so that time runs twice as fast.

Solution

As with the previous example, we use Equation  to compute the integral with respect to . Note that 
 and

so we have

Notice that this agrees with the answer in the previous example. Changing the parameterization did not change the value of the
line integral. Scalar line integrals are independent of parameterization, as long as the curve is traversed exactly once by the
parameterization.

( + +z)ds = (1 + t) dt.∫
C

x2 y2 ∫
2π

0
2–√

5.3.1

(1 + t) dt∫
2π

0
2–√ = [ t+ ]2–√

2
–√ t2

2

2π

0

= 2 π+2 ,2–√ 2–√ π2

( + +z)ds = 2 π+2 .∫
C

x2 y2 2–√ 2–√ π2

 Exercise 5.3.2

( + +z)ds∫
C

x2 y2 (t) = ⟨sin(3t), cos(3t)⟩r
⇀ 0 ≤ t ≤

π

4

5.3.2

+ +
1

3

2–√

6

3π

4

 Example : Independence of Parameterization5.3.3

( + +z)ds∫
C

x2 y2 C (t) = ⟨cos(2t), sin(2t), 2t⟩r
⇀

0 ≤ t ≤ π

5.3.1 t

f( (t)) = (2t) + (2t) +2t = 2t+1r
⇀ cos2 sin2

+ +(x'(t))2 (y'(t))2 (z'(t))2
− −−−−−−−−−−−−−−−−−−−−−

√ = (−sin t+cos t+4)
− −−−−−−−−−−−−−−

√

= 22

( + +z)ds∫
C

x2 y2 = 2 (1 +2t)dt2–√ ∫
π

0

= 2 [t+2
–√ t2]

π

0

= 2 (π+ ).2–√ π2
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Evaluate line integral , where  is the line with parameterization , .

Reparameterize C with parameterization , , recalculate line integral , and

notice that the change of parameterization had no effect on the value of the integral.

Hint

Use Equation .

Answer

Both line integrals equal .

Now that we can evaluate line integrals, we can use them to calculate arc length. If , then

Therefore,  is the arc length of .

A wire has a shape that can be modeled with the parameterization , . Find the length of
the wire.

Solution

The length of the wire is given by , where  is the curve with parameterization . Therefore,

 Exercise 5.3.3

( +yz)ds∫
C

x2 C (t) = ⟨2t, 5t, −t⟩r⇀ 0 ≤ t ≤ 10

s(t) = ⟨4t, 10t, −2t⟩ 0 ≤ t ≤ 5 ( +yz)ds∫
C

x2

5.3.1

−
1000 30

−−√

3

f(x, y, z) = 1

f(x, y, z)ds∫
C

= f( ) Δlim
n→∞

∑
i=1

n

t∗
i si

= Δlim
n→∞

∑
i=1

n

si

= length(C)lim
n→∞

= length(C).

1 ds∫
C

C

 Example : Calculating Arc Length5.3.4

(t) = ⟨cos t, sin t, ⟩r
⇀ 2

3 t
3/2 0 ≤ t ≤ 4π

1 ds∫
C

C r
⇀

The length of the wire = 1 ds∫
C

= || '(t)|| dt∫
4π

0
r
⇀

= dt∫
4π

0
(−sin t + t+ t)2 cos2

− −−−−−−−−−−−−−−−
√

= dt∫
4π

0
1 + t
− −−−

√

=
2(1 + t)

3

2

3

∣

∣

∣
∣

4π

0

= ((1 +4π −1) .
2

3
)3/2
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Find the length of a wire with parameterization , .

Hint

Find the line integral of one over the corresponding curve.

Answer

Vector Line Integrals

The second type of line integrals are vector line integrals, in which we integrate along a curve through a vector field. For example,
let

be a continuous vector field in  that represents a force on a particle, and let  be a smooth curve in  contained in the domain
of . How would we compute the work done by  in moving a particle along ?

To answer this question, first note that a particle could travel in two directions along a curve: a forward direction and a backward
direction. The work done by the vector field depends on the direction in which the particle is moving. Therefore, we must specify a
direction along curve ; such a specified direction is called an orientation of a curve. The specified direction is the positive
direction along ; the opposite direction is the negative direction along . When  has been given an orientation,  is called an
oriented curve (Figure ). The work done on the particle depends on the direction along the curve in which the particle is
moving.

A closed curve is one for which there exists a parameterization , , such that , and the curve is traversed
exactly once. In other words, the parameterization is one-to-one on the domain .

Figure : (a) An oriented curve between two points. (b) A closed oriented curve.

Let  be a parameterization of  for  such that the curve is traversed exactly once by the particle and the particle
moves in the positive direction along . Divide the parameter interval  into n subintervals , , of equal
width. Denote the endpoints of , ,…,  by ,…, . Points  divide  into n pieces. Denote the length of the piece
from  to  by . For each , choose a value  in the subinterval . Then, the endpoint of  is a point in the
piece of  between  and  (Figure ). If  is small, then as the particle moves from  to  along , it moves
approximately in the direction of , the unit tangent vector at the endpoint of . Let  denote the endpoint of .
Then, the work done by the force vector field in moving the particle from  to  is , so the total work
done along  is

 Exercise 5.3.4

(t) = ⟨3t+1, 4 −2t, 5 +2t⟩r⇀ 0 ≤ t ≤ 4

4 17−−√

(x, y, z) = P (x, y, z) +Q(x, y, z) +R(x, y, z)F
⇀

î ĵ k̂

R
3 C R

3

F
⇀

F
⇀

C

C

C C C C

5.3.5

(t)r
⇀ a ≤ t ≤ b (a) = (b)r

⇀
r
⇀

(a, b)

5.3.5

(t)r⇀ C a ≤ t ≤ b

C [a, b] [ , ]ti−1 ti 0 ≤ i ≤ n

r( )t0 r( )t1 r( )tn P0 Pn Pi C

Pi−1 Pi Δsi i t∗
i [ , ]ti−1 ti ( )r⇀ t∗

i

C Pi−1 Pi 5.3.6 Δsi Pi−1 Pi C

( )T
⇀

Pi ( )r
⇀ t∗

i P ∗
i ( )r

⇀ t∗
i

Pi−1 Pi ( ) ⋅ (Δ ( ))F
⇀

P ∗
i siT

⇀
P ∗
i

C

( ) ⋅ (Δ ( )) = ( ) ⋅ ( ) Δ .∑
i=1

n

F
⇀

P ∗
i siT

⇀
P ∗
i ∑

i=1

n

F
⇀

P ∗
i T

⇀
P ∗
i si
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Figure : Curve  is divided into n pieces, and a point inside each piece is chosen. The dot product of any tangent vector in the
ith piece with the corresponding vector  is approximated by .

Letting the arc length of the pieces of  get arbitrarily small by taking a limit as  gives us the work done by the field in
moving the particle along . Therefore, the work done by  in moving the particle in the positive direction along  is defined as

which gives us the concept of a vector line integral.

The vector line integral of vector field  along oriented smooth curve  is

if that limit exists.

With scalar line integrals, neither the orientation nor the parameterization of the curve matters. As long as the curve is traversed
exactly once by the parameterization, the value of the line integral is unchanged. With vector line integrals, the orientation of the
curve does matter. If we think of the line integral as computing work, then this makes sense: if you hike up a mountain, then the
gravitational force of Earth does negative work on you. If you walk down the mountain by the exact same path, then Earth’s
gravitational force does positive work on you. In other words, reversing the path changes the work value from negative to positive
in this case. Note that if  is an oriented curve, then we let  represent the same curve but with opposite orientation.

As with scalar line integrals, it is easier to compute a vector line integral if we express it in terms of the parameterization function 

 and the variable . To translate the integral  in terms of , note that unit tangent vector  along  is given by 

 (assuming ). Since , as we saw when discussing scalar line integrals, we have

Thus, we have the following formula for computing vector line integrals:

Because of Equation , we often use the notation  for the line integral .

If , then  denotes vector , and .

5.3.6 C

F
⇀

( ) ⋅ ( )F
⇀

P ∗
i

T
⇀

P ∗
i

C n → ∞

C F
⇀

C

W = ⋅ ds,∫
C

F
⇀

T
⇀

 DEFINITION: Line Integral of a Vector Field

F
⇀

C

⋅ ds = ( ) ⋅ ( )Δ∫
C

F
⇀

T
⇀

lim
n→∞

∑
i=1

n

F
⇀

P ∗
i T

⇀
P ∗
i si

C −C

r⇀ t ⋅ ds∫
C

F
⇀

T
⇀

t T
⇀

C

=T
⇀ '(t)r⇀

∥ '(t)∥r⇀
∥ '(t)∥ ≠ 0r

⇀ ds = ∥ '(t)∥ dtr
⇀

⋅ ds = ( (t)) ⋅ ∥ '(t)∥dt = ( (t)) ⋅ '(t)dt.F
⇀

T
⇀

F
⇀

r
⇀ '(t)r⇀

∥ '(t)∥r⇀
r
⇀

F
⇀

r
⇀

r
⇀

⋅ ds = ( (t)) ⋅ '(t)dt.∫
C

F
⇀

T
⇀

∫
b

a

F
⇀

r
⇀

r
⇀ (5.3.5)

5.3.5 ⋅ d∫
C

F
⇀

r
⇀ ⋅ ds∫

C

F
⇀

T
⇀

(t) = ⟨x(t), y(t), z(t)⟩r⇀
dr⇀

dt
⟨x'(t), y'(t), z'(t)⟩ d = (t)dtr⇀ r⇀

′
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Find the value of integral , where  is the semicircle parameterized by ,  and 

.

Solution

We can use Equation  to convert the variable of integration from  to . We then have

Therefore,

See Figure .

Figure : This figure shows curve ,  in vector field .

Find the value of integral , where  is the semicircle parameterized by ,  and 

.

Solution

Notice that this is the same problem as Example , except the orientation of the curve has been traversed. In this example,
the parameterization starts at  and ends at . By Equation ,

 Example : Evaluating a Vector Line Integral5.3.5

⋅ d∫
C

F
⇀

r⇀ C (t) = ⟨cos t, sin t⟩r⇀ 0 ≤ t ≤ π

= ⟨−y, x⟩F
⇀

5.3.5 s t

( (t)) = ⟨−sin t, cos t⟩ and '(t) = ⟨−sin t, cos t⟩.F
⇀

r⇀ r⇀

⋅ d∫
C

F
⇀

r
⇀ = ⟨−sin t, cos t⟩ ⋅ ⟨−sin t, cos t⟩dt∫

π

0

= t+ t dt∫
π

0
sin2 cos2

= 1 dt = π.∫
π

0

5.3.7

5.3.7 (t) = ⟨cos t, sin t⟩r⇀ 0 ≤ t ≤ π = ⟨−y, x⟩F
⇀

 Example : Reversing Orientation5.3.6

⋅ d∫
C

F
⇀

r⇀ C (t) = ⟨cos(t+π), sin t⟩r⇀ 0 ≤ t ≤ π

= ⟨−y, x⟩F
⇀

5.3.5
(0) = ⟨−1, 0⟩r⇀ (π) = ⟨1, 0⟩r⇀ 5.3.5
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Notice that this is the negative of the answer in Example . It makes sense that this answer is negative because the
orientation of the curve goes against the “flow” of the vector field.

Let  be an oriented curve and let  denote the same curve but with the orientation reversed. Then, the previous two examples
illustrate the following fact:

That is, reversing the orientation of a curve changes the sign of a line integral.

Let  be a vector field and let  be the curve with parameterization  for . Which is greater: 

 or ?

Hint

Imagine moving along the path and computing the dot product  as you go.

Answer

Another standard notation for integral  is . In this notation, , and  are functions, and we

think of  as vector . To justify this convention, recall that .

Therefore,

If , then , which implies that . Therefore

Find the value of integral , where  is the curve parameterized by , .

⋅ d∫
C

F
⇀

r⇀ = ⟨−sin t, cos(t+π)⟩ ⋅ ⟨−sin(t+π), cos t⟩dt∫
π

0

= ⟨−sin t, −cos t⟩ ⋅ ⟨sin t, cos t⟩dt∫
π

0

= (− t− t)dt∫
π

0
sin2 cos2

= −1dt∫
π

0

= −π.

5.3.5

C −C

⋅ d = − ⋅ d .∫
−C

F
⇀

r⇀ ∫
C

F
⇀

r⇀

 Exercise 5.3.6

= x +yF
⇀

î ĵ C ⟨t, ⟩t2 0 ≤ t ≤ 2

⋅ ds∫
C

F
⇀

T
⇀

⋅ ds∫
−C

F
⇀

T
⇀

⋅F
⇀

T
⇀

⋅ ds∫
C

F
⇀

T
⇀

⋅ d∫
C

F
⇀

r
⇀ P dx+Q dy+Rdz∫

C

P , Q R

dr
⇀ ⟨dx, dy, dz⟩ d = ds = '(t)dt =⟨ , , ⟩ dtr

⇀
T
⇀

r
⇀ dx

dt

dy

dt

dz

dt

⋅ d = ⟨P ,Q,R⟩ ⋅ ⟨dx, dy, dz⟩ = P dx+Q dy+Rdz.F
⇀

r⇀

d = ⟨dx, dy, dz⟩r⇀ =⟨ , , ⟩
dr

dt

dx

dt

dy

dt

dz

dt
d =⟨ , , ⟩ dtr⇀

dx

dt

dy

dt

dz

dt

⋅ d∫
C

F
⇀

r
⇀ = P dx+Q dy+Rdz∫

C

= (P ( (t)) +Q( (t)) +R( (t)) ) dt.∫
b

a

r
⇀ dx

dt
r
⇀ dy

dt
r
⇀ dz

dt

(5.3.6)

(5.3.7)

 Example : Finding the Value of an Integral of the Form 5.3.7 P dx + Qdy + Rdz∫
C

z dx+x dy+y dz∫
C

C (t) = ⟨ , , t⟩r⇀ t2 t√ 1 ≤ t ≤ 4
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Solution

As with our previous examples, to compute this line integral we should perform a change of variables to write everything in
terms of . In this case, Equation  allows us to make this change:

Find the value of , where  is the curve parameterized by , 

.

Hint

Write the integral in terms of  using Equation .

Answer

We have learned how to integrate smooth oriented curves. Now, suppose that  is an oriented curve that is not smooth, but can be
written as the union of finitely many smooth curves. In this case, we say that  is a piecewise smooth curve. To be precise, curve 

 is piecewise smooth if  can be written as a union of n smooth curves , ,…,  such that the endpoint of  is the starting
point of  (Figure ). When curves  satisfy the condition that the endpoint of  is the starting point of , we write
their union as .

Figure : The union of , ,  is a piecewise smooth curve.

The next theorem summarizes several key properties of vector line integrals.

Let  and  be continuous vector fields with domains that include the oriented smooth curve . Then

1. 

2. , where  is a constant

3. 

t 5.3.7

z dx+x dy+y dz∫
C

= (t(2t) + ( )+ ) dt∫
4

1
t2 1

2 t√
t√

= (2 + + ) dt∫
4

1
t2 t3/2

2
t√

= [ + + ]
2t3

3

t5/2

5

2t3/2

3

t=4

t=1

= .
793

15

 Exercise 5.3.7

4x dx+z dy+4 dz∫
C

y2 C (t) = ⟨4 cos(2t), 2 sin(2t), 3⟩r
⇀

0 ≤ t ≤
π

4

t 5.3.7

−26

C

C

C C C1 C2 Cn Ci

Ci+1 5.3.8 Ci Ci Ci+1

+ +⋯ +C1 C2 Cn

5.3.8 C1 C2 C3

 Theorem: Properties of Vector Line Integrals

F
⇀

G
⇀

C

( + ) ⋅ d = ⋅ d + ⋅ d∫
C

F
⇀

G
⇀

r⇀ ∫
C

F
⇀

r⇀ ∫
C

G
⇀

r⇀

k ⋅ d = k ⋅ d∫
C

F
⇀

r
⇀ ∫

C

F
⇀

r
⇀ k

⋅ d = ⋅ d∫
C

F
⇀

r
⇀ ∫

−C

F
⇀

r
⇀
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4. Suppose instead that  is a piecewise smooth curve in the domains of  and , where  and 
 are smooth curves such that the endpoint of  is the starting point of . Then

Notice the similarities between these items and the properties of single-variable integrals. Properties i. and ii. say that line integrals
are linear, which is true of single-variable integrals as well. Property iii. says that reversing the orientation of a curve changes the
sign of the integral. If we think of the integral as computing the work done on a particle traveling along , then this makes sense. If
the particle moves backward rather than forward, then the value of the work done has the opposite sign. This is analogous to the

equation . Finally, if , ,…,  are intervals, then

which is analogous to property iv.

Find the value of integral , where  is the rectangle (oriented counterclockwise) in a plane with vertices , 

, , and , and where  (Figure ).

Figure : Rectangle and vector field for Example .

Solution

Note that curve  is the union of its four sides, and each side is smooth. Therefore  is piecewise smooth. Let  represent
the side from  to , let  represent the side from  to , let  represent the side from  to , and
let  represent the side from  to  (Figure ). Then,

We want to compute each of the four integrals on the right-hand side using Equation . Before doing this, we need a
parameterization of each side of the rectangle. Here are four parameterizations (note that they traverse  counterclockwise):

C F
⇀

G
⇀

C = + +⋯ +C1 C2 Cn

, , … ,C1 C2 Cn Ci Ci+1

⋅ d = ⋅ d + ⋅ d +⋯ + ⋅ d .∫
C

F
⇀

r⇀ ∫
C1

F
⇀

r⇀ ∫
C2

F
⇀

r⇀ ∫
Cn

F
⇀

r⇀

C

f(x)dx = − f(x)dx∫
b

a

∫
a

b

[ , ]a1 a2 [ , ]a2 a3 [ , ]an−1 an

f(x)dx = f(x)dx+ f(x)dx+⋯ + f(x)dx,∫
an

a1

∫
a2

a1

∫
a3

a1

∫
an

an−1

 Example : Using Properties to Compute a Vector Line Integral5.3.8

⋅ ds∫
C

F
⇀

T
⇀

C (0, 0)

(2, 0) (2, 1) (0, 1) = ⟨x−2y, y−x⟩F
⇀

5.3.9

5.3.9 5.3.8

C C C1

(0, 0) (2, 0) C2 (2, 0) (2, 1) C3 (2, 1) (0, 1)
C4 (0, 1) (0, 0) 5.3.9

⋅ dr = ⋅ dr+ ⋅ dr+ ⋅ dr+ ⋅ dr.∫
C

F
⇀

T
⇀

∫
C1

F
⇀

T
⇀

∫
C2

F
⇀

T
⇀

∫
C3

F
⇀

T
⇀

∫
C4

F
⇀

T
⇀

5.3.1
C

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64022?pdf


Access for free at OpenStax 5.3.14 https://math.libretexts.org/@go/page/64022

Therefore,

Notice that the value of this integral is positive, which should not be surprising. As we move along curve  from left to right,
our movement flows in the general direction of the vector field itself. At any point along , the tangent vector to the curve
and the corresponding vector in the field form an angle that is less than 90°. Therefore, the tangent vector and the force vector
have a positive dot product all along , and the line integral will have positive value.

The calculations for the three other line integrals are done similarly:

and

Thus, we have .

Calculate line integral , where  is vector field  and  is a triangle with vertices , , and 

, oriented counterclockwise.

Hint

Write the triangle as a union of its three sides, then calculate three separate line integrals.

C1

C2

C3

C4

: ⟨t, 0⟩, 0 ≤ t ≤ 2

: ⟨2, t⟩, 0 ≤ t ≤ 1

: ⟨2 − t, 1⟩, 0 ≤ t ≤ 2

: ⟨0, 1 − t⟩, 0 ≤ t ≤ 1.

⋅ dr∫
C1

F
⇀

T
⇀

= ( (t)) ⋅ '(t)dt∫
2

0
F
⇀

r
⇀

r
⇀

= ⟨t−2(0), 0 − t⟩ ⋅ ⟨1, 0⟩dt = t dt∫
2

0
∫

2

0

= [ = 2.t2

2 ]
2

0

C1

C1

C1

⋅ d∫
C2

F
⇀

r⇀ = ⟨2 −2t, t−2⟩ ⋅ ⟨0, 1⟩dt∫
1

0

= (t−2)dt∫
1

0

= [ −2t = − ,t2

2 ]
1

0

3

2

⋅ ds∫
C3

F
⇀

T
⇀

= ⟨(2 − t) −2, 1 −(2 − t)⟩ ⋅ ⟨−1, 0⟩dt∫
2

0

= t dt = 2,∫
2

0

⋅ d∫
C4

F
⇀

r⇀ = ⟨−2(1 − t), 1 − t⟩ ⋅ ⟨0, −1⟩dt∫
1

0

= (t−1)dt∫
1

0

= [ − t = − .t2

2 ]
1

0

1

2

⋅ d = 2∫
C

F
⇀

r
⇀

 Exercise 5.3.8

⋅ d∫
C

F
⇀

r
⇀

F
⇀

⟨ , 2xy+1⟩y2 C (0, 0) (4, 0)

(0, 5)
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Answer

0

Applications of Line Integrals

Scalar line integrals have many applications. They can be used to calculate the length or mass of a wire, the surface area of a sheet
of a given height, or the electric potential of a charged wire given a linear charge density. Vector line integrals are extremely useful
in physics. They can be used to calculate the work done on a particle as it moves through a force field, or the flow rate of a fluid
across a curve. Here, we calculate the mass of a wire using a scalar line integral and the work done by a force using a vector line
integral.

Suppose that a piece of wire is modeled by curve C in space. The mass per unit length (the linear density) of the wire is a

continuous function . We can calculate the total mass of the wire using the scalar line integral . The

reason is that mass is density multiplied by length, and therefore the density of a small piece of the wire can be approximated by 
 for some point  in the piece. Letting the length of the pieces shrink to zero with a limit yields the line

integral .

Calculate the mass of a spring in the shape of a curve parameterized by , , with a density function

given by  kg/m (Figure ).

Figure : The wire from Example .

Solution

To calculate the mass of the spring, we must find the value of the scalar line integral , where  is the given

helix. To calculate this integral, we write it in terms of  using Equation :

ρ(x, y, z) ρ(x, y, z)ds∫
C

ρ( , , ) Δsx∗ y∗ z∗ ( , , )x∗ y∗ z∗

ρ(x, y, z)ds∫
C

 Example : Calculating the Mass of a Wire5.3.9

⟨t, 2 cos t, 2 sin t⟩ 0 ≤ t ≤
π

2
ρ(x, y, z) = +yzex 5.3.10

5.3.10 5.3.9

( +yz)ds∫
C

ex C

t 5.3.1
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Therefore, the mass is  kg.

Calculate the mass of a spring in the shape of a helix parameterized by , , with a density
function given by  kg/m.

Hint

Calculate the line integral of  over the curve with parameterization .

Answer

 kg

When we first defined vector line integrals, we used the concept of work to motivate the definition. Therefore, it is not surprising
that calculating the work done by a vector field representing a force is a standard use of vector line integrals. Recall that if an

object moves along curve  in force field , then the work required to move the object is given by .

How much work is required to move an object in vector force field  along path 
 See Figure .

Solution

Let  denote the given path. We need to find the value of . To do this, we use Equation  :

( +yz) ds∫
C

ex = (( +4 cos t sin t) ) dt∫

π
2

0
et 1 +(−2 cos t +(2 sin t)2 )2

− −−−−−−−−−−−−−−−−−−−
√

= (( +4 cos t sin t) ) dt∫

π

2

0
et 5–√

= [ +2 t5–√ et sin2 ]
t=π/2

t=0

= ( +1).5–√ eπ/2

( +1)5–√ eπ/2

 Exercise 5.3.9

(t) = ⟨cos t, sin t, t⟩r⇀ 0 ≤ t ≤ 6π
ρ(x, y, z) = x+y+z

ρ r
⇀

18 2
–√ π2

C F
⇀

⋅ d∫
C

F
⇀

r⇀

 Example :       Calculating Work5.3.10

= ⟨yz, xy, xz⟩F
⇀

(t) = ⟨ , t, ⟩, 0 ≤ t ≤ 1?r
⇀ t2 t4 5.3.11

C ⋅ d∫
C

F
⇀

r
⇀ 5.3.5

⋅ d∫
C

F
⇀

r
⇀ = (⟨ , , ⟩ ⋅ ⟨2t, 1, 4 ⟩)dt∫

1

0
t5 t3 t6 t3

= (2 + +4 )dt∫
1

0
t6 t3 t9

= = units of work.[ + + ]
2t7

7

t4

4

2t10

5

t=1

t=0

131

140
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Figure : The curve and vector field for Example .

Flux

We close this section by discussing two key concepts related to line integrals: flux across a plane curve and circulation along a
plane curve. Flux is used in applications to calculate fluid flow across a curve, and the concept of circulation is important for
characterizing conservative gradient fields in terms of line integrals. Both these concepts are used heavily throughout the rest of
this chapter. The idea of flux is especially important for Green’s theorem, and in higher dimensions for Stokes’ theorem and the
divergence theorem.

Let  be a plane curve and let  be a vector field in the plane. Imagine  is a membrane across which fluid flows, but  does not
impede the flow of the fluid. In other words,  is an idealized membrane invisible to the fluid. Suppose  represents the velocity
field of the fluid. How could we quantify the rate at which the fluid is crossing ?

Recall that the line integral of  along  is —in other words, the line integral is the dot product of the vector field

with the unit tangential vector with respect to arc length. If we replace the unit tangential vector with unit normal vector  and

instead compute integral , we determine the flux across . To be precise, the definition of integral  is the

same as integral , except the  in the Riemann sum is replaced with . Therefore, the flux across  is defined as

where  and  are defined as they were for integral . Therefore, a flux integral is an integral that is perpendicular

to a vector line integral, because  and  are perpendicular vectors.

If  is a velocity field of a fluid and  is a curve that represents a membrane, then the flux of  across  is the quantity of fluid
flowing across  per unit time, or the rate of flow.

More formally, let  be a plane curve parameterized by , . Let  be the vector
that is normal to  at the endpoint of  and points to the right as we traverse  in the positive direction (Figure ). Then, 

5.3.11 5.3.10

C F
⇀

C C

C F
⇀

C

F
⇀

C ⋅ ds∫
C

F
⇀

T
⇀

(t)N
⇀

⋅ ds∫
C

F
⇀

N
⇀

C ⋅ ds∫
C

F
⇀

N
⇀

⋅ ds∫
C

F
⇀

T
⇀

T
⇀

N
⇀

C

⋅ ds = ( ) ⋅ ( ) Δ ,∫
C

F
⇀

N
⇀

lim
n→∞

∑
i=1

n

F
⇀

P ∗
i N

⇀
P ∗
i si

P ∗
i Δsi ⋅ ds∫

C

F
⇀

T
⇀

N
⇀

T
⇀

F
⇀

C F
⇀

C

C

C (t) = ⟨x(t), y(t)⟩r
⇀ a ≤ t ≤ b (t) = ⟨y'(t), −x'(t)⟩n

⇀

C (t)r
⇀ C 5.3.12
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 is the unit normal vector to  at the endpoint of  that points to the right as we traverse .

The flux of  across  is line integral

Figure : The flux of vector field  across curve  is computed by an integral similar to a vector line integral.

We now give a formula for calculating the flux across a curve. This formula is analogous to the formula used to calculate a vector
line integral (see Equation ).

Let  be a vector field and let  be a smooth curve with parameterization , .Let 
. The flux of  across  is

Before deriving the formula, note that

Therefore,

(t) =N
⇀ (t)n⇀

∥ (t)∥n
⇀ C (t)r

⇀ C

 DEFINITION: Flux

F
⇀

C

⋅ ds.∫
C

F
⇀ (t)n

⇀

∥ (t)∥n
⇀

5.3.12 F
⇀

C

5.3.5

 Theorem: Calculating Flux Across a Curve

F
⇀

C r(t) = ⟨x(t), y(t)⟩ a ≤ t ≤ b

(t) = ⟨y'(t), −x'(t)⟩n⇀ F
⇀

C

⋅ ds = ( (t)) ⋅ (t)dt.∫
C

F
⇀

N
⇀

∫
b

a

F
⇀

r
⇀

n
⇀ (5.3.8)

 Proof

∥ (t)∥ = ∥⟨y'(t), −x'(t)⟩∥ = = ∥ '(t)∥.n
⇀ +(y'(t))2 (x'(t))2

− −−−−−−−−−−−−−
√ r

⇀

⋅ ds∫
C

F
⇀

N
⇀

= ⋅ ds∫
C

F
⇀ (t)n⇀

∥ (t)∥n⇀

= ⋅ ∥ '(t)∥ dt∫
b

a

F
⇀ (t)n⇀

∥ (t)∥n
⇀ r

⇀

= ( (t)) ⋅ (t)dt.∫
b

a

F
⇀

r
⇀

n
⇀
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Calculate the flux of  across a unit circle oriented counterclockwise (Figure ).

Figure : A unit circle in vector field .

Solution

To compute the flux, we first need a parameterization of the unit circle. We can use the standard parameterization 
, . The normal vector to a unit circle is . Therefore, the flux is

Calculate the flux of  across the line segment from  to , where the curve is oriented from left to
right.

Hint

Use Equation .

Answer

Let  be a two-dimensional vector field. Recall that integral  is sometimes written as 

. Analogously, flux  is sometimes written in the notation , because the unit normal

vector  is perpendicular to the unit tangent . Rotating the vector  by 90° results in vector . Therefore,

the line integral in Example  can be written as .

Circulation

□

 Example : Flux across a Curve5.3.11

= ⟨2x, 2y⟩F
⇀

5.3.13

5.3.13 = ⟨2x, 2y⟩F
⇀

(t) = ⟨cos t, sin t⟩r
⇀ 0 ≤ t ≤ 2π ⟨cos t, sin t⟩

⋅ ds∫
C

F
⇀

N
⇀

= ⟨2 cos t, 2 sin t⟩ ⋅ ⟨cos t, sin t⟩dt∫
2π

0

= (2 t+2 t)dt∫
2π

0
cos2 sin2

= 2 ( t+ t)dt∫
2π

0
cos2 sin2

= 2 dt = 4π.∫
2π

0

 Exercise 5.3.11

= ⟨x+y, 2y⟩F
⇀

(0, 0) (2, 3)

5.3.8

3/2

(x, y) = ⟨P (x, y),Q(x, y)⟩F
⇀

⋅ ds∫
C

F
⇀

T
⇀

P dx+Q dy∫
C

⋅ ds∫
C

F
⇀

N
⇀

−Q dx+P dy∫
C

N
⇀

T
⇀

d = ⟨dx, dy⟩r⇀ ⟨dy, −dx⟩

5.3.8 −2y dx+2x dy∫
C
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Now that we have defined flux, we can turn our attention to circulation. The line integral of vector field  along an oriented closed
curve is called the circulation of  along . Circulation line integrals have their own notation: . The circle on the
integral symbol denotes that  is “circular” in that it has no endpoints. Example  shows a calculation of circulation.

To see where the term circulation comes from and what it measures, let  represent the velocity field of a fluid and let  be an
oriented closed curve. At a particular point , the closer the direction of  is to the direction of , the larger the value of
the dot product . The maximum value of  occurs when the two vectors are pointing in the exact same
direction; the minimum value of  occurs when the two vectors are pointing in opposite directions. Thus, the value of
the circulation  measures the tendency of the fluid to move in the direction of .

Let  be the vector field from Example  and let  represent the unit circle oriented counterclockwise.
Calculate the circulation of  along .

Solution

We use the standard parameterization of the unit circle: , . Then, 
and . Therefore, the circulation of  along  is

Notice that the circulation is positive. The reason for this is that the orientation of  “flows” with the direction of . At any
point along the circle, the tangent vector and the vector from  form an angle of less than 90°, and therefore the corresponding
dot product is positive.

In Example , what if we had oriented the unit circle clockwise? We denote the unit circle oriented clockwise by . Then

Notice that the circulation is negative in this case. The reason for this is that the orientation of the curve flows against the direction
of .

Calculate the circulation of  along a unit circle oriented counterclockwise.

Hint

Use Equation .

Answer

 units of work

Calculate the work done on a particle that traverses circle  of radius 2 centered at the origin, oriented counterclockwise, by
field . Assume the particle starts its movement at .

F
⇀

F
⇀

C ⋅ ds∮C F
⇀

T
⇀

C 5.3.5

v⇀ C

P (P )v
⇀ (P )T

⇀

(P ) ⋅ (P )v
⇀

T
⇀

(P ) ⋅ (P )v
⇀

T
⇀

(P ) ⋅ (P )v
⇀

T
⇀

⋅ ds∮
C

v
⇀

T
⇀

C

 Example : Calculating Circulation5.3.12

= ⟨−y, x⟩F
⇀

5.3.3 C

F
⇀

C

(t) = ⟨cos t, sin t⟩r
⇀ 0 ≤ t ≤ 2π ( (t)) = ⟨−sin t, cos t⟩F

⇀
r
⇀

'(t) = ⟨−sin t, cos t⟩r
⇀

F
⇀

C

⋅ ds∮
C

F
⇀

T
⇀

= ⟨−sin t, cos t⟩ ⋅ ⟨−sin t, cos t⟩dt∫
2π

0

= ( t+ t)dt∫
2π

0
sin2 cos2

= dt = 2π units of work.∫
2π

0

C F
⇀

F
⇀

5.3.12 −C

⋅ ds = − ⋅ ds = −2π units of work.∮
−C

F
⇀

T
⇀

∮
C

F
⇀

T
⇀

F
⇀

 Exercise 5.3.12

(x, y) = ⟨− , ⟩F
⇀ y

+x2 y2

x

+x2 y2

5.3.8

2π

 Example : Calculating Work5.3.13

C

(x, y) = ⟨−2, y⟩F
⇀

(1, 0)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64022?pdf


Access for free at OpenStax 5.3.21 https://math.libretexts.org/@go/page/64022

Solution

The work done by  on the particle is the circulation of  along : . We use the parameterization 
,  for . Then,  and . Therefore, the

circulation of  along  is

The force field does zero work on the particle.

Notice that the circulation of  along  is zero. Furthermore, notice that since  is the gradient of ,  is

conservative. We prove in a later section that under certain broad conditions, the circulation of a conservative vector field along
a closed curve is zero.

Calculate the work done by field  on a particle that traverses the unit circle. Assume the particle begins its
movement at .

Hint

Use Equation .

Answer

 units of work

Key Concepts
Line integrals generalize the notion of a single-variable integral to higher dimensions. The domain of integration in a single-
variable integral is a line segment along the -axis, but the domain of integration in a line integral is a curve in a plane or in
space.

If  is a curve, then the length of  is .

There are two kinds of line integral: scalar line integrals and vector line integrals. Scalar line integrals can be used to calculate
the mass of a wire; vector line integrals can be used to calculate the work done on a particle traveling through a field.
Scalar line integrals can be calculated using Equation ; vector line integrals can be calculated using Equation .
Two key concepts expressed in terms of line integrals are flux and circulation. Flux measures the rate that a field crosses a given
line; circulation measures the tendency of a field to move in the same direction as a given closed curve.

Key Equations
Calculating a scalar line integral 

Calculating a vector line integral 

 

F
⇀

F
⇀

C ⋅ ds∮C F
⇀

T
⇀

(t) = ⟨2 cos t, 2 sin t⟩r⇀ 0 ≤ t ≤ 2π C '(t) = ⟨−2 sin t, 2 cos t⟩r⇀ ( (t)) = ⟨−2, 2 sin t⟩F
⇀

r⇀

F
⇀

C

⋅ ds∮
C

F
⇀

T
⇀

= ⟨−2, 2 sin t⟩ ⋅ ⟨−2 sin t, 2 cos t⟩dt∫
2π

0

= (4 sin t+4 sin t cos t)dt∫
2π

0

= [−4 cos t+4 t]sin2
2π

0

= (−4 cos(2π) +2 (2π))−(−4 cos(0) +4 (0))sin2 sin2

= −4 +4 = 0 units of work.

F
⇀

C F
⇀

f(x, y) = −2x+
y2

2
F
⇀

 Exercise 5.3.14

(x, y) = ⟨2x, 3y⟩F
⇀

(−1, 0)

5.3.8

0

x

C C ds∫
C

5.3.1 5.3.5

f(x, y, z)ds = f( (t)) dt∫
C

∫
b

a

r
⇀ + +(x'(t))2 (y'(t))2 (z'(t))2

− −−−−−−−−−−−−−−−−−−−−−
√

⋅ d = ⋅ ds = ( (t)) ⋅ '(t)dt∫
C

F
⇀

r
⇀ ∫

C

F
⇀

T
⇀

∫
b

a

F
⇀

r
⇀

r
⇀
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or 

Calculating flux 

Glossary

circulation

the tendency of a fluid to move in the direction of curve . If  is a closed curve, then the circulation of  along  is line
integral , which we also denote .

closed curve
a curve for which there exists a parameterization , such that , and the curve is traversed exactly
once

flux

the rate of a fluid flowing across a curve in a vector field; the flux of vector field  across plane curve  is line integral 

line integral
the integral of a function along a curve in a plane or in space

orientation of a curve
the orientation of a curve  is a specified direction of 

piecewise smooth curve
an oriented curve that is not smooth, but can be written as the union of finitely many smooth curves

scalar line integral

the scalar line integral of a function  along a curve  with respect to arc length is the integral , it is the integral of a

scalar function  along a curve in a plane or in space; such an integral is defined in terms of a Riemann sum, as is a single-
variable integral

vector line integral

the vector line integral of vector field  along curve  is the integral of the dot product of  with unit tangent vector  of 
with respect to arc length, ; such an integral is defined in terms of a Riemann sum, similar to a single-variable
integral

This page titled 5.3: Line Integrals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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P dx+Q dy+Rdz = (P ( (t)) +Q( (t)) +R( (t)) ) dt∫
C

∫
b

a

r
⇀ dx

dt
r
⇀ dy

dt
r
⇀ dz

dt

⋅ ds = ( (t)) ⋅ (t)dt∫
C

F
⇀ (t)n⇀

∥ (t)∥n
⇀ ∫

b

a

F
⇀

r
⇀

n
⇀

C C F
⇀

C

⋅ ds∫C F
⇀

T
⇀

⋅ ds∮C F
⇀

T
⇀

(t), a ≤ t ≤ br
⇀ (a) = (b)r

⇀
r
⇀

F
⇀

C

⋅ ds∫
C

F
⇀ (t)n⇀

∥ (t)∥n⇀

C C

f C f ds∫
C

f

F
⇀

C F
⇀

T
⇀

C

⋅ ds∫
C

F
⇀

T
⇀
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5.4: Conservative Vector Fields

Describe simple and closed curves; define connected and simply connected regions.
Use the Fundamental Theorem for Line Integrals to evaluate a line integral in a vector field.

In this section, we continue the study of conservative vector fields. We examine the Fundamental Theorem for Line Integrals,
which is a useful generalization of the Fundamental Theorem of Calculus to line integrals of conservative vector fields. We also
discover show how to test whether a given vector field is conservative, and determine how to build a potential function for a vector
field known to be conservative.

Curves and Regions 

Before continuing our study of conservative vector fields, we need some geometric definitions. The theorems in the subsequent
sections all rely on integrating over certain kinds of curves and regions, so we develop the definitions of those curves and regions
here. We first define two special kinds of curves: closed curves and simple curves. As we have learned, a closed curve is one that
begins and ends at the same point. A simple curve is one that does not cross itself. A curve that is both closed and simple is a
simple closed curve (Figure ).

Figure . Types of curves that are simple or not simple and closed or not closed.

Curve  is a closed curve if there is a parameterization ,  of  such that the parameterization traverses the
curve exactly once and . Curve  is a simple curve if  does not cross itself. That is,  is simple if there exists a
parameterization ,  of  such that  is one-to-one over . It is possible for , meaning that the
simple curve is also closed.

Is the curve with parameterization ,  a simple closed curve?

Solution

Note that ; therefore, the curve is closed. The curve is not simple, however. To see this, note that 
, and therefore the curve crosses itself at the origin (Figure ).

Learning Objectives

5.4.1

5.4.1

DEFINITION: Closed Curves

C (t)r
⇀ a ≤ t ≤ b C

(a) = (b)r
⇀

r
⇀ C C C

(t)r
⇀ a ≤ t ≤ b C r

⇀ (a, b) (a) = (b)r
⇀

r
⇀

Example : Determining Whether a Curve Is Simple and Closed5.4.1

(t) = ⟨cos t, ⟩r
⇀ sin(2t)

2
0 ≤ t ≤ 2π

(0) = ⟨1, 0⟩ = (2π)r
⇀

r
⇀

( ) = ⟨0, 0⟩ = ( )r
⇀ π

2
r
⇀ 3π

2
5.4.2
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Figure . A curve that is closed but not simple.

Is the curve given by parameterization , , a simple closed curve?

Hint

Sketch the curve.

Answer

Yes

Many of the theorems in this chapter relate an integral over a region to an integral over the boundary of the region, where the
region’s boundary is a simple closed curve or a union of simple closed curves. To develop these theorems, we need two geometric
definitions for regions: that of a connected region and that of a simply connected region. A connected region is one in which there
is a path in the region that connects any two points that lie within that region. A simply connected region is a connected region that
does not have any holes in it. These two notions, along with the notion of a simple closed curve, allow us to state several
generalizations of the Fundamental Theorem of Calculus later in the chapter. These two definitions are valid for regions in any
number of dimensions, but we are only concerned with regions in two or three dimensions.

A region D is a connected region if, for any two points  and , there is a path from  to  with a trace contained entirely
inside D. A region D is a simply connected region if D is connected for any simple closed curve C that lies inside D, and curve
C can be shrunk continuously to a point while staying entirely inside D. In two dimensions, a region is simply connected if it is
connected and has no holes.

All simply connected regions are connected, but not all connected regions are simply connected (Figure ).

5.4.2

Exercise 5.4.1

(t) = ⟨2 cos t, 3 sin t⟩r
⇀ 0 ≤ t ≤ 6π

DEFINITION: connected regions

P1 P2 P1 P2

5.4.3
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Figure : Not all connected regions are simply connected. (a) Simply connected regions have no holes. (b) Connected regions
that are not simply connected may have holes but you can still find a path in the region between any two points. (c) A region that is
not connected has some points that cannot be connected by a path in the region.

Is the region in the below image connected? Is the region simply connected?

Hint

Consider the definitions.

Answer

The region in the figure is connected. The region in the figure is not simply connected.

Fundamental Theorem for Line Integrals 
Now that we understand some basic curves and regions, let’s generalize the Fundamental Theorem of Calculus to line integrals.
Recall that the Fundamental Theorem of Calculus says that if a function  has an antiderivative , then the integral of  from  to 
 depends only on the values of  at  and at —that is,

If we think of the gradient as a derivative, then the same theorem holds for vector line integrals. We show how this works using a
motivational example.

Let . Calculate , where C is the line segment from  to  (Figure ).

5.4.3

Exercise 5.4.2

f F f a

b F a b

f(x)dx = F (b) −F (a).∫
b

a

(5.4.1)

Example : Evaluating a Line Integral and the Antiderivatives of the Endpoints5.4.2

(x, y) = ⟨2x, 4y⟩F
⇀

⋅ d∫
C

F
⇀

r
⇀ (0, 0) (2, 2) 5.4.4
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Solution

We use the method from the previous section to calculate . Curve C can be parameterized by , 
. Then,  and , which implies that

Figure : The value of line integral  depends only on the value of the potential function of  at the endpoints of
the curve.

Notice that , where . If we think of the gradient as a derivative, then  is an “antiderivative” of .
In the case of single-variable integrals, the integral of derivative  is , where a is the start point of the interval
of integration and b is the endpoint. If vector line integrals work like single-variable integrals, then we would expect integral 
to be , where  is the endpoint of the curve of integration and  is the start point. Notice that this is the case
for this example:

and

In other words, the integral of a “derivative” can be calculated by evaluating an “antiderivative” at the endpoints of the curve
and subtracting, just as for single-variable integrals.

The following theorem says that, under certain conditions, what happened in the previous example holds for any gradient field. The
same theorem holds for vector line integrals, which we call the Fundamental Theorem for Line Integrals.

Let C be a piecewise smooth curve with parameterization , . Let  be a function of two or three variables with
first-order partial derivatives that exist and are continuous on C. Then,

⋅ d∫C F
⇀

r
⇀ (t) = ⟨2t, 2t⟩r

⇀

0 ≤ t ≤ 1 ( (t)) = ⟨4t, 8t⟩F
⇀

r
⇀

'(t) = ⟨2, 2⟩r
⇀

⋅ d∫
C

F
⇀

r
⇀ = ⟨4t, 8t⟩ ⋅ ⟨2, 2⟩dt∫

1

0

= (8t+16t)dt = 24tdt∫
1

0

∫
1

0

= = 12.[12 ]t2 1

0

5.4.4 ⋅d∫
C

F
⇀

r
⇀

F
⇀

= fF
⇀

∇
⇀

f(x, y) = +2x2 y2 f F
⇀

g'(x) g(b) −g(a)

F
⇀

f( ) −f( )P1 P0 P1 P0

⋅ d = f ⋅ d = 12∫
C

F
⇀

r
⇀ ∫

C

∇
⇀

r
⇀

f(2, 2) −f(0, 0) = 4 +8 −0 = 12.

Theorem: THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS

(t)r
⇀ a ≤ t ≤ b f

f ⋅ d = f( (b)) −f( (a)).∫
C

∇
⇀

r
⇀

r
⇀

r
⇀ (5.4.2)
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First,

By the chain rule,

Therefore, by the Fundamental Theorem of Calculus,

We know that if  is a conservative vector field, there is a potential function  such that . Therefore

In other words, just as with the Fundamental Theorem of Calculus, computing the line integral , where  is conservative,
is a two-step process:

1. Find a potential function (“antiderivative”)  for  and
2. Compute the value of  at the endpoints of  and calculate their difference .

Keep in mind, however, there is one major difference between the Fundamental Theorem of Calculus and the Fundamental
Theorem for Line Integrals: 
A function of one variable that is continuous must have an antiderivative. However, a vector field, even if it is continuous, does not
need to have a potential function.

Calculate integral , where  and  is a curve with parameterization 

, 

a. without using the Fundamental Theorem of Line Integrals and
b. using the Fundamental Theorem of Line Integrals.

Solution

1. First, let’s calculate the integral without the Fundamental Theorem for Line Integrals and instead use the method we learned
in the previous section:

Proof

f ⋅ d = f( (t)) ⋅ '(t)dt.∫
C

∇
⇀

r
⇀ ∫

b

a

∇
⇀

r
⇀

r
⇀

(f( (t)) = f( (t)) ⋅ '(t)
d

dt
r
⇀ ∇

⇀
r
⇀

r
⇀

f ⋅ d∫
C

∇
⇀

r
⇀ = f( (t)) ⋅ '(t)dt∫

b

a

∇
⇀

r
⇀

r
⇀

= (f( (t))dt∫
b

a

d

dt
r
⇀

= [f( (t))]r
⇀ t=b

t=a

= f( (b)) −f( (a)).r
⇀

r
⇀

□

F
⇀

f f =∇
⇀

F
⇀

⋅ d = f ⋅ d = f( (b)) −f( (a)).∫
C

F
⇀

r
⇀ ∫

C

∇
⇀

r
⇀

r
⇀

r
⇀ (5.4.3)

⋅ d∫C F
⇀

r
⇀

F
⇀

f F
⇀

f C f( (b)) −f( (a))r
⇀

r
⇀

Example : Applying the Fundamental Theorem5.4.3

⋅ d∫C F
⇀

r
⇀ (x, y, z) = ⟨2x lny, + , 2yz⟩F

⇀ x2

y
z2 C

(t) = ⟨ , t, t⟩r
⇀ t2 1 ≤ t ≤ e
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Integral  requires integration by parts. Let  and . Then , 

and

Therefore,

Thus,

2. Given that  is a potential function for , let’s use the Fundamental Theorem for Line Integrals to
calculate the integral. Note that

This calculation is much more straightforward than the calculation we did in (a). As long as we have a potential function,
calculating a line integral using the Fundamental Theorem for Line Integrals is much easier than calculating without the
theorem.

⋅ dr∫
C

F
⇀

= ( (t)) ⋅ '(t)dt∫
e

1

F
⇀

r
⇀

r
⇀

= ⟨2 ln t, + , 2 ⟩ ⋅ ⟨2t, 1, 1⟩dt∫
e

1

t2 t4

t
t2 t2

= (4 ln t+ +3 )dt∫
e

1

t3 t3 t2

= 4 ln t dt+ ( +3 )dt∫
e

1

t3 ∫
e

1

t3 t2

= 4 ln t dt+∫
e

1

t3 [ + ]
t4

4
t3

e

1

= 4 ln t dt+ + − −1∫
e

1

t3 e4

4
e3 1

4

= 4 ln t dt+ + −∫
e

1

t3 e4

4
e3 5

4

ln t dt∫
e

1

t3 u = ln t dv= t3 u = ln t dv= t3

du = dt, v= .
1

t

t4

4

ln t dt∫
e

1

t3 = − dt[ ln t]
t4

4

e

1

1

4
∫

e

1

t3

= − ( − ) .
e4

4

1

4

e4

4

1

4

⋅ d∫
C

F
⇀

r
⇀ = 4 ln t dt + + −∫

e

1

t3 e4

4
e3 5

4

= 4( − ( − ))+ + −
e4

4

1

4

e4

4

1

4

e4

4
e3 5

4

= − + + + −e4 e4

4

1

4

e4

4
e3 5

4

= + −1.e4 e3

f(x, y, z) = lny+yx2 z2 F
⇀

⋅ d∫
C

F
⇀

r
⇀ = f ⋅ d∫

C

∇
⇀

r
⇀

= f( (e)) −f( (1))r
⇀

r
⇀

= f( , e, e) −f(1, 1, 1)e2

= + −1.e4 e3
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Example  illustrates a nice feature of the Fundamental Theorem of Line Integrals: it allows us to calculate more easily many
vector line integrals. As long as we have a potential function, calculating the line integral is only a matter of evaluating the
potential function at the endpoints and subtracting.

Given that  is a potential function for 
, calculate integral , where  is the lower half of the unit

circle oriented counterclockwise.

Hint

The Fundamental Theorem for Line Intervals says this integral depends only on the value of  at the endpoints of .

Answer

2

The Fundamental Theorem for Line Integrals has two important consequences. The first consequence is that if  is conservative
and  is a closed curve, then the circulation of  along  is zero—that is, . To see why this is true, let  be a
potential function for . Since  is a closed curve, the terminal point  of  is the same as the initial  of —that is, 

. Therefore, by the Fundamental Theorem for Line Integrals,

Recall that the reason a conservative vector field  is called “conservative” is because such vector fields model forces in which
energy is conserved. We have shown gravity to be an example of such a force. If we think of vector field  in integral  as
a gravitational field, then the equation  follows. If a particle travels along a path that starts and ends at the same
place, then the work done by gravity on the particle is zero.

The second important consequence of the Fundamental Theorem for Line Integrals (Equation ) is that line integrals of
conservative vector fields are independent of path—meaning, they depend only on the endpoints of the given curve, and do not
depend on the path between the endpoints.

5.4.3

Exercise 5.4.3

f(x, y) = y+ x(x−1) 2 (y+1) 2

(x, y) = ⟨2xy−2y+ , +2yx+2x⟩F
⇀

(y+1) 2 (x−1) 2 ⋅ d∫
C

F
⇀

r
⇀ C

f C

F
⇀

C F
⇀

C ⋅ d = 0∫C F
⇀

r
⇀ f

F
⇀

C (b)r
⇀ C (a)r

⇀ C

(a) = (b)r
⇀

r
⇀

⋅ d∮
C

F
⇀

r
⇀ = f ⋅ d∮

C

∇
⇀

r
⇀

= f( (b)) −f( (a))r
⇀

r
⇀

= f( (b)) −f( (b))r
⇀

r
⇀

= 0.

(5.4.4)

(5.4.5)

(5.4.6)

(5.4.7)

F
⇀

F
⇀

⋅ d∮C F
⇀

r
⇀

⋅ d = 0∮C F
⇀

r
⇀

5.4.2
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Let  be a vector field with domain ; it is independent of path (or path independent) if

for any paths  and  in with the same initial and terminal points.

The second consequence is stated formally in the following theorem.

If  is a conservative vector field, then  is independent of path.

Let  denote the domain of  and let  and  be two paths in  with the same initial and terminal points (Figure ).
Call the initial point  and the terminal point . Since  is conservative, there is a potential function  for . By the
Fundamental Theorem for Line Integrals,

Therefore,  and  is independent of path.

To visualize what independence of path means, imagine three hikers climbing from base camp to the top of a mountain. Hiker 1
takes a steep route directly from camp to the top. Hiker 2 takes a winding route that is not steep from camp to the top. Hiker 3 starts
by taking the steep route but halfway to the top decides it is too difficult for him. Therefore he returns to camp and takes the non-
steep path to the top. All three hikers are traveling along paths in a gravitational field. Since gravity is a force in which energy is
conserved, the gravitational field is conservative. By independence of path, the total amount of work done by gravity on each of the
hikers is the same because they all started in the same place and ended in the same place. The work done by the hikers includes
other factors such as friction and muscle movement, so the total amount of energy each one expended is not the same, but the net
energy expended against gravity is the same for all three hikers.

Figure : The vector field is conservative, and therefore independent of path.

We have shown that if  is conservative, then  is independent of path. It turns out that if the domain of  is open and connected,
then the converse is also true. That is, if  is independent of path and the domain of  is open and connected, then  is
conservative. Therefore, the set of conservative vector fields on open and connected domains is precisely the set of vector fields
independent of path.

DEFINITION: Path Independence
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If  is a continuous vector field that is independent of path and the domain  of  is open and connected, then  is
conservative.

We prove the theorem for vector fields in . The proof for vector fields in  is similar. To show that  is
conservative, we must find a potential function  for . To that end, let  be a fixed point in . For any point  in , let 

 be a path from  to . Define  by . (Note that this definition of  makes sense only because
 is independent of path. If  was not independent of path, then it might be possible to find another path  from  to 

such that , and in such a case  would not be a function.) We want to show that  has the
property .

Since domain  is open, it is possible to find a disk centered at  such that the disk is contained entirely inside . Let 
 with  be a point in that disk. Let  be a path from  to  that consists of two pieces:  and . The first

piece, , is any path from  to  that stays inside ;  is the horizontal line segment from  to  (Figure 
). Then

The first integral does not depend on , so

If we parameterize  by , , then

By the Fundamental Theorem of Calculus (part 1),

Theorem: THE PATH INDEPENDENCE TEST FOR CONSERVATIVE FIELDS
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Figure . Here,  is any path from  to  that stays inside , and  is the horizontal line segment from  to 
.

A similar argument using a vertical line segment rather than a horizontal line segment shows that .

Therefore  and  is conservative.

We have spent a lot of time discussing and proving the theorems above, but we can summarize them simply: a vector field  on an
open and connected domain is conservative if and only if it is independent of path. This is important to know because conservative
vector fields are extremely important in applications, and these theorems give us a different way of viewing what it means to be
conservative using path independence.

Use path independence to show that vector field  is not conservative.

Solution

We can indicate that  is not conservative by showing that  is not path independent. We do so by giving two different paths, 
 and , that both start at  and end at , and yet .

Let  be the curve with parameterization ,  and let  be the curve with parameterization 
,  (Figure .). Then

and
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Since , the value of a line integral of  depends on the path between two given points. Therefore, 

is not independent of path, and  is not conservative.

Figure : Curves  and  are both oriented from left to right.

Show that  is not path independent by considering the line segment from  to  and the piece of

the graph of  that goes from  to .

Hint

Calculate the corresponding line integrals.

Answer

If  and  represent the two curves, then

We close this section by looking at an example of the usefulness of the Fundamental Theorem for Line Integrals. Now that we can
test whether a vector field is conservative, we can always decide whether the Fundamental Theorem for Line Integrals can be used
to calculate a vector line integral. If we are asked to calculate an integral of the form , then our first question should be: Is

 conservative? If the answer is yes, then we should find a potential function and use the Fundamental Theorem for Line Integrals
to calculate the integral. If the answer is no, then the Fundamental Theorem for Line Integrals cannot help us and we have to use
other methods, such as using the method from the previous section (using  and ).

Calculate line integral , where  and  is any smooth curve that goes
from the origin to .

Solution

Before trying to compute the integral, we need to determine whether  is conservative and whether the domain of  is simply
connected. The domain of  is all of , which is connected and has no holes. Therefore, the domain of  is simply
connected. Let

so that . Since the domain of  is simply connected, we can check the cross partials to determine
whether  is conservative. Note that
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Example : Using the Fundamental Theorem for Line Integrals5.4.10
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Therefore,  is conservative.

To evaluate  using the Fundamental Theorem for Line Integrals, we need to find a potential function  for . Let 
be a potential function for . Then, , and therefore . Integrating this equation with respect
to  gives  for some function . Differentiating this equation with respect to  gives 

, which implies that . Therefore,  is a function of  only, and 
. To find , note that . Therefore,  and

we can take . A potential function for  is .

Now that we have a potential function, we can use the Fundamental Theorem for Line Integrals to evaluate the integral. By the
theorem,

Analysis

Notice that if we hadn’t recognized that  is conservative, we would have had to parameterize  and use the method from the
previous section. Since curve  is unknown, using the Fundamental Theorem for Line Integrals is much simpler.

Calculate integral , where  and  is a semicircle with starting point 
and endpoint .

Hint

Use the Fundamental Theorem for Line Integrals.

Answer

Let  be a force field. Suppose that a particle begins its motion at the origin and ends its movement at
any point in a plane that is not on the -axis or the -axis. Furthermore, the particle’s motion can be modeled with a smooth
parameterization. Show that  does positive work on the particle.

Solution

We show that  does positive work on the particle by showing that  is conservative and then by using the Fundamental
Theorem for Line Integrals.

To show that  is conservative, suppose  were a potential function for . Then, 
and therefore  and . The equation  implies that .
Deriving both sides with respect to  yields . Therefore,  and we can take .

If , then note that , and therefore  is a potential function for .

Let  be the point at which the particle stops is motion, and let  denote the curve that models the particle’s motion. The
work done by  on the particle is . By the Fundamental Theorem for Line Integrals,
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Since  and , by assumption, . Therefore, , and  does positive work on the particle.

Analysis

Notice that this problem would be much more difficult without using the Fundamental Theorem for Line Integrals. To apply
the tools we have learned, we would need to give a curve parameterization and use the method from the previous section. Since
the path of motion  can be as exotic as we wish (as long as it is smooth), it can be very difficult to parameterize the motion of
the particle.

Let , and suppose that a particle moves from point  to  along any smooth curve. Is the
work done by  on the particle positive, negative, or zero?

Hint

Use the Fundamental Theorem for Line Integrals.

Answer

Negative

Key Concepts 
The theorems in this section require curves that are closed, simple, or both, and regions that are connected or simply connected.
The line integral of a conservative vector field can be calculated using the Fundamental Theorem for Line Integrals. This
theorem is a generalization of the Fundamental Theorem of Calculus in higher dimensions. Using this theorem usually makes
the calculation of the line integral easier.
Conservative fields are independent of path. The line integral of a conservative field depends only on the value of the potential
function at the endpoints of the domain curve.
Given vector field , we can test whether  is conservative by using the cross-partial property. If  has the cross-partial
property and the domain is simply connected, then  is conservative (and thus has a potential function). If  is conservative,
we can find a potential function by using the Problem-Solving Strategy.
The circulation of a conservative vector field on a simply connected domain over a closed curve is zero.

Key Equations 
Fundamental Theorem for Line Integrals 

Circulation of a conservative field over curve C that encloses a simply connected region

Glossary 

closed curve
a curve that begins and ends at the same point

connected region
a region in which any two points can be connected by a path with a trace contained entirely inside the region
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the value of line integral  depends only on the value of  at the endpoints of 

independence of path

a vector field  has path independence if  for any curves  and  in the domain of  with the same

initial points and terminal points

simple curve
a curve that does not cross itself

simply connected region
a region that is connected and has the property that any closed curve that lies entirely inside the region encompasses points that
are entirely inside the region

Contributors and Attributions 

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is
licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.

This page titled 5.4: Conservative Vector Fields is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

16.3: Conservative Vector Fields by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

f ⋅ d∫
C

∇
⇀

r
⇀ f

C : f ⋅ d = f( (b)) −f( (a))∫
C

∇
⇀

r
⇀

r
⇀

r
⇀

F
⇀

⋅ d = ⋅ d∫
C1

F
⇀

r
⇀ ∫

C2

F
⇀

r
⇀ C1 C2 F

⇀

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64023?pdf
https://cnx.org/contents/i4nRcikn@3.1:H2TLb2-S@4/Introduction
https://math.libretexts.org/Courses/Mission_College/MAT_04A_Multivariable_Calculus_(Kravets)/05%3A_Vector_Calculus/5.04%3A_Conservative_Vector_Fields
https://creativecommons.org/licenses/by-nc-sa/4.0
https://openstax.org/
https://openstax.org/details/books/calculus-volume-1
https://math.libretexts.org/@go/page/2619
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/details/books/calculus-volume-1


Access for free at OpenStax 5.5.1 https://math.libretexts.org/@go/page/64024

5.5: Green’s Theorem

Apply the circulation form of Green’s theorem.
Apply the flux form of Green’s theorem.
Calculate circulation and flux on more general regions.

In this section, we examine Green’s theorem, which is an extension of the Fundamental Theorem of Calculus to two dimensions. Green’s theorem
has two forms: a circulation form and a flux form, both of which require region  in the double integral to be simply connected. However, we will
extend Green’s theorem to regions that are not simply connected.

Put simply, Green’s theorem relates a line integral around a simply closed plane curve  and a double integral over the region enclosed by . The
theorem is useful because it allows us to translate difficult line integrals into more simple double integrals, or difficult double integrals into more
simple line integrals.

Extending the Fundamental Theorem of Calculus

Recall that the Fundamental Theorem of Calculus says that

As a geometric statement, this equation says that the integral over the region below the graph of  and above the line segment  depends
only on the value of  at the endpoints  and  of that segment. Since the numbers  and  are the boundary of the line segment , the theorem
says we can calculate integral  based on information about the boundary of line segment  (Figure ). The same idea is true of
the Fundamental Theorem for Line Integrals:

When we have a potential function (an “antiderivative”), we can calculate the line integral based solely on information about the boundary of curve
.

Figure : The Fundamental Theorem of Calculus says that the integral over line segment  depends only on the values of the antiderivative
at the endpoints of .

Green’s theorem takes this idea and extends it to calculating double integrals. Green’s theorem says that we can calculate a double integral over
region  based solely on information about the boundary of . Green’s theorem also says we can calculate a line integral over a simple closed
curve  based solely on information about the region that  encloses. In particular, Green’s theorem connects a double integral over region  to a
line integral around the boundary of .

Circulation Form of Green’s Theorem
The first form of Green’s theorem that we examine is the circulation form. This form of the theorem relates the vector line integral over a simple,
closed plane curve  to a double integral over the region enclosed by . Therefore, the circulation of a vector field along a simple closed curve
can be transformed into a double integral and vice versa.

Let  be an open, simply connected region with a boundary curve  that is a piecewise smooth, simple closed curve oriented
counterclockwise (Figure ). Let  be a vector field with component functions that have continuous partial derivatives on .
Then,
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Figure : The circulation form of Green’s theorem relates a line integral over curve  to a double integral over region .

Notice that Green’s theorem can be used only for a two-dimensional vector field . If  is a three-dimensional field, then Green’s theorem
does not apply. Since

this version of Green’s theorem is sometimes referred to as the tangential form of Green’s theorem.

The proof of Green’s theorem is rather technical, and beyond the scope of this text. Here we examine a proof of the theorem in the special case that
 is a rectangle. For now, notice that we can quickly confirm that the theorem is true for the special case in which  is conservative. In

this case,

because the circulation is zero in conservative vector fields.  satisfies the cross-partial condition, so . Therefore,

which confirms Green’s theorem in the case of conservative vector fields.

Let’s now prove that the circulation form of Green’s theorem is true when the region  is a rectangle. Let  be the rectangle 
oriented counterclockwise. Then, the boundary  of  consists of four piecewise smooth pieces , , , and  (Figure ). We
parameterize each side of  as follows:
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Figure : Rectangle  is oriented counterclockwise.

Then,

By the Fundamental Theorem of Calculus,

and

Therefore,

But,

Therefore,  and we have proved Green’s theorem in the case of a rectangle.

To prove Green’s theorem over a general region , we can decompose  into many tiny rectangles and use the proof that the theorem works over
rectangles. The details are technical, however, and beyond the scope of this text.

5.5.3 D

⋅ d∫
C

F
⇀

r
⇀ = ⋅ d + ⋅ d + ⋅ d + ⋅ d∫

C1

F
⇀

r
⇀ ∫

C2

F
⇀

r
⇀ ∫

C3

F
⇀

r
⇀ ∫

C4

F
⇀

r
⇀

= ⋅ d + ⋅ d − ⋅ d − ⋅ d∫
C1

F
⇀

r
⇀ ∫

C2

F
⇀

r
⇀ ∫

−C3

F
⇀

r
⇀ ∫

−C4

F
⇀

r
⇀

= ( (t)) ⋅ (t)dt+ ( (t)) ⋅ (t)dt− ( (t)) ⋅ (t)dt− ( (t)) ⋅ (t)dt∫
b

a

F
⇀

r
⇀

1 r
⇀′

1 ∫
d

c

F
⇀

r
⇀

2 r
⇀′

2 ∫
b

a

F
⇀

r
⇀

3 r
⇀′

3 ∫
d

c

F
⇀

r
⇀

4 r
⇀′

4

= P (t, c)dt+ Q(b, t)dt− P (t, d)dt− Q(a, t)dt∫
b

a

∫
d

c

∫
b

a

∫
d

c

= (P (t, c) −P (t, d))dt+ (Q(b, t) −Q(a, t))dt∫
b

a

∫
d

c

= − (P (t, d) −P (t, c))dt+ (Q(b, t) −Q(a, t))dt.∫
b

a

∫
d

c

P (t, d) −P (t, c) = P (t, y)dy∫
d

c

∂

∂y

Q(b, t) −Q(a, t) = Q(x, t)dx.∫
b

a

∂

∂x

− (P (t, d) −P (t, c))dt+ (Q(b, t) −Q(a, t))dt = − P (t, y)dy dt+ Q(x, t)dx dt.∫
b

a

∫
d

c

∫
b

a

∫
d

c

∂

∂y
∫

d

c

∫
b

a

∂

∂x

− P (t, y)dy dt+ Q(x, t)dx dt∫
b

a

∫
d

c

∂

∂y
∫

d

c

∫
b

a

∂

∂x
= − P (x, y)dy dx+ Q(x, y)dx dy∫

b

a

∫
d

c

∂

∂y
∫

d

c

∫
b

a

∂

∂x

= ( − )dy dx∫
b

a

∫
d

c

Qx Py

= ( − )dA.∬
D

Qx Py

⋅ d = ( − )dA∫
C

F
⇀

r
⇀ ∬

D

Qx Py

□

D D
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Calculate the line integral

where  is a rectangle with vertices , , , and  oriented counterclockwise.

Solution

Let . Then,  and . Therefore, .

Let  be the rectangular region enclosed by  (Figure ). By Green’s theorem,

Figure : The line integral over the boundary of the rectangle can be transformed into a double integral over the rectangle.

Analysis

If we were to evaluate this line integral without using Green’s theorem, we would need to parameterize each side of the rectangle, break the
line integral into four separate line integrals, and use the methods from the section titled Line Integrals to evaluate each integral. Furthermore,
since the vector field here is not conservative, we cannot apply the Fundamental Theorem for Line Integrals. Green’s theorem makes the
calculation much simpler.

Calculate the work done on a particle by force field

as the particle traverses circle  exactly once in the counterclockwise direction, starting and ending at point .

Solution

Let  denote the circle and let  be the disk enclosed by . The work done on the particle is

As with Example , this integral can be calculated using tools we have learned, but it is easier to use the double integral given by Green’s
theorem (Figure ).

 Example : Applying Green’s Theorem over a Rectangle5.5.1

ydx+(y−3)dy,∮
C

x2

C (1, 1) (4, 1) (4, 5) (1, 5)

(x, y) = ⟨P (x, y),Q(x, y)⟩ = ⟨ y, y−3⟩F
⇀

x2 (x, y) = 0Qx (x, y) =Py x2 − = −Qx Py x2

D C 5.5.4

ydx+(y−3)dy∮
C

x2 = ( − )dA∬
D

Qx Py

= − dA = − dx dy∬
D

x2 ∫
5

1
∫

4

1
x2

= −21 dy = −84.∫
5

1

5.5.4

 Example : Applying Green’s Theorem to Calculate Work5.5.2

(x, y) = ⟨y+sinx, −x⟩F
⇀

ey

+ = 4x2 y2 (2, 0)

C D C

W = (y+sinx)dx+( −x)dy.∮
C

ey

5.5.1
5.5.5
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Let . Then,  and . Therefore, .

By Green’s theorem,

Figure : The line integral over the boundary circle can be transformed into a double integral over the disk enclosed by the circle.

Use Green’s theorem to calculate line integral

where  is a right triangle with vertices , , and  oriented counterclockwise.

Hint

Transform the line integral into a double integral.

Answer

In the preceding two examples, the double integral in Green’s theorem was easier to calculate than the line integral, so we used the theorem to
calculate the line integral. In the next example, the double integral is more difficult to calculate than the line integral, so we use Green’s theorem to
translate a double integral into a line integral.

Calculate the area enclosed by ellipse  (Figure ).

(x, y) = ⟨P (x, y),Q(x, y)⟩ = ⟨y+sinx, −x⟩F
⇀

ey = −1Qx = 1Py − = −2Qx Py

W = (y+sin(x))dx+( −x)dy∮
C

ey

= ( − )dA∬
D

Qx Py

= −2 dA∬
D

= −2(area(D)) = −2π( ) = −8π.22

5.5.5

 Exercise 5.5.2

sin( )dx+(3x−y)dy.∮
C

x2

C (−1, 2) (4, 2) (4, 5)

45

2

 Example : Applying Green’s Theorem over an Ellipse5.5.3

+ = 1
x2

a2

y2

b2
5.5.6
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Figure : Ellipse  is denoted by .

Solution

Let  denote the ellipse and let  be the region enclosed by . Recall that ellipse  can be parameterized by

,
,
.

Calculating the area of  is equivalent to computing double integral . To calculate this integral without Green’s theorem, we would
need to divide  into two regions: the region above the x-axis and the region below. The area of the ellipse is

These two integrals are not straightforward to calculate (although when we know the value of the first integral, we know the value of the
second by symmetry). Instead of trying to calculate them, we use Green’s theorem to transform  into a line integral around the
boundary .

Consider vector field

Then,  and , and therefore . Notice that  was chosen to have the property that . Since this is the

case, Green’s theorem transforms the line integral of  over  into the double integral of 1 over .

By Green’s theorem,

Therefore, the area of the ellipse is .

In Example , we used vector field  to find the area of any ellipse. The logic of the previous example can be

extended to derive a formula for the area of any region . Let  be any region with a boundary that is a simple closed curve  oriented

counterclockwise. If , then . Therefore, by the same logic as in Example ,

It’s worth noting that if  is any vector field with , then the logic of the previous paragraph works. So. Equation  is
not the only equation that uses a vector field’s mixed partials to get the area of a region.

5.5.6 + = 1
x2

a2

y2

b2
C

C D C C

x = a cos t
y = b sin t
0 ≤ t ≤ 2π

D dA∬
D

D

dy dx+ dy dx.∫
a

−a

∫
−b2 (bx/a)

2√

0
∫

a

−a

∫
0

− −b2 (bx/a)2√

dA∬
D

C

F (x, y) = ⟨P ,Q⟩ = ⟨− , ⟩.
y

2

x

2

=Qx

1

2
= −Py

1

2
− = 1Qx Py F

⇀
− = 1Qx Py

F
⇀

C D

dA∬
D

= ( − )dA∬
D

Qx Py

= ⋅ d = −y dx+x dy∫
C

F
⇀

r
⇀ 1

2
∫
C

= −b sin t(−a sin t) +a(cos t)b cos t dt
1

2
∫

2π

0

= ab t+ab t dt
1

2
∫

2π

0
cos2 sin2

= ab dt = πab.
1

2
∫

2π

0

πab units2

5.5.3 (x, y) = ⟨P ,Q⟩ = ⟨− , ⟩F
⇀ y

2

x

2
D D C

F (x, y) = ⟨P ,Q⟩ = ⟨− , ⟩
y

2

x

2
− = 1Qx Py 5.5.3

area of D = dA = −ydx+xdy.∬
D

1

2
∮
C

(5.5.3)

F = ⟨P ,Q⟩ − = 1Qx Py 5.5.3
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Find the area of the region enclosed by the curve with parameterization , .

Hint

Use Equation .

Answer

Flux Form of Green’s Theorem

The circulation form of Green’s theorem relates a double integral over region  to line integral , where  is the boundary of . The
flux form of Green’s theorem relates a double integral over region  to the flux across boundary . The flux of a fluid across a curve can be
difficult to calculate using the flux line integral. This form of Green’s theorem allows us to translate a difficult flux integral into a double integral
that is often easier to calculate.

Let  be an open, simply connected region with a boundary curve  that is a piecewise smooth, simple closed curve that is oriented
counterclockwise (Figure ). Let  be a vector field with component functions that have continuous partial derivatives on an
open region containing . Then,

Figure : The flux form of Green’s theorem relates a double integral over region  to the flux across curve .

Because this form of Green’s theorem contains unit normal vector , it is sometimes referred to as the normal form of Green’s theorem.

Recall that . Let  and . By the circulation form of Green’s theorem,

 Exercise 5.5.3

r(t) = ⟨sin t cos t, sin t⟩ 0 ≤ t ≤ π

5.5.3

4

3

D ⋅ ds∮C F
⇀

T
⇀

C D

D C

 GREEN’S THEOREM (FLUX FORM)

D C

5.5.7 = ⟨P ,Q⟩F
⇀

D

⋅ ds = + dA.∮
C

F
⇀

N
⇀

∬
D

Px Qy (5.5.4)

5.5.7 D C

N
⇀

 Proof

⋅ ds = −Q dx+P dy∮
C

F
⇀

N
⇀

∮
C

M = −Q N = P
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Let  be a circle of radius  centered at the origin (Figure ) and let . Calculate the flux across .

Figure : Curve  is a circle of radius  centered at the origin.

Solution

Let  be the disk enclosed by . The flux across  is . We could evaluate this integral using tools we have learned, but Green’s

theorem makes the calculation much more simple. Let  and  so that . Note that , and
therefore . By Green’s theorem,

Since  is the area of the circle, . Therefore, the flux across  is .

Let  be the triangle with vertices , , and  oriented clockwise (Figure ). Calculate the flux of 
 across .

−Q dx+P dy∮
C

= M dx+N dy∮
C

= − dA∬
D

Nx My

= − dA∬
D

Px (−Q)y

= + dA.∬
D

Px Qy

□

 Example : Applying Green’s Theorem for Flux across a Circle5.5.4A

C r 5.5.8 (x, y) = ⟨x, y⟩F
⇀

C

5.5.8 C r

D C C ⋅ ds∮
C

F
⇀

N
⇀

P (x, y) = x Q(x, y) = y = ⟨P ,Q⟩F
⇀

= 1 =Px Qy

+ = 2Px Qy

⋅ ds = 2 dA = 2 dA.∫
C

F
⇀

N
⇀

∬
D

∬
D

dA∬
D

dA = π∬
D

r2 C 2πr2

 Example : Applying Green’s Theorem for Flux across a Triangle5.5.4B

S (0, 0) (1, 0) (0, 3) 5.5.9

(x, y) = ⟨P (x, y),Q(x, y)⟩ = ⟨ + , x+y⟩F
⇀

x2 ey S
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Figure : Curve  is a triangle with vertices , , and  oriented clockwise.

Solution

To calculate the flux without Green’s theorem, we would need to break the flux integral into three line integrals, one integral for each side of
the triangle. Using Green’s theorem to translate the flux line integral into a single double integral is much more simple.

Let  be the region enclosed by . Note that  and ; therefore, . Green’s theorem applies only to simple

closed curves oriented counterclockwise, but we can still apply the theorem because  and  is oriented

counterclockwise. By Green’s theorem, the flux is

Notice that the top edge of the triangle is the line . Therefore, in the iterated double integral, the -values run from  to 
, and we have

Calculate the flux of  across a unit circle oriented counterclockwise.

Hint

Apply Green’s theorem and use polar coordinates.

Answer

5.5.9 S (0, 0) (1, 0) (0, 3)

D S = 2xPx = 1Qy + = 2x+1Px Qy

⋅ ds = − ⋅ ds∮
C

F
⇀

N
⇀

∮
−S

F
⇀

N
⇀

−S

⋅ ds∮
C

F
⇀

N
⇀

= ⋅ ds∮
−S

F
⇀

N
⇀

= − ( + )dA∬
D

Px Qy

= − (2x+1)dA.∬
D

y = −3x+3 y y = 0
y = −3x+3

− (2x+1)dA∬
D

= − (2x+1)dy dx∫
1

0
∫

−3x+3

0

= − (2x+1)(−3x+3)dx∫
1

0

= − (−6 +3x+3)dx∫
1

0
x2

= −[−2 + +3x]x3 3x2

2

1

0

= − .
5

2

 Exercise 5.5.4

(x, y) = ⟨ , ⟩F
⇀

x3 y3

3π

2
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Water flows from a spring located at the origin. The velocity of the water is modeled by vector field  m/sec. Find
the amount of water per second that flows across the rectangle with vertices , , ,and , oriented counterclockwise
(Figure ).

Figure : Water flows across the rectangle with vertices , , ,and , oriented counterclockwise.

Solution

Let  represent the given rectangle and let  be the rectangular region enclosed by . To find the amount of water flowing across , we
calculate flux . Let  and  so that . Then,  and . By Green’s theorem,

Therefore, the water flux is 80 m /sec.

Recall that if vector field  is conservative, then  does no work around closed curves—that is, the circulation of  around a closed curve is zero.
In fact, if the domain of  is simply connected, then  is conservative if and only if the circulation of  around any closed curve is zero. If we
replace “circulation of ” with “flux of ,” then we get a definition of a source-free vector field. The following statements are all equivalent ways
of defining a source-free field  on a simply connected domain (note the similarities with properties of conservative vector fields):

1. The flux  across any closed curve  is zero.

2. If  and  are curves in the domain of  with the same starting points and endpoints, then . In other words,

flux is independent of path.
3. There is a stream function  for . A stream function for  is a function g such that  and .Geometrically, 

 is tangential to the level curve of  at . Since the gradient of  is perpendicular to the level curve of  at , stream function
 has the property  for any point  in the domain of . (Stream functions play the same role for source-free fields

that potential functions play for conservative fields.)
4. 

Verify that rotation vector field  is source free, and find a stream function for .

Solution

 Example : Applying Green’s Theorem for Water Flow across a Rectangle5.5.5

(x, y) = ⟨5x+y, x+3y⟩v
⇀

(−1, −2) (1, −2) (1, 3) (−1, 3)
5.5.10

5.5.10 (−1, −2) (1, −2) (1, 3) (−1, 3)

C D C C

⋅ d∫
C

v
⇀

r
⇀ P (x, y) = 5x+y Q(x, y) = x+3y = ⟨P ,Q⟩v

⇀ = 5Px = 3Qy

⋅ d∫
C

v
⇀

r
⇀ = ( + )dA∬

D

Px Qy

= 8 dA∬
D

= 8(area of  D) = 80.

2

F
⇀

F
⇀

F
⇀

F
⇀

F
⇀

F
⇀

F
⇀

F
⇀

= ⟨P ,Q⟩F
⇀

⋅ ds∮
C

F
⇀

N
⇀

C

C1 C2 F
⇀

⋅ ds = ⋅ ds∫
C1

F
⇀

N
⇀

∫
C2

F
⇀

N
⇀

g(x, y) F
⇀

= ⟨P ,Q⟩F
⇀

P = gy Q = −gx

= ⟨a, b⟩F
⇀

g (a, b) g g (a, b)

g (a, b) ⋅ g(a, b) = 0F
⇀

∇
⇀

(a, b) g

+ = 0Px Qy

 Example : Finding a Stream Function5.5.6

(x, y) = ⟨y, −x⟩F
⇀

F
⇀
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Note that the domain of  is all of , which is simply connected. Therefore, to show that  is source free, we can show any of items 1
through 4 from the previous list to be true. In this example, we show that item 4 is true. Let  and . Then 

, and therefore . Thus,  is source free.

To find a stream function for , proceed in the same manner as finding a potential function for a conservative field. Let  be a stream function
for . Then , which implies that

.

Since , we have . Therefore,

.

Letting  gives stream function

.

To confirm that  is a stream function for , note that  and .

Notice that source-free rotation vector field  is perpendicular to conservative radial vector field  (Figure 
).

Figure : (a) In this image, we see the three-level curves of  and vector field . Note that the  vectors on a given level curve are
tangent to the level curve. (b) In this image, we see the three-level curves of  and vector field . The gradient vectors are perpendicular to
the corresponding level curve. Therefore,  for any point in the domain of .

Find a stream function for vector field .

Hint

Follow the outline provided in the previous example.

Answer

Vector fields that are both conservative and source free are important vector fields. One important feature of conservative and source-free vector
fields on a simply connected domain is that any potential function  of such a field satisfies Laplace’s equation . Laplace’s equation
is foundational in the field of partial differential equations because it models such phenomena as gravitational and magnetic potentials in space, and
the velocity potential of an ideal fluid. A function that satisfies Laplace’s equation is called a harmonic function. Therefore any potential function
of a conservative and source-free vector field is harmonic.

To see that any potential function of a conservative and source-free vector field on a simply connected domain is harmonic, let  be such a
potential function of vector field . Then,  and  because . Therefore,  and . Since  is
source free, , and we have that  is harmonic.

For vector field , verify that the field is both conservative and source free, find a potential function for , and
verify that the potential function is harmonic.

F
⇀

R
2

F
⇀

P (x, y) = y Q(x, y) = −x

= 0 =Px Qy + = 0Px Qy F
⇀

F
⇀

g

F
⇀

= ygy

g(x, y) = +h(x)
y2

2

− = Q = −xgx h'(x) = x

h(x) = +C
x2

2

C = 0

g(x, y) = +
x2

2

y2

2

g F
⇀

= y = Pgy − = −x = Qgx

(x, y) = ⟨y, −x⟩F
⇀

g = ⟨x, y⟩∇
⇀

5.5.11

5.5.11 g F
⇀

F
⇀

g g∇
⇀

(a, b) ⋅ g(a, b) = 0F
⇀

∇
⇀

g

 Exercise 5.5.6

(x, y) = ⟨x siny, cosy⟩F
⇀

g(x, y) = −x cosy

f + = 0fxx fyy

f

= ⟨P ,Q⟩F
⇀

= Pfx = Qfx f =∇
⇀

F
⇀

=fxx Px =fyy Qy F
⇀

+ = + = 0fxx fyy Px Qy f

 Example : Satisfying Laplace’s Equation5.5.7

(x, y) = ⟨ siny, cosy⟩F
⇀

ex ex F
⇀
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Solution

Let  and . Notice that the domain of  is all of two-space, which is simply connected. Therefore, we can
check the cross-partials of  to determine whether  is conservative. Note that , so  is conservative. Since 

 and ,  and the field is source free.

To find a potential function for , let  be a potential function. Then, , so . Integrating this equation with respect
to x gives . Since , differentiating  with respect to y gives .
Therefore, we can take , and  is a potential function for .

To verify that  is a harmonic function, note that  and

. Therefore, , and  satisfies Laplace’s equation.

Is the function  harmonic?

Hint

Determine whether the function satisfies Laplace’s equation.

Answer

No

Green’s Theorem on General Regions
Green’s theorem, as stated, applies only to regions that are simply connected—that is, Green’s theorem as stated so far cannot handle regions with
holes. Here, we extend Green’s theorem so that it does work on regions with finitely many holes (Figure ).

Figure : Green’s theorem, as stated, does not apply to a nonsimply connected region with three holes like this one.

Before discussing extensions of Green’s theorem, we need to go over some terminology regarding the boundary of a region. Let  be a region and
let  be a component of the boundary of . We say that  is positively oriented if, as we walk along  in the direction of orientation, region  is
always on our left. Therefore, the counterclockwise orientation of the boundary of a disk is a positive orientation, for example. Curve  is
negatively oriented if, as we walk along  in the direction of orientation, region  is always on our right. The clockwise orientation of the
boundary of a disk is a negative orientation, for example.

Let  be a region with finitely many holes (so that  has finitely many boundary curves), and denote the boundary of  by  (Figure ).
To extend Green’s theorem so it can handle , we divide region  into two regions,  and  (with respective boundaries  and ), in
such a way that  and neither  nor  has any holes (Figure ).

Figure : (a) Region  with an oriented boundary has three holes. (b) Region  split into two simply connected regions has no holes.

Assume the boundary of  is oriented as in the figure, with the inner holes given a negative orientation and the outer boundary given a positive
orientation. The boundary of each simply connected region  and  is positively oriented. If  is a vector field defined on , then Green’s
theorem says that
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Therefore, Green’s theorem still works on a region with holes.

To see how this works in practice, consider annulus  in Figure  and suppose that  is a vector field defined on this annulus.
Region  has a hole, so it is not simply connected. Orient the outer circle of the annulus counterclockwise and the inner circle clockwise (Figure 

) so that, when we divide the region into  and , we are able to keep the region on our left as we walk along a path that traverses the
boundary. Let  be the upper half of the annulus and  be the lower half. Neither of these regions has holes, so we have divided  into two
simply connected regions.

We label each piece of these new boundaries as  for some , as in Figure . If we begin at  and travel along the oriented boundary, the
first segment is , then , , and . Now we have traversed  and returned to . Next, we start at  again and traverse . Since the first
piece of the boundary is the same as  in , but oriented in the opposite direction, the first piece of  is . Next, we have , then ,
and finally .

Figure : Breaking the annulus into two separate regions gives us two simply connected regions. The line integrals over the common
boundaries cancel out.

Figure  shows a path that traverses the boundary of . Notice that this path traverses the boundary of region , returns to the starting point,
and then traverses the boundary of region . Furthermore, as we walk along the path, the region is always on our left. Notice that this traversal of
the  paths covers the entire boundary of region . If we had only traversed one portion of the boundary of , then we cannot apply Green’s
theorem to .

The boundary of the upper half of the annulus, therefore, is  and the boundary of the lower half of the annulus is 
. Then, Green’s theorem implies

Therefore, we arrive at the equation found in Green’s theorem—namely,

The same logic implies that the flux form of Green’s theorem can also be extended to a region with finitely many holes:
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Calculate the integral

where  is the annulus given by the polar inequalities , .

Solution

Although  is not simply connected, we can use the extended form of Green’s theorem to calculate the integral. Since the integration occurs
over an annulus, we convert to polar coordinates:

Let  and let  be any simple closed curve in a plane oriented counterclockwise. What are the possible

values of ?

Solution

We use the extended form of Green’s theorem to show that  is either  or —that is, no matter how crazy curve  is, the line
integral of  along  can have only one of two possible values. We consider two cases: the case when  encompasses the origin and the case
when  does not encompass the origin.

Case 1: C Does Not Encompass the Origin

In this case, the region enclosed by  is simply connected because the only hole in the domain of  is at the origin. We showed in our discussion
of cross-partials that  satisfies the cross-partial condition. If we restrict the domain of  just to  and the region it encloses, then  with this
restricted domain is now defined on a simply connected domain. Since  satisfies the cross-partial property on its restricted domain, the field  is
conservative on this simply connected region and hence the circulation  is zero.

Case 2: C Does Encompass the Origin

In this case, the region enclosed by  is not simply connected because this region contains a hole at the origin. Let  be a circle of radius a
centered at the origin so that  is entirely inside the region enclosed by  (Figure ). Give  a clockwise orientation.

Figure : Choose circle  centered at the origin that is contained entirely inside .

Let  be the region between  and , and  is orientated counterclockwise. By the extended version of Green’s theorem,

 Example :       Using Green’s Theorem on a Region with Holes5.5.8A
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and therefore

Since  is a specific curve, we can evaluate . Let

be a parameterization of . Then,

Therefore, .

Calculate integral , where  is the annulus given by the polar inequalities , , and 
.

Hint

Use the extended version of Green’s theorem.

Answer

Imagine you are a doctor who has just received a magnetic resonance image of your patient’s brain. The brain has a tumor (Figure ).
How large is the tumor? To be precise, what is the area of the red region? The red cross-section of the tumor has an irregular shape, and
therefore it is unlikely that you would be able to find a set of equations or inequalities for the region and then be able to calculate its area by
conventional means. You could approximate the area by chopping the region into tiny squares (a Riemann sum approach), but this method
always gives an answer with some error.

Figure : This magnetic resonance image of a patient’s brain shows a tumor, which is highlighted in red. (credit: modification of work by
Christaras A, Wikimedia Commons)
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Instead of trying to measure the area of the region directly, we can use a device called a rolling planimeter to calculate the area of the region
exactly, simply by measuring its boundary. In this project you investigate how a planimeter works, and you use Green’s theorem to show the
device calculates area correctly.

A rolling planimeter is a device that measures the area of a planar region by tracing out the boundary of that region (Figure ). To
measure the area of a region, we simply run the tracer of the planimeter around the boundary of the region. The planimeter measures the
number of turns through which the wheel rotates as we trace the boundary; the area of the shape is proportional to this number of wheel turns.
We can derive the precise proportionality equation using Green’s theorem. As the tracer moves around the boundary of the region, the tracer
arm rotates and the roller moves back and forth (but does not rotate).

Figure : (a) A rolling planimeter. The pivot allows the tracer arm to rotate. The roller itself does not rotate; it only moves back and forth.
(b) An interior view of a rolling planimeter. Notice that the wheel cannot turn if the planimeter is moving back and forth with the tracer arm
perpendicular to the roller.

Let  denote the boundary of region , the area to be calculated. As the tracer traverses curve , assume the roller moves along the y-axis
(since the roller does not rotate, one can assume it moves along a straight line). Use the coordinates  to represent points on boundary ,
and coordinates  to represent the position of the pivot. As the planimeter traces , the pivot moves along the y-axis while the tracer arm
rotates on the pivot.

Watch a short animation of a planimeter in action.

Begin the analysis by considering the motion of the tracer as it moves from point  counterclockwise to point  that is
close to  (Figure ). The pivot also moves, from point  to nearby point . How much does the wheel turn as a
result of this motion? To answer this question, break the motion into two parts. First, roll the pivot along the y-axis from  to 

 without rotating the tracer arm. The tracer arm then ends up at point  while maintaining a constant angle  with the
x-axis. Second, rotate the tracer arm by an angle  without moving the roller. Now the tracer is at point . Let ll be the
distance from the pivot to the wheel and let L be the distance from the pivot to the tracer (the length of the tracer arm).

Figure : Mathematical analysis of the motion of the planimeter.

1. Explain why the total distance through which the wheel rolls the small motion just described is .

2. Show that .
3. Use step 2 to show that the total rolling distance of the wheel as the tracer traverses curve  is 

Total wheel roll . 

Now that you have an equation for the total rolling distance of the wheel, connect this equation to Green’s theorem to calculate area 
enclosed by .

4. Show that .
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5. Assume the orientation of the planimeter is as shown in Figure . Explain why , and use this inequality to show there is a
unique value of  for each point : .

6. Use step 5 to show that 

7. Use Green’s theorem to show that .

8. Use step 7 to show that the total wheel roll is

It took a bit of work, but this equation says that the variable of integration Y in step 3 can be replaced with y.

9. Use Green’s theorem to show that the area of  is . The logic is similar to the logic used to show that the area of 

.

10. Conclude that the area of  equals the length of the tracer arm multiplied by the total rolling distance of the wheel.

You now know how a planimeter works and you have used Green’s theorem to justify that it works. To calculate the area of a planar region ,
use a planimeter to trace the boundary of the region. The area of the region is the length of the tracer arm multiplied by the distance the wheel
rolled.

Key Concepts
Green’s theorem relates the integral over a connected region to an integral over the boundary of the region. Green’s theorem is a version of the
Fundamental Theorem of Calculus in one higher dimension.
Green’s Theorem comes in two forms: a circulation form and a flux form. In the circulation form, the integrand is . In the flux form, the
integrand is .
Green’s theorem can be used to transform a difficult line integral into an easier double integral, or to transform a difficult double integral into an
easier line integral.
A vector field is source free if it has a stream function. The flux of a source-free vector field across a closed curve is zero, just as the circulation
of a conservative vector field across a closed curve is zero.

Key Equations
Green’s theorem, circulation form 

, where  is the boundary of 

Green’s theorem, flux form 

, where  is the boundary of 

Green’s theorem, extended version 

Glossary

Green’s theorem
relates the integral over a connected region to an integral over the boundary of the region

stream function

if  is a source-free vector field, then stream function  is a function such that  and 

This page titled 5.5: Green’s Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that
was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

16.4: Green’s Theorem by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source: https://openstax.org/details/books/calculus-
volume-1.
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5.6: Divergence and Curl

Determine divergence from the formula for a given vector field.
Determine curl from the formula for a given vector field.
Use the properties of curl and divergence to determine whether a vector field is conservative.

In this section, we examine two important operations on a vector field: divergence and curl. They are important to the field of
calculus for several reasons, including the use of curl and divergence to develop some higher-dimensional versions of the
Fundamental Theorem of Calculus. In addition, curl and divergence appear in mathematical descriptions of fluid mechanics,
electromagnetism, and elasticity theory, which are important concepts in physics and engineering. We can also apply curl and
divergence to other concepts we already explored. For example, under certain conditions, a vector field is conservative if and only
if its curl is zero.

In addition to defining curl and divergence, we look at some physical interpretations of them, and show their relationship to
conservative and source-free vector fields.

Divergence

Divergence is an operation on a vector field that tells us how the field behaves toward or away from a point. Locally, the
divergence of a vector field  in  or  at a particular point  is a measure of the “outflowing-ness” of the vector field at . If 

 represents the velocity of a fluid, then the divergence of  at  measures the net rate of change with respect to time of the
amount of fluid flowing away from  (the tendency of the fluid to flow “out of” P). In particular, if the amount of fluid flowing
into  is the same as the amount flowing out, then the divergence at  is zero.

If  is a vector field in  and  and  all exist, then the divergence of  is defined by

Note the divergence of a vector field is not a vector field, but a scalar function. In terms of the gradient operator

divergence can be written symbolically as the dot product

Note this is merely helpful notation, because the dot product of a vector of operators and a vector of functions is not meaningfully
defined given our current definition of dot product.

If  is a vector field in , and  and  both exist, then the divergence of  is defined similarly as

To illustrate this point, consider the two vector fields in Figure . At any particular point, the amount flowing in is the same as
the amount flowing out, so at every point the “outflowing-ness” of the field is zero. Therefore, we expect the divergence of both
fields to be zero, and this is indeed the case, as
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and

Figure : (a) Vector field  has zero divergence. (b) Vector field  also has zero divergence.

By contrast, consider radial vector field  in Figure . At any given point, more fluid is flowing in than is
flowing out, and therefore the “outgoingness” of the field is negative. We expect the divergence of this field to be negative, and this
is indeed the case, as

div(⟨1, 2⟩) = (1) + (2) = 0
∂

∂x

∂

∂y

div(⟨−y, x⟩) = (−y) + (x) = 0.
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Figure : This vector field has negative divergence.

To get a global sense of what divergence is telling us, suppose that a vector field in  represents the velocity of a fluid. Imagine
taking an elastic circle (a circle with a shape that can be changed by the vector field) and dropping it into a fluid. If the circle
maintains its exact area as it flows through the fluid, then the divergence is zero. This would occur for both vector fields in Figure 

. On the other hand, if the circle’s shape is distorted so that its area shrinks or expands, then the divergence is not zero.
Imagine dropping such an elastic circle into the radial vector field in Figure  so that the center of the circle lands at point 

. The circle would flow toward the origin, and as it did so the front of the circle would travel more slowly than the back,
causing the circle to “scrunch” and lose area. This is how you can see a negative divergence.

If , then find the divergence of  at .

Solution

The divergence of  is

Therefore, the divergence at  is . If  represents the velocity of a fluid, then more fluid is flowing out
than flowing in at point .

Find  for

Hint

Follow Example .

Answer

One application for divergence occurs in physics, when working with magnetic fields. A magnetic field is a vector field that models
the influence of electric currents and magnetic materials. Physicists use divergence in Gauss’s law for magnetism, which states that
if  is a magnetic field, then ; in other words, the divergence of a magnetic field is zero.

5.6.2

R
2

5.6.1

5.6.2

(3, 3)

 Example : Calculating Divergence at a Point5.6.1

(x, y, z) = +yz −yF
⇀

ex î ĵ z2k̂ F
⇀

(0, 2, −1)

F
⇀

( ) + (yz) − (y ) = +z−2yz.
∂

∂x
ex

∂

∂y

∂

∂z
z2 ex

(0, 2, −1) −1 +4 = 4e0 F
⇀

(0, 2, −1)

 Exercise 5.6.1

div F
⇀

(x, y, z) = ⟨xy, 5 − , + ⟩.F
⇀

z2 x2 y2

5.6.1

div = yF
⇀

B
⇀

⋅ = 0∇
⇀

B
⇀
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Is it possible for  to be a magnetic field?

Solution

If  were magnetic, then its divergence would be zero. The divergence of  is

and therefore  cannot model a magnetic field (Figure ).

Figure : The divergence of vector field  is one, so it cannot model a magnetic field.

     Another application for divergence is detecting whether a field is source free. Recall that a source-free field is a vector field that has
a stream function; equivalently, a source-free field is a field with a flux that is zero along any closed curve. The next two theorems
say that, under certain conditions, source-free vector fields are precisely the vector fields with zero divergence.

If  is a source-free continuous vector field with differentiable component functions, then .

Since  is source free, there is a function  with  and . Therefore,  and 
 by Clairaut’s theorem.

The converse of Divergence of a Source-Free Vector Field is true on simply connected regions, but the proof is too technical to
include here. Thus, we have the following theorem, which can test whether a vector field in  is source free.

 Example : Determining Whether a Field Is Magnetic5.6.2

(x, y) = ⟨ y, y−x ⟩F
⇀

x2 y2

F
⇀

F
⇀

( y) + (y−x ) = 2xy+1 −2xy = 1
∂

∂x
x2 ∂

∂y
y2

F
⇀

5.6.3

5.6.3 (x,y) = ⟨ y, y−x ⟩F
⇀

x2 y2

 Theorem: Divergence of a Source-Free Vector Field

= ⟨P ,Q⟩F
⇀

div = 0F
⇀

 Proof

F
⇀

g(x, y) = Pgy − = Qgx = ⟨ , − ⟩F
⇀

gy gx

div = − = 0F
⇀

gyx gxy

□

R
2
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Let  be a continuous vector field with differentiable component functions with a domain that is simply connected.
Then,  if and only if  is source free.

Is field  source free?

Solution

Note the domain of  is  which is simply connected. Furthermore,  is continuous with differentiable component functions.
Therefore, we can use the Divergence Test for Source-Free Vector Fields to analyze . The divergence of  is

Therefore,  is source free by the Divergence Test for Source-Free Vector Fields.

Let  be a rotational field where  and  are positive constants. Is  source free?

Hint

Calculate the divergence.

Answer

Yes

Recall that the flux form of Green’s theorem says that

where  is a simple closed curve and  is the region enclosed by . Since , Green’s theorem is sometimes
written as

Therefore, Green’s theorem can be written in terms of divergence. If we think of divergence as a derivative of sorts, then Green’s
theorem says the “derivative” of  on a region can be translated into a line integral of  along the boundary of the region. This is
analogous to the Fundamental Theorem of Calculus, in which the derivative of a function  on a line segment  can be
translated into a statement about  on the boundary of . Using divergence, we can see that Green’s theorem is a higher-
dimensional analog of the Fundamental Theorem of Calculus.

We can use all of what we have learned in the application of divergence. Let  be a vector field modeling the velocity of a fluid.
Since the divergence of  at point  measures the “outflowing-ness” of the fluid at ,  implies that more fluid is
flowing out of  than flowing in. Similarly,  implies the more fluid is flowing in to  than is flowing out, and 

 implies the same amount of fluid is flowing in as flowing out.

Suppose  models the flow of a fluid. Is more fluid flowing into point  than flowing out?

Solution

To determine whether more fluid is flowing into  than is flowing out, we calculate the divergence of  at :

 Theorem: Divergence Test for Source-Free Vector Fields

= ⟨P ,Q⟩F
⇀

div = 0F
⇀

F
⇀

 Example : Determining Whether a Field Is Source Free5.6.3

(x, y) = ⟨ y, 5 −x ⟩F
⇀

x2 y2

F
⇀

R
2 F

⇀

F
⇀

F
⇀

( y) + (5 −x ) = 2xy−2xy = 0.
∂

∂x
x2 ∂

∂y
y2

F
⇀

 Exercise 5.6.2

(x, y) = ⟨−ay, bx⟩F
⇀

a b F
⇀

⋅ ds = + dA,∮
C

F
⇀

N
⇀

∬
D

Px Qy

C D C + = divPx Qy F
⇀

⋅ ds = div dA.∮
C

F
⇀

N
⇀

∬
D

F
⇀

F
⇀

F
⇀

f [a, b]

f [a, b]

v
⇀

v
⇀ P P div v(P ) > 0

P div v(P ) < 0 P

div (P ) = 0v
⇀

 Example : Determining Flow of a Fluid5.6.4

(x, y) = ⟨−xy, y⟩, y > 0v⇀ (1, 4)

(1, 4) v⇀ (1, 4)
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To find the divergence at  substitute the point into the divergence: . Since the divergence of  at  is
negative, more fluid is flowing in than flowing out (Figure ).

Figure : Vector field  has negative divergence at 

For vector field , find all points  such that the amount of fluid flowing in to  equals the amount
of fluid flowing out of .

Hint

Find where the divergence is zero.

Answer

All points on line .

Curl
The second operation on a vector field that we examine is the curl, which measures the extent of rotation of the field about a point.
Suppose that  represents the velocity field of a fluid. Then, the curl of  at point  is a vector that measures the tendency of
particles near  to rotate about the axis that points in the direction of this vector. The magnitude of the curl vector at  measures
how quickly the particles rotate around this axis. In other words, the curl at a point is a measure of the vector field’s “spin” at that
point. Visually, imagine placing a paddlewheel into a fluid at , with the axis of the paddlewheel aligned with the curl vector
(Figure ). The curl measures the tendency of the paddlewheel to rotate.

div( ) = (−xy) + (y) = −y+1.v⇀
∂

∂x

∂

∂y

(1, 4) −4 +1 = −3 v
⇀ (1, 4)

5.6.4

5.6.4 (x,y) = ⟨−xy,y⟩v⇀ (1, 4)

 Exercise 5.6.3

(x, y) = ⟨−xy, y⟩, y > 0v
⇀ P P

P

y = 1

F
⇀

F
⇀

P

P P

P

5.6.5
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Figure : To visualize curl at a point, imagine placing a small paddlewheel into the vector field at a point.

Consider the vector fields in Figure . In part (a), the vector field is constant and there is no spin at any point. Therefore, we
expect the curl of the field to be zero, and this is indeed the case. Part (b) shows a rotational field, so the field has spin. In
particular, if you place a paddlewheel into a field at any point so that the axis of the wheel is perpendicular to a plane, the wheel
rotates counterclockwise. Therefore, we expect the curl of the field to be nonzero, and this is indeed the case (the curl is ).

To see what curl is measuring globally, imagine dropping a leaf into the fluid. As the leaf moves along with the fluid flow, the curl
measures the tendency of the leaf to rotate. If the curl is zero, then the leaf doesn’t rotate as it moves through the fluid.

If  is a vector field in , and , and  all exist, then the curl of  is defined by

Note that the curl of a vector field is a vector field, in contrast to divergence.

The definition of curl can be difficult to remember. To help with remembering, we use the notation  to stand for a
“determinant” that gives the curl formula:

The determinant of this matrix is

Thus, this matrix is a way to help remember the formula for curl. Keep in mind, though, that the word determinant is used very
loosely. A determinant is not really defined on a matrix with entries that are three vectors, three operators, and three functions.

If  is a vector field in , then the curl of , by definition, is

5.6.5

5.6.1

2 k̂

 Definition: Curl

= ⟨P ,Q,R⟩F
⇀

R
3 ,Px Qy Rz F

⇀

curl F
⇀

= ( − ) +( − ) +( − )Ry Qz î Pz Rx ĵ Qx Py k̂

=( − ) +( − ) +( − ) .
∂R

∂y

∂Q

∂z
î

∂P

∂z

∂R

∂x
ĵ

∂Q

∂x

∂P

∂y
k̂

(5.6.3)

(5.6.4)

×∇
⇀

F
⇀

.

∣

∣

∣
∣
∣
∣

î

∂

∂x

P

ĵ

∂

∂y

Q

k̂

∂

∂z

R

∣

∣

∣
∣
∣
∣

( − ) −( − ) +( − ) = ( − ) +( − ) +( − ) = curl .Ry Qz î Rx Pz ĵ Qx Py k̂ Ry Qz î Pz Rx ĵ Qx Py k̂ F
⇀

= ⟨P ,Q⟩F
⇀

R
2 F

⇀

curl = ( − ) =( − ) .F
⇀

Qx Py k̂
∂Q

∂x

∂P

∂y
k̂
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Find the curl of .

Solution

The curl is

Find the curl of  at point .

Hint

Find the determinant of matrix .

Answer

Find the curl of .

Solution

Notice that this vector field consists of vectors that are all parallel. In fact, each vector in the field is parallel to the x-axis. This
fact might lead us to the conclusion that the field has no spin and that the curl is zero. To test this theory, note that

Therefore, this vector field does have spin. To see why, imagine placing a paddlewheel at any point in the first quadrant (Figure
). The larger magnitudes of the vectors at the top of the wheel cause the wheel to rotate. The wheel rotates in the

clockwise (negative) direction, causing the coefficient of the curl to be negative.

 Example : Finding the Curl of a Three-Dimensional Vector Field5.6.5

(P ,Q,R) = ⟨ z, +xz, xyz⟩F
⇀

x2 ey

curl f = ×∇
⇀

F
⇀

=

∣

∣

∣
∣
∣

î

∂/∂x

P

ĵ

∂/∂y

Q

k̂

∂/∂z

R

∣

∣

∣
∣
∣

= ( − ) +( − ) +( − )Ry Qz î Pz Rx ĵ Qx Py k̂

= (xz−x) +( −yz) +z .î x2 ĵ k̂

 Exercise 5.6.4

= ⟨sinx cosz, siny sinz, cosx cosy⟩F
⇀

(0, , )
π

2

π

2

×∇
⇀

F
⇀

−î

 Example : Finding the Curl of a Two-Dimensional Vector Field5.6.6

= ⟨P ,Q⟩ = ⟨y, 0⟩F
⇀

curl = ( − ) = − ≠ .F
⇀

Qx Py k̂ k̂ 0
⇀

5.6.6
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Figure : Vector field  consists of vectors that are all parallel.

Note that if  is a vector field in a plane, then . Therefore, the circulation
form of Green’s theorem is sometimes written as

where  is a simple closed curve and  is the region enclosed by . Therefore, the circulation form of Green’s theorem can be
written in terms of the curl. If we think of curl as a derivative of sorts, then Green’s theorem says that the “derivative” of  on a
region can be translated into a line integral of  along the boundary of the region. This is analogous to the Fundamental Theorem
of Calculus, in which the derivative of a function  on line segment  can be translated into a statement about  on the
boundary of . Using curl, we can see the circulation form of Green’s theorem is a higher-dimensional analog of the
Fundamental Theorem of Calculus.

We can now use what we have learned about curl to show that gravitational fields have no “spin.” Suppose there is an object at the
origin with mass  at the origin and an object with mass . Recall that the gravitational force that object 1 exerts on object 2 is
given by field

Show that a gravitational field has no spin.

Solution

To show that  has no spin, we calculate its curl. Let

,

, and

.

Then,

5.6.6 (x,y) = ⟨y, 0⟩F
⇀

= ⟨P ,Q⟩F
⇀

curl ⋅ = ( − ) ⋅ = −F
⇀

k̂ Qx Py k̂ k̂ Qx Py

⋅ d = curl ⋅ dA,∮
C

F
⇀

r
⇀ ∬

D

F
⇀

k̂

C D C

F
⇀

F
⇀

f [a, b] f

[a, b]

m1 m2

(x, y, z) = −G ⟨ , , ⟩ .F
⇀

m1m2
x

( + +x2 y2 z2)3/2

y

( + +x2 y2 z2)3/2

z

( + +x2 y2 z2)3/2

 Example : Determining the Spin of a Gravitational Field5.6.7

F
⇀

P (x, y, z) =
x

( + +x2 y2 z2)3/2

Q(x, y, z) =
y

( + +x2 y2 z2)3/2

R(x, y, z) =
z

( + +x2 y2 z2)3/2
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Since the curl of the gravitational field is zero, the field has no spin.

Field  models the flow of a fluid. Show that if you drop a leaf into this fluid, as the leaf

moves over time, the leaf does not rotate.

Hint

Calculate the curl.

Answer

Using Divergence and Curl

Now that we understand the basic concepts of divergence and curl, we can discuss their properties and establish relationships
between them and conservative vector fields.

If  is a vector field in  then the curl of  is also a vector field in . Therefore, we can take the divergence of a curl. The next
theorem says that the result is always zero. This result is useful because it gives us a way to show that some vector fields are not the
curl of any other field. To give this result a physical interpretation, recall that divergence of a velocity field  at point  measures
the tendency of the corresponding fluid to flow out of . Since , the net rate of flow in vector field  at any
point is zero. Taking the curl of vector field  eliminates whatever divergence was present in .

Let  be a vector field in  such that the component functions all have continuous second-order partial
derivatives. Then,

By the definitions of divergence and curl, and by Clairaut’s theorem,

curl F
⇀

= −G [( − ) +( − ) +( − ) ]m1m2 Ry Qz î Pz Rx ĵ Qx Py k̂

= −Gm1m2

⎛

⎝

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜

( −( ))
−3yz

( + +x2 y2 z2)5/2

−3yz

( + +x2 y2 z2)5/2
î

+( −( ))
−3xz

( + +x2 y2 z2)5/2

−3xz

( + +x2 y2 z2)5/2
ĵ

+( −( ))
−3xy

( + +x2 y2 z2)5/2

−3xy

( + +x2 y2 z2)5/2
k̂

⎞

⎠

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟

= .0
⇀

 Exercise 5.6.7

(x, y) = ⟨− , ⟩v
⇀ y

+x2 y2

x

+x2 y2

curl =v
⇀

0
⇀

F
⇀

R
3 F

⇀
R

3

v⇀ P

P div(curl ) = 0v⇀ curl v⇀

F
⇀

F
⇀

 Theorem: Divergence of the Curl

= ⟨P ,Q,R⟩F
⇀

R
3

div(curl ) = ⋅ ( × ) = 0.F
⇀

∇
⇀

∇
⇀

F
⇀

 Proof

div(curl ) = div[( − ) +( − ) +( − ) ]F
⇀

Ry Qz î Pz Rx ĵ Qx Py k̂

= − + − + −Ryx Qxz Pyz Ryx Qzx Pzy

= 0.

□

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64025?pdf


Access for free at OpenStax 5.6.11 https://math.libretexts.org/@go/page/64025

Show that  is not the curl of another vector field. That is, show that there is no other vector 
 with .

Solution

Notice that the domain of  is all of  and the second-order partials of  are all continuous. Therefore, we can apply the
previous theorem to .

The divergence of  is . If  were the curl of vector field , then . But, the
divergence of  is not zero, and therefore  is not the curl of any other vector field.

Is it possible for  to be the curl of a vector field?

Hint

Find the divergence of .

Answer

No.

With the next two theorems, we show that if  is a conservative vector field then its curl is zero, and if the domain of  is simply
connected then the converse is also true. This gives us another way to test whether a vector field is conservative.

If  is conservative, then .

Since conservative vector fields satisfy the cross-partials property, all the cross-partials of  are equal. Therefore,

The same theorem is true for vector fields in a plane.

Since a conservative vector field is the gradient of a scalar function, the previous theorem says that  for any scalar
function . In terms of our curl notation, . This equation makes sense because the cross product of a vector with
itself is always the zero vector. Sometimes equation  is simplified as .

Let  be a vector field in space on a simply connected domain. If , then  is conservative.

Since , we have that , and . Therefore,  satisfies the cross-partials property on a
simply connected domain, and the Cross-Partial Property of Conservative Fields implies that  is conservative.

 Example : Showing That a Vector Field Is Not the Curl of Another5.6.8

(x, y, z) = +yz +xF
⇀

ex î ĵ z2 k̂

G
⇀

curl =G
⇀

F
⇀

F
⇀

R
3 F

⇀

F
⇀

F
⇀

+z+2xzex F
⇀

G
⇀

div = div(curl ) = 0F
⇀

G
⇀

F
⇀

F
⇀

 Exercise 5.6.8

(x, y, z) = ⟨sinx, cosy, sin(xyz)⟩G
⇀

G
⇀

F
⇀

F
⇀

 Theorem: Curl of a Conservative Vector Field

= ⟨P ,Q,R⟩F
⇀

curl =F
⇀

0
⇀

 Proof

F
⇀

curl F
⇀

= ( − ) +( − ) +( − )Ry Qz î Pz Rx ĵ Qx Py k̂

= .0
⇀

□

curl ( f) =∇
⇀

0
⇀

f × (f) =∇
⇀

∇
⇀

0
⇀

× (f) =∇
⇀

∇
⇀

0
⇀

× =∇
⇀

∇
⇀

0
⇀

 Theorem: Curl Test for a Conservative Field

= ⟨P ,Q,R⟩F
⇀

curl =F
⇀

0
⇀

F
⇀

 Proof

curl =F
⇀

0
⇀

= , =Ry Qz Pz Rx =Qx Py F
⇀

F
⇀

□
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The same theorem is also true in a plane. Therefore, if  is a vector field in a plane or in space and the domain is simply connected,
then  is conservative if and only if .

Use the curl to determine whether  is conservative.

Solution

Note that the domain of  is all of  which is simply connected (Figure ). Therefore, we can test whether  is
conservative by calculating its curl.

Figure : The curl of vector field  is zero.

The curl of  is

Thus,  is conservative.

We have seen that the curl of a gradient is zero. What is the divergence of a gradient? If  is a function of two variables, then 

. We abbreviate this “double dot product” as . This operator is called the Laplace operator,

and in this notation Laplace’s equation becomes . Therefore, a harmonic function is a function that becomes zero after
taking the divergence of a gradient.

Similarly, if  is a function of three variables then

Using this notation we get Laplace’s equation for harmonic functions of three variables:

Harmonic functions arise in many applications. For example, the potential function of an electrostatic field in a region of space that
has no static charge is harmonic.

Is it possible for  to be the potential function of an electrostatic field that is located in a region of  free
of static charge?

Solution

F
⇀

F
⇀

curl =F
⇀

0
⇀

 Example : Testing Whether a Vector Field Is Conservative5.6.9

(x, y, z) = ⟨yz, xz, xy⟩F
⇀

F
⇀

R
3 5.6.7 F

⇀

5.6.7 (x,y,z) = ⟨yz,xz,xy⟩F
⇀

F
⇀

( xy− xz) +( yz− xy) +( xz− yz) = (x−x) +(y−y) +(z−z) = .
∂

∂y

∂

∂z
î

∂

∂y

∂

∂z
ĵ

∂

∂y

∂

∂z
k̂ î ĵ k̂ 0

⇀

F
⇀

f

div( f) = ⋅ ( f) = +∇
⇀

∇
⇀

∇
⇀

fxx fyy ∇
⇀2

f = 0∇
⇀2

f

div( f) = ⋅ ( f) = + + .∇
⇀

∇
⇀

∇
⇀

fxx fyy fzz

f = 0.∇
⇀2

 Example : Finding a Potential Function5.6.10

f(x, y) = +x−yx2
R

2
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If  were such a potential function, then  would be harmonic. Note that  and , and so .
Therefore,  is not harmonic and  cannot represent an electrostatic potential.

Is it possible for function  to be the potential function of an electrostatic field located in a region of 
free of static charge?

Hint

Determine whether the function is harmonic.

Answer

Yes.

Key Concepts
The divergence of a vector field is a scalar function. Divergence measures the “outflowing-ness” of a vector field. If  is the
velocity field of a fluid, then the divergence of  at a point is the outflow of the fluid less the inflow at the point.
The curl of a vector field is a vector field. The curl of a vector field at point  measures the tendency of particles at  to rotate
about the axis that points in the direction of the curl at .
A vector field with a simply connected domain is conservative if and only if its curl is zero.

Key Equations
Curl

Divergence

Divergence of curl is zero

Curl of a gradient is the zero vector

Glossary

curl

the curl of vector field , denoted  is the “determinant” of the matrix

and is given by the expression ; it measures the tendency of particles at a point to
rotate about the axis that points in the direction of the curl at the point

divergence

the divergence of a vector field , denoted , is ; it measures the “outflowing-ness” of a
vector field

f f = 2fxx = 0fyy + ≠ 0fxx fyy
f f

 Exercise 5.6.10
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∇
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5.7: Surface Integrals

Find the parametric representations of a cylinder, a cone, and a sphere.
Describe the surface integral of a scalar-valued function over a parametric surface.
Use a surface integral to calculate the area of a given surface.
Explain the meaning of an oriented surface, giving an example.
Describe the surface integral of a vector field.
Use surface integrals to solve applied problems.

We have seen that a line integral is an integral over a path in a plane or in space. However, if we wish to integrate over a surface (a
two-dimensional object) rather than a path (a one-dimensional object) in space, then we need a new kind of integral that can handle
integration over objects in higher dimensions. We can extend the concept of a line integral to a surface integral to allow us to
perform this integration.

Surface integrals are important for the same reasons that line integrals are important. They have many applications to physics and
engineering, and they allow us to develop higher dimensional versions of the Fundamental Theorem of Calculus. In particular,
surface integrals allow us to generalize Green’s theorem to higher dimensions, and they appear in some important theorems we
discuss in later sections.

Parametric Surfaces

A surface integral is similar to a line integral, except the integration is done over a surface rather than a path. In this sense, surface
integrals expand on our study of line integrals. Just as with line integrals, there are two kinds of surface integrals: a surface integral
of a scalar-valued function and a surface integral of a vector field.

However, before we can integrate over a surface, we need to consider the surface itself. Recall that to calculate a scalar or vector
line integral over curve , we first need to parameterize . In a similar way, to calculate a surface integral over surface , we need
to parameterize . That is, we need a working concept of a parameterized surface (or a parametric surface), in the same way that
we already have a concept of a parameterized curve.

A parameterized surface is given by a description of the form

Notice that this parameterization involves two parameters,  and , because a surface is two-dimensional, and therefore two
variables are needed to trace out the surface. The parameters  and  vary over a region called the parameter domain, or parameter
space—the set of points in the -plane that can be substituted into . Each choice of  and  in the parameter domain gives a
point on the surface, just as each choice of a parameter  gives a point on a parameterized curve. The entire surface is created by
making all possible choices of  and  over the parameter domain.

Given a parameterization of surface

the parameter domain of the parameterization is the set of points in the -plane that can be substituted into .

Describe surface  parameterized by

Solution

 Learning Objectives

C C S

S

(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩.r⇀

u v

u v

uv r⇀ u v

t

u v

 Definition: Parameter Domain

(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩.r
⇀

uv r
⇀

 Example : Parameterizing a Cylinder5.7.1

S

(u, v) = ⟨cosu, sinu, v⟩, −∞ < u < ∞, −∞ < v< ∞.r
⇀
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To get an idea of the shape of the surface, we first plot some points. Since the parameter domain is all of , we can choose
any value for u and v and plot the corresponding point. If , then , so point (1, 0, 0) is on .

Similarly, points  and  are on .

Although plotting points may give us an idea of the shape of the surface, we usually need quite a few points to see the shape.
Since it is time-consuming to plot dozens or hundreds of points, we use another strategy. To visualize , we visualize two
families of curves that lie on . In the first family of curves we hold  constant; in the second family of curves we hold 
constant. This allows us to build a “skeleton” of the surface, thereby getting an idea of its shape.

Suppose that  is a constant . Then the curve traced out by the parameterization is , which gives a
vertical line that goes through point  in the -plane.
Suppose that  is a constant . Then the curve traced out by the parameterization is , which gives a circle
in plane  with radius 1 and center .

If  is held constant, then we get vertical lines; if  is held constant, then we get circles of radius 1 centered around the vertical
line that goes through the origin. Therefore the surface traced out by the parameterization is cylinder  (Figure 

).

Figure : (a) Lines  for , and . (b) Circles  for  and 

(c) The lines and circles together. As  and  vary, they describe a cylinder.

Notice that if  and , then , so points from S do indeed lie on the cylinder. Conversely, each
point on the cylinder is contained in some circle  for some , and therefore each point on the cylinder is
contained in the parameterized surface (Figure ).

Figure : Cylinder  has parameterization .

Analysis

R
2

u = v= 0 (0, 0) = ⟨1, 0, 0⟩r⇀ S

(π, 2) = (−1, 0, 2)r
⇀ ( , 4)= (0, 1, 4)r

⇀ π

2
S

S

S u v

u K ⟨cosK, sinK, v⟩
(cosK, sinK, v⟩ xy

v K ⟨cosu, sinu, K⟩

z = K (0, 0,K)

u v

+ = 1x2 y2

5.7.1

5.7.1 ⟨cosK, sin K,v⟩ K = 0, , π
π

2

3π

2
⟨cos u, sin u, K⟩ K = −2, −1, 1, 2

u v

x = cosu y = sinu + = 1x2 y2

⟨cosu, sinu, k⟩ k

5.7.2

5.7.2 + =x2 y2 r2 (u,v) = ⟨r cos u, r sin u, v⟩, 0 ≤ u ≤ 2π, −∞ < v < ∞r⇀
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Notice that if we change the parameter domain, we could get a different surface. For example, if we restricted the domain to 
, then the surface would be a half-cylinder of height 6.

Describe the surface with parameterization

Hint

Hold  and  constant, and see what kind of curves result.

Answer

Cylinder 

It follows from Example  that we can parameterize all cylinders of the form . If S is a cylinder given by
equation , then a parameterization of  is 

We can also find different types of surfaces given their parameterization, or we can find a parameterization when we are given a
surface.

Describe surface  parameterized by .

Solution

Notice that if  is held constant, then the resulting curve is a circle of radius  in plane . Therefore, as  increases, the
radius of the resulting circle increases. If  is held constant, then the resulting curve is a vertical parabola. Therefore, we expect
the surface to be an elliptic paraboloid. To confirm this, notice that

Therefore, the surface is the elliptic paraboloid  (Figure ).

Figure : (a) Circles arise from holding  constant; the vertical parabolas arise from holding  constant. (b) An elliptic
paraboloid results from all choices of  and  in the parameter domain.

0 ≤ u ≤ π, −∞ < v< 6

 Exercise 5.7.1

(u, v) = ⟨2 cosu, 2 sinu, v⟩, 0 ≤ u ≤ 2π, −∞ < v< ∞r
⇀

u v

+ = 4x2 y2

5.7.1 + =x2 y2 R2

+ =x2 y2 R2 S (u, v) = ⟨R cosu, R sinu, v⟩, 0 ≤ u ≤ 2π, −∞ < v< ∞.r⇀

 Example : Describing a Surface5.7.2

S (u, v) = ⟨u cosv, u sinv, ⟩, 0 ≤ u < ∞, 0 ≤ v< 2πr⇀ u2

u u z = u u

v

+x2 y2 = (u cosv +(u sinv)2 )2

= v+ si vu2 cos2 u2 n2

= u2

= z

+ = zx2 y2 5.7.3

5.7.3 u v
u v
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Describe the surface parameterized by .

Hint

Hold  constant and see what kind of curves result. Imagine what happens as  increases or decreases.

Answer

Cone 

Give a parameterization of the cone  lying on or above the plane .

Solution

The horizontal cross-section of the cone at height  is circle . Therefore, a point on the cone at height  has
coordinates  for angle . Hence, a parameterization of the cone is . Since
we are not interested in the entire cone, only the portion on or above plane , the parameter domain is given by 

 (Figure ).

Figure : Cone  has parametrization .

Give a parameterization for the portion of cone  lying in the first octant.

Hint

Consider the parameter domain for this surface.

Answer

We have discussed parameterizations of various surfaces, but two important types of surfaces need a separate discussion: spheres
and graphs of two-variable functions. To parameterize a sphere, it is easiest to use spherical coordinates. The sphere of radius 
centered at the origin is given by the parameterization

 Exercise 5.7.2

(u, v) = ⟨u cosv, u sinv, u⟩, −∞ < u < ∞, 0 ≤ v< 2πr⇀

u u

+ =x2 y2 z2

 Example : Finding a Parameterization5.7.3

+ =x2 y2 z2 z = −2

z = u + =x2 y2 u2 u

(u cosv, u sinv, u) v (u, v) = ⟨u cosv, u sinv, u⟩r
⇀

z = −2
−2 < u < ∞, 0 ≤ v< 2π 5.7.4

5.7.4 + =x2 y2 z2 (u,v) = ⟨u cos v, u sin v⟩, −∞ < u < ∞, 0 ≤ v ≤ 2πr⇀

 Exercise 5.7.3

+ =x2 y2 z2

(u, v) = ⟨u cosv, u sinv, u⟩, 0 < u < ∞, 0 ≤ v<r
⇀ π

2

ρ

(ϕ, θ) = ⟨ρ cosθ sinϕ, ρ sinθ sinϕ, ρ cosϕ⟩, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.r
⇀
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The idea of this parameterization is that as  sweeps downward from the positive -axis, a circle of radius  is traced out by
letting  run from 0 to . To see this, let  be fixed. Then

This results in the desired circle (Figure ).

Figure : The sphere of radius  has parameterization 

Finally, to parameterize the graph of a two-variable function, we first let  be a function of two variables. The simplest
parameterization of the graph of  is , where  and  vary over the domain of  (Figure ). For
example, the graph of  can be parameterized by , where the parameters  and  vary over the
domain of . If we only care about a piece of the graph of  - say, the piece of the graph over rectangle  - then we can
restrict the parameter domain to give this piece of the surface:

Similarly, if  is a surface given by equation  or equation , then a parameterization of  is 
 or , respectively. For example, the graph of paraboloid  can be

parameterized by . Notice that we do not need to vary over the entire

domain of  because  and  are squared.

ϕ z ρ sinϕ
θ 2π ϕ

+x2 y2 = (ρ cosθ sinϕ +(ρ sinθ sinϕ)2 )2

= ϕ( θ+ θ)ρ2 sin2 cos2 sin2

= ϕρ2 sin2

= (ρ sinϕ .)2

5.7.5

5.7.5 ρ
(ϕ,θ) = ⟨ρ cos θ sin ϕ, ρ sin θ sin ϕ, ρ cos ϕ⟩, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.r⇀

z = f(x, y)
f (x, y) = ⟨x, y, f(x, y)⟩r⇀ x y f 5.7.6

f(x, y) = yx2 (x, y) = ⟨x, y, y⟩r⇀ x2 x y

f f [1, 3] ×[2, 5]

(x, y) = ⟨x, y, y⟩, 1 ≤ x ≤ 3, 2 ≤ y ≤ 5.r
⇀ x2

S x = g(y, z) y = h(x, z) S

(y, z) = ⟨g(y, z), y, z⟩r
⇀ (x, z) = ⟨x,h(x, z), z⟩r

⇀ 2y = +x2 z2

(x, y) =⟨x, , z⟩ , 0 ≤ x < ∞, 0 ≤ z < ∞r
⇀ +x2 z2

2
y x z
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Figure : The simplest parameterization of the graph of a function is .

Let’s now generalize the notions of smoothness and regularity to a parametric surface. Recall that curve parameterization 
 is regular (or smooth) if  for all  in . For a curve, this condition ensures that the image of 

really is a curve, and not just a point. For example, consider curve parameterization . The image of this
parameterization is simply point , which is not a curve. Notice also that . The fact that the derivative is the zero
vector indicates we are not actually looking at a curve.

Analogously, we would like a notion of regularity (or smoothness) for surfaces so that a surface parameterization really does trace
out a surface. To motivate the definition of regularity of a surface parameterization, consider the parameterization

Although this parameterization appears to be the parameterization of a surface, notice that the image is actually a line (Figure 
). How could we avoid parameterizations such as this? Parameterizations that do not give an actual surface? Notice that 

 and , and the corresponding cross product is zero. The analog of the condition  is that
 is not zero for point  in the parameter domain, which is a regular parameterization.

Figure : The image of parameterization  is a line.

Parameterization  is a regular parameterization if  is not zero for point  in
the parameter domain.

5.7.6 (x,y) = ⟨x,y,f(x,y)⟩r⇀

(t), a ≤ t ≤ br
⇀ (t) ≠r

⇀′
0
⇀

t [a, b] r
⇀

(t) = ⟨1, 2⟩, 0 ≤ t ≤ 5r
⇀

(1, 2) (t) =r
⇀′

0
⇀

(u, v) = ⟨0, cosv, 1⟩, 0 ≤ u ≤ 1, 0 ≤ v≤ π.r⇀

5.7.7

= ⟨0, 0, 0⟩r⇀u = ⟨0, −sinv, 0⟩r⇀v (t) =r⇀
′

0
⇀

×r⇀u r⇀v (u, v)

5.7.7 (u,v) = ⟨0, cos v, 1⟩, 0 ≤ u ≤ 1, 0 ≤ v ≤ πr⇀

 Definition: Regular Parameterization

(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩r⇀ ×r⇀u r⇀v (u, v)
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If parameterization  is regular, then the image of  is a two-dimensional object, as a surface should be. Throughout this chapter,
parameterizations are assumed to be regular.

Recall that curve parameterization  is smooth if  is continuous and  for all  in . Informally, a
curve parameterization is smooth if the resulting curve has no sharp corners. The definition of a smooth surface parameterization is
similar. Informally, a surface parameterization is smooth if the resulting surface has no sharp corners.

A surface parameterization  is smooth if vector  is not zero for any choice of 
and  in the parameter domain.

A surface may also be piecewise smooth if it has smooth faces but also has locations where the directional derivatives do not exist.

Which of the figures in Figure  is smooth?

Figure : (a) This surface is smooth. (b) This surface is piecewise smooth.

Solution

The surface in Figure  can be parameterized by

(we can use technology to verify). Notice that vectors

and

exist for any choice of  and  in the parameter domain, and

The  component of this vector is zero only if  or . If  or , then the only choices for  that make the 
component zero are  or . But, these choices of  do not make the  component zero. Therefore,  is not
zero for any choice of  and  in the parameter domain, and the parameterization is smooth. Notice that the corresponding
surface has no sharp corners.

r ⃗  r ⃗ 

(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩r
⇀

(t), a ≤ t ≤ br⇀ (t)r⇀
′

(t) ≠r⇀
′

0
⇀

t [a, b]

 Definition: Smooth Surfaces

(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩r
⇀ ×r

⇀
u r

⇀
v u

v

 Example : Identifying Smooth and Nonsmooth Surfaces5.7.4

5.7.8

5.7.8

5.7.8a

(u, v) = ⟨(2 +cosv) cosu, (2 +cosv) sinu, sinv⟩, 0 ≤ u < 2π, 0 ≤ v< 2πr
⇀

= ⟨−(2 +cosv) sinu, (2 +cosv) cosu, 0⟩r
⇀
u

= ⟨−sinv cosu, −sinv sinu, cosv⟩r
⇀
v

u v

×r⇀u r⇀v =

∣

∣

∣
∣
∣

î

−(2 +cosv) sinu

−sinv cosu

ĵ

(2 +cosv) cosu

−sinv sinu

k̂

0

cosv

∣

∣

∣
∣
∣

= [(2 +cosv) cosu cosv] + [2 +cosv) sinu cosv] + [(2 +cosv) sinv u+(2 +cosv) sinv u]î ĵ sin2 cos2
k̂

= [(2 +cosv) cosu cosv] + [(2 +cosv) sinu cosv] + [(2 +cosv) sinv] .î ĵ k̂

k̂ v= 0 v= π v= 0 v= π u ĵ

u = 0 u = π u î ×r
⇀
u r

⇀
v

u v
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In the pyramid in Figure , the sharpness of the corners ensures that directional derivatives do not exist at those locations.
Therefore, the pyramid has no smooth parameterization. However, the pyramid consists of four smooth faces, and thus this
surface is piecewise smooth.

Is the surface parameterization  smooth?

Hint

Investigate the cross product .

Answer

Yes

Surface Area of a Parametric Surface

Our goal is to define a surface integral, and as a first step we have examined how to parameterize a surface. The second step is to
define the surface area of a parametric surface. The notation needed to develop this definition is used throughout the rest of this
chapter.

Let  be a surface with parameterization  over some parameter domain . We assume here
and throughout that the surface parameterization  is continuously differentiable—meaning,
each component function has continuous partial derivatives. Assume for the sake of simplicity that  is a rectangle (although the
following material can be extended to handle nonrectangular parameter domains). Divide rectangle  into subrectangles  with
horizontal width  and vertical length . Suppose that i ranges from 1 to m and j ranges from 1 to n so that  is subdivided into
mn rectangles. This division of  into subrectangles gives a corresponding division of surface  into pieces . Choose point 
in each piece . Point  corresponds to point  in the parameter domain.

Note that we can form a grid with lines that are parallel to the -axis and the -axis in the -plane. These grid lines correspond to
a set of grid curves on surface  that is parameterized by . Without loss of generality, we assume that  is located at the
corner of two grid curves, as in Figure . If we think of  as a mapping from the -plane to , the grid curves are the image
of the grid lines under . To be precise, consider the grid lines that go through point . One line is given by ;
the other is given by . In the first grid line, the horizontal component is held constant, yielding a vertical line through

. In the second grid line, the vertical component is held constant, yielding a horizontal line through . The
corresponding grid curves are  and  and these curves intersect at point .

Figure : Grid lines on a parameter domain correspond to grid curves on a surface.

Now consider the vectors that are tangent to these grid curves. For grid curve , the tangent vector at  is

For grid curve , the tangent vector at  is

5.7.8b

 Exercise 5.7.4

(u, v) = ⟨ , v+1, sinu⟩, 0 ≤ u ≤ 2, 0 ≤ v≤ 3r
⇀ u2v

×r
⇀
u r

⇀
v

S (u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩r
⇀ D

(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩r
⇀

D

D Dij

Δu Δv D

D S Sij Pij

Sij Pij ( , )ui vj

u v uv

S (u, v)r⇀ Pij

5.7.9 r
⇀ uv R

3

r
⇀ ( , )ui vj x = , y = vui

x = u, y = vj
( , )ui vj ( , )ui vj

( , v)r
⇀ ui (u, )vj Pij

5.7.9

( , v)r⇀ ui Pij

( ) = ( , ) = ⟨ ( , ), ( , ), ( , )⟩.t
⇀
v Pij r

⇀
v ui vj xv ui vj yv ui vj zv ui vj

(u, )r
⇀ vj Pij

( ) = ( , ) = ⟨ ( , ), ( , ), ( , )⟩.t
⇀
u Pij r⇀u ui vj xu ui vj yu ui vj zu ui vj
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If vector  exists and is not zero, then the tangent plane at  exists (Figure ). If piece  is small
enough, then the tangent plane at point  is a good approximation of piece .

Figure : If the cross product of vectors  and  exists, then there is a tangent plane.

The tangent plane at  contains vectors  and  and therefore the parallelogram spanned by  and  is
in the tangent plane. Since the original rectangle in the -plane corresponding to  has width  and length , the
parallelogram that we use to approximate  is the parallelogram spanned by  and . In other words, we
scale the tangent vectors by the constants  and  to match the scale of the original division of rectangles in the parameter
domain. Therefore, the area of the parallelogram used to approximate the area of  is

Varying point  over all pieces  and the previous approximation leads to the following definition of surface area of a
parametric surface (Figure ).

Figure : The parallelogram spanned by  and  approximates the piece of surface .

Let  with parameter domain  be a smooth parameterization of surface .
Furthermore, assume that  is traced out only once as  varies over . The surface area of  is

where 

and

Calculate the lateral surface area (the area of the “side,” not including the base) of the right circular cone with height h and
radius r.

Solution

= ( ) × ( )N
⇀

t
⇀
u Pij t

⇀
v Pij Pij 5.7.10 Sij

Pij Sij

5.7.10 t
⇀
u t

⇀
v

Pij ( )t
⇀
u Pij ( )t

⇀
v Pij ( )t

⇀
u Pij ( )t

⇀
v Pij

uv Sij Δu Δv

Sij Δu ( )t
⇀
u Pij Δv ( )t

⇀
v Pij

Δu Δv

Sij

Δ ≈ ||(Δu ( )) ×(Δv ( ))|| = || ( ) × ( )||Δu Δv.Sij t
⇀
u Pij t

⇀
v Pij t

⇀
u Pij t

⇀
v Pij

Pij Sij

5.7.11

5.7.11 t
⇀
u t

⇀
v Sij

 Definition: Smooth Parameterization of Surface

(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩r
⇀ D S

S (u, v) D S

|| × || dA,∬
D

t
⇀
u t

⇀
v (5.7.1)

=⟨ , , ⟩t
⇀
u

∂x

∂u

∂y

∂u

∂z

∂u

=⟨ , , ⟩ .t
⇀
v

∂x

∂u

∂y

∂u

∂z

∂u

 Example : Calculating Surface Area5.7.5
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Before calculating the surface area of this cone using Equation , we need a parameterization. We assume this cone is in 
 with its vertex at the origin (Figure ). To obtain a parameterization, let  be the angle that is swept out by starting at

the positive z-axis and ending at the cone, and let . For a height value  with , the radius of the circle
formed by intersecting the cone with plane  is . Therefore, a parameterization of this cone is

The idea behind this parameterization is that for a fixed -value, the circle swept out by letting  vary is the circle at height 
and radius . As  increases, the parameterization sweeps out a “stack” of circles, resulting in the desired cone.

Figure : The right circular cone with radius  and height  has parameterization 

With a parameterization in hand, we can calculate the surface area of the cone using Equation . The tangent vectors are 
 and . Therefore,

The magnitude of this vector is

By Equation , the surface area of the cone is

5.7.1
R

3 5.7.12 α

k = tanα v 0 ≤ v≤ h

z = v kv

(u, v) = ⟨kv cosu, kv sinu, v⟩, 0 ≤ u < 2π, 0 ≤ v≤ h.s⇀

v u v

kv v

5.7.12 r = kh h

(u,v) = ⟨kv cos u, kv sin u, v⟩, 0 ≤ u < 2π, 0 ≤ v ≤ h.s
⇀

5.7.1

= ⟨−kv sinu, kv cosu, 0⟩t
⇀
u = ⟨k cosu, k sinu, 1⟩t

⇀
v

×t
⇀
u t

⇀
v =

∣

∣

∣
∣
∣

î

−kvsinu

k cosu

ĵ

kvcosu

k sinu

k̂

0

1

∣

∣

∣
∣
∣

= ⟨kv cosu, kv sinu, − v u− v u⟩k2 sin2 k2 cos2

= ⟨kv cosu, kv sinu, − v⟩.k2

||⟨kv cosu, kv sinu, − v⟩||k2 = u+ u+k2v2 cos2 k2v2 sin2 k4v2
− −−−−−−−−−−−−−−−−−−−−−−−

√

= +k2v2 k4v2
− −−−−−−−−

√

= kv .1 +k2− −−−−
√

5.7.1
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Since ,

Therefore, the lateral surface area of the cone is .

Analysis

The surface area of a right circular cone with radius  and height  is usually given as . The reason for this is
that the circular base is included as part of the cone, and therefore the area of the base  is added to the lateral surface area 

 that we found.

Find the surface area of the surface with parameterization .

Hint

Use Equation .

Answer

Show that the surface area of the sphere  is .

Solution

The sphere has parameterization

The tangent vectors are

and

|| × || dA∬
D

t
⇀
u t

⇀
v = kv du dv∫

h

0
∫

2π

0
1 +k2− −−−−

√

= 2πk vdv1 +k2− −−−−
√ ∫

h

0

= 2πk 1 +k2− −−−−
√ [ ]

v2

2

h

0

= πk .h2 1 +k2− −−−−√

k = tanα = r/h

πkh2 1 +k2− −−−−
√ = π

r

h
h2 1 +

r2

h2

− −−−−−

√

= πrh 1 +
r2

h2

− −−−−−

√

= πr + ( )h2 h2 r2

h2

− −−−−−−−−−−−

√

= πr .+h2 r2− −−−−−
√

πr +h2 r2
− −−−−−

√

r h π +πrr2 +h2 r2− −−−−−
√

πr2

πr +h2 r2
− −−−−−

√

 Exercise 5.7.5

(u, v) = ⟨u+v, , 2v⟩, 0 ≤ u ≤ 3, 0 ≤ v≤ 2r
⇀ u2

5.7.1

\≈43.02

 Example : Calculating Surface Area5.7.6

+ + =x2 y2 z2 r2 4πr2

r cosθ sinϕ, r sinθ sinϕ, r cosϕ⟩, 0 ≤ θ < 2π, 0 ≤ ϕ ≤ π.

= ⟨−r sinθ sinϕ, r cosθ sinϕ, 0⟩t
⇀
θ
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Therefore,

Now,

Notice that  on the parameter domain because , and this justifies equation . The surface
area of the sphere is

We have derived the familiar formula for the surface area of a sphere using surface integrals.

Show that the surface area of cylinder  is . Notice that this cylinder does not include the top
and bottom circles.

Hint

Use the standard parameterization of a cylinder and follow the previous example.

Answer

With the standard parameterization of a cylinder, Equation  shows that the surface area is .

In addition to parameterizing surfaces given by equations or standard geometric shapes such as cones and spheres, we can also
parameterize surfaces of revolution. Therefore, we can calculate the surface area of a surface of revolution by using the same
techniques. Let  be a positive single-variable function on the domain  and let  be the surface obtained by
rotating  about the -axis (Figure ). Let  be the angle of rotation. Then,  can be parameterized with parameters  and 
by

= ⟨r cosθ cosϕ, r sinθ cosϕ, −r sinϕ⟩.t
⇀
ϕ

×t
⇀
ϕ t

⇀
θ = ⟨ cosθ ϕ, sinθ ϕ, θ sinϕ cosϕ+ θ sinϕ cosϕ⟩r2 sin2 r2 sin2 r2 sin2 r2 cos2

= ⟨ cosθ ϕ, sinθ ϕ, sinϕ cosϕ⟩.r2 sin2 r2 sin2 r2

|| × ||t
⇀
ϕ t

⇀
θ = ϕ θ+ ϕ θ+ ϕ ϕr4 sin4 cos2 r4 sin4 sin2 r4 sin2 cos2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

= ϕ+ ϕ ϕr4 sin4 r4 sin2 cos2
− −−−−−−−−−−−−−−−−−−−

√

= r2 ϕsin2
− −−−−

√

= r sinϕ.

sinϕ ≥ 0 0 ≤ ϕ < π = sinϕϕsin2
− −−−−

√

sinϕ dϕ dθ = 2 dθ = 4π .∫
2π

0
∫

π

0
r2 r2 ∫

2π

0
r2

 Exercise 5.7.6

+ = , 0 ≤ z ≤ hx2 y2 r2 2πrh

5.7.1 2πrh

y = f(x) ≥ 0 a ≤ x ≤ b S

f x 5.7.13 θ S x θ

(x, θ) = ⟨x, f(x) cosθ, f(x) sinθ⟩, a ≤ x ≤ b, 0 ≤ x ≤ 2π.r
⇀
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Figure : We can parameterize a surface of revolution by .

Find the area of the surface of revolution obtained by rotating  about the x-axis (Figure ).

Figure : A surface integral can be used to calculate the surface area of this solid of revolution.

Solution

This surface has parameterization 

The tangent vectors are  and .

Therefore,

and

The area of the surface of revolution is

5.7.13 (x,θ) = ⟨x,f(x) cos θ,f(x) sin θ⟩, a ≤ x ≤ b, 0 ≤ x < 2πr⇀

 Example : Calculating Surface Area5.7.7

y = , 0 ≤ x ≤ bx2 5.7.14

5.7.14

(x, θ) = ⟨x, cosθ, sinθ⟩, 0 ≤ x ≤ b, 0 ≤ x < 2π.r
⇀ x2 x2

= ⟨1, 2x cosθ, 2x sinθ⟩t
⇀
x = ⟨0, − sinθ, − cosθ⟩t

⇀
θ x2 x2

×t
⇀
x t

⇀
θ = ⟨2 θ+2 θ, − cosθ, − sinθ⟩x3 cos2 x3 sin2 x2 x2

= ⟨2 , − cosθ, − sinθ⟩x3 x2 x2

×t
⇀
x t

⇀
θ = 4 + θ+ θx6 x4 cos2 x4 sin2

− −−−−−−−−−−−−−−−−−−−
√

= 4 +x6 x4
− −−−−−−

√

= x2 4 +1x2− −−−−−√
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Use Equation  to find the area of the surface of revolution obtained by rotating curve  about the -
axis.

Hint

Use the parameterization of surfaces of revolution given before Example .

Answer

Surface Integral of a Scalar-Valued Function

Now that we can parameterize surfaces and we can calculate their surface areas, we are able to define surface integrals. First, let’s
look at the surface integral of a scalar-valued function. Informally, the surface integral of a scalar-valued function is an analog of a
scalar line integral in one higher dimension. The domain of integration of a scalar line integral is a parameterized curve (a one-
dimensional object); the domain of integration of a scalar surface integral is a parameterized surface (a two-dimensional object).
Therefore, the definition of a surface integral follows the definition of a line integral quite closely. For scalar line integrals, we
chopped the domain curve into tiny pieces, chose a point in each piece, computed the function at that point, and took a limit of the
corresponding Riemann sum. For scalar surface integrals, we chop the domain region (no longer a curve) into tiny pieces and
proceed in the same fashion.

Let  be a piecewise smooth surface with parameterization  with parameter domain  and let
 be a function with a domain that contains . For now, assume the parameter domain  is a rectangle, but we can extend

the basic logic of how we proceed to any parameter domain (the choice of a rectangle is simply to make the notation more
manageable). Divide rectangle  into subrectangles  with horizontal width  and vertical length . Suppose that  ranges
from  to  and  ranges from  to  so that  is subdivided into  rectangles. This division of  into subrectangles gives a
corresponding division of  into pieces . Choose point  in each piece  evaluate  at , and multiply by area  to form
the Riemann sum

To define a surface integral of a scalar-valued function, we let the areas of the pieces of  shrink to zero by taking a limit.

The surface integral of a scalar-valued function of  over a piecewise smooth surface  is

Again, notice the similarities between this definition and the definition of a scalar line integral. In the definition of a line integral
we chop a curve into pieces, evaluate a function at a point in each piece, and let the length of the pieces shrink to zero by taking the
limit of the corresponding Riemann sum. In the definition of a surface integral, we chop a surface into pieces, evaluate a function at

dθdx∫
b

0
∫

2π

0
x2 4 +1x2− −−−−−
√ = 2π dx∫

b

0
x2 4 +1x2− −−−−−
√

= 2π[ (2 (8 +x) (2x))]
1

64
4 +1x2− −−−−−

√ x3 sinh−1
b

0

= 2π [ (2 (8 +b) (2b))] .
1

64
4 +1b2− −−−−−

√ b3 sinh−1

 Exercise 5.7.7

5.7.1 y = sinx, 0 ≤ x ≤ π x

5.7.7

2π( + (1))2
–

√ sinh−1

S (u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩r
⇀ D

f(x, y, z) S D

D Dij Δu Δv i

1 m j 1 n D mn D

S Sij Pij Sij Pij f Sij

f( ) Δ .∑
i=1

m

∑
j=1

n

Pij Sij

S

 Definition: Surface Integral of a Scalar-Valued Function

f S

f(x, y, z)dA = f( )Δ .∬
S

lim
m,n→∞

∑
i=1

m

∑
j=1

n

Pij Sij
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a point in each piece, and let the area of the pieces shrink to zero by taking the limit of the corresponding Riemann sum. Thus, a
surface integral is similar to a line integral but in one higher dimension.

The definition of a scalar line integral can be extended to parameter domains that are not rectangles by using the same logic used
earlier. The basic idea is to chop the parameter domain into small pieces, choose a sample point in each piece, and so on. The exact
shape of each piece in the sample domain becomes irrelevant as the areas of the pieces shrink to zero.

Scalar surface integrals are difficult to compute from the definition, just as scalar line integrals are. To develop a method that makes
surface integrals easier to compute, we approximate surface areas  with small pieces of a tangent plane, just as we did in the
previous subsection. Recall the definition of vectors  and :

From the material we have already studied, we know that

Therefore,

This approximation becomes arbitrarily close to  as we increase the number of pieces  by letting 

and  go to infinity. Therefore, we have the following equation to calculate scalar surface integrals:

Equation  allows us to calculate a surface integral by transforming it into a double integral. This equation for surface integrals
is analogous to the equation for line integrals:

In this case, vector  is perpendicular to the surface, whereas vector  is tangent to the curve.

Calculate surface integral

where  is the surface with parameterization  for  and .

Solution

Notice that this parameter domain  is a triangle, and therefore the parameter domain is not rectangular. This is not an issue
though, because Equation  does not place any restrictions on the shape of the parameter domain.

To use Equation  to calculate the surface integral, we first find vectors  and . Note that  and 
. Therefore,

and

ΔSij

t
⇀
u t

⇀
v

=⟨ , , ⟩ and =⟨ , , ⟩ .t
⇀
u

∂x

∂u

∂y

∂u

∂z

∂u
t
⇀
v

∂x

∂u

∂y

∂u

∂z

∂u

Δ ≈ || ( ) × ( )|| Δu Δv.Sij t
⇀
u Pij t

⇀
v Pij

f(x, y, z)dS ≈ f( )|| ( ) × ( )|| Δu Δv.∬
S

lim
m,n→∞

∑
i=1

m

∑
j=1

n

Pij t
⇀
u Pij t

⇀
v Pij

f( )Δlim
m,n→∞

∑
i=1

m

∑
j=1

n

Pij Sij Sij m

n

f(x, y, z)dS = f( (u, v))|| × || dA.∬
S

∬
D

r
⇀

t
⇀
u t

⇀
v (5.7.2)

5.7.2

f(x, y, z)ds = f( (t))|| (t)|| dt.∬
C

∫
b

a

r
⇀

r
⇀′

×t
⇀
u t

⇀
v (t)r⇀

′

 Example : Calculating a Surface Integral5.7.8

5 dS,∬
S

S (u, v) = ⟨u, , v⟩r⇀ u2 0 ≤ u ≤ 2 0 ≤ v≤ u

D

5.7.2

5.7.2 t
⇀
u t

⇀
v = ⟨1, 2u, 0⟩t

⇀
u

= ⟨0, 0, 1⟩t
⇀
v

× = = ⟨2u, −1, 0⟩ t
⇀
u t

⇀
v

∣

∣

∣
∣
∣

î

1

0

ĵ

2u

0
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0

1

∣

∣

∣
∣
∣

|| × || = .t
⇀
u t

⇀
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By Equation ,

Calculate surface integral

where  is cylinder  (Figure ).

Figure : Integrating function  over a cylinder.

Solution

To calculate the surface integral, we first need a parameterization of the cylinder. A parameterization is 

The tangent vectors are  and . Then,

and . By Equation ,

5.7.2

5 dS∬
S

= 5 dA∬
D

1 +4u2− −−−−−
√

= 5 dvdu = 5 u du∫
2

0
∫

u

0
1 +4u2− −−−−−

√ ∫
2

0
1 +4u2− −−−−−

√

= 5[ ]
(1 +4u2)3/2

3

2

0

= ≈ 115.15.
5( −1)173/2

3

 Example : Calculating the Surface Integral of a Cylinder5.7.9

(x+ )dS,∬
S

y2

S + = 4, 0 ≤ z ≤ 3x2 y2 5.7.15

5.7.15 f(x,y,z) = x+y2

(u, v) = ⟨cosu, sinu, v⟩, 0 ≤ u ≤ 2π, 0 ≤ v≤ 3.r
⇀

= ⟨sinu, cosu, 0⟩t
⇀
u = ⟨0, 0, 1⟩t

⇀
v

× = = ⟨cosu, sinu, 0⟩t
⇀
u t

⇀
v

∣

∣

∣
∣
∣

î

−sinu

0

ĵ
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0
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0

1

∣

∣

∣
∣
∣

|| × || = = 1t
⇀
u t

⇀
v u+ ucos2 sin2

− −−−−−−−−−−
√ 5.7.2

f(x, y, z)dS∬
S

= f( (u, v))|| × || dA∬
D

r
⇀

t
⇀
u t

⇀
v

= (cosu+ u)du dv∫
3

0
∫

2π

0
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= dv∫
3

0
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u

2

sin(2u)

4

2π

0
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Calculate

where  is the surface with parameterization 

Hint

Use Equation .

Answer

24

Calculate surface integral

where  and  is the surface that consists of the piece of sphere  that lies on or above plane 
 and the disk that is enclosed by intersection plane  and the given sphere (Figure ).

Figure : Calculating a surface integral over surface .

Solution

Notice that  is not smooth but is piecewise smooth;  can be written as the union of its base  and its spherical top , and
both  and  are smooth. Therefore, to calculate

we write this integral as

and we calculate integrals

and

 Exercise 5.7.8

( −z)dS,∬
S

x2

S (u, v) = ⟨v, + , 1⟩, 0 ≤ u ≤ 2, 0 ≤ v≤ 3.r
⇀ u2 v2

5.7.2

 Example : Calculating the Surface Integral of a Piece of a Sphere5.7.10

f(x, y, z)dS,∬
S

f(x, y, z) = z2 S + + = 4x2 y2 z2

z = 1 z = 1 5.7.16

5.7.16 S

S S S1 S2

S1 S2

dS,∬
S

z2

dS+ dS∬
S1

z2 ∬
S2
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dS∬
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z2
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First, we calculate  To calculate this integral we need a parameterization of . This surface is a disk in plane 

 centered at . To parameterize this disk, we need to know its radius. Since the disk is formed where plane 
intersects sphere , we can substitute  into equation :

Therefore, the radius of the disk is  and a parameterization of  is 
. The tangent vectors are  and 

, and thus

The magnitude of this vector is . Therefore,

Now we calculate

To calculate this integral, we need a parameterization of . The parameterization of full sphere  is

Since we are only taking the piece of the sphere on or above plane , we have to restrict the domain of . To see how far
this angle sweeps, notice that the angle can be located in a right triangle, as shown in Figure  (the  comes from the
fact that the base of  is a disk with radius ). Therefore, the tangent of  is , which implies that  is . We now have a
parameterization of :

Figure : The maximum value of  has a tangent value of .

The tangent vectors are  and , and thus

dS.∬
S2

Z2

dS.∬
S1

z2 S1

z = 1 (0, 0, 1) z = 1
+ + = 4x2 y2 z2 z = 1 + + = 4x2 y2 z2

+ +1 = 4 ⇒ + = 3.x2 y2 x2 y2
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⇀ 3

–
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ĵ

sinv

u cosv

k̂

0

0

∣

∣

∣
∣
∣

cos2 sin2

u

dS∬
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0
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0
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= u dvdu∫
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= 2π u du∫
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–

√

dS.∬
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S2 + + = 4x2 y2 z2

(ϕ, θ) = ⟨2 cosθ sinϕ, 2 sinθ sinϕ, 2 cosϕ⟩, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.r
⇀

z = 1 ϕ

5.7.17 3
–

√

S 3
–

√ ϕ 3
–

√ ϕ π/6
S2

(ϕ, θ) = ⟨2 cosθ sinϕ, 2 sinθ sinϕ, 2 cosϕ⟩, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π/3.r⇀

5.7.17 ϕ 3
–√

= ⟨2 cosθ cosϕ, 2 sinθ cosϕ, −2 sinϕ⟩t
⇀
ϕ = ⟨−2 sinθ sinϕ, u cosθ sinϕ, 0⟩t

⇀
θ
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The magnitude of this vector is

Therefore,

Since

we have

Analysis

In this example we broke a surface integral over a piecewise surface into the addition of surface integrals over smooth
subsurfaces. There were only two smooth subsurfaces in this example, but this technique extends to finitely many smooth
subsurfaces.

Calculate line integral  where  is cylinder , including the circular top and bottom.

Hint

Break the integral into three separate surface integrals.

Answer

×t
⇀
ϕ t

⇀
θ =

∣

∣

∣
∣
∣

î

2 cosθcosϕ

−2 sinθ sinϕ

ĵ

2 sinθcosϕ

2 cosθ sinϕ

k̂

−2 sinϕ

0

∣

∣

∣
∣
∣

= ⟨4 cosθ ϕ, 4 sinθ ϕ, 4 θ cosϕ sinϕ+4 θ cosϕ sinϕ⟩sin2 sin2 cos2 sin2

= ⟨4 cosθ ϕ, 4 sinθ ϕ, 4 cosϕ sinϕ⟩.sin2 sin2

×t
⇀
ϕ t

⇀
θ = 16 θ ϕ+16 θ ϕ+16 ϕ ϕcos2 sin4 sin2 sin4 cos2 sin2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√

= 4 .ϕ+ ϕ ϕsin4 cos2 sin2
− −−−−−−−−−−−−−−−

√

z dS∬
S2

= f( (ϕ, θ))|| × || dθdϕ∫
π/6

0
∫

2π

0
r
⇀

t
⇀
ϕ t

⇀
θ

= 16 ϕ dθdϕ∫
π/6

0
∫

2π

0
cos2 ϕ+ ϕ ϕsin4 cos2 sin2

− −−−−−−−−−−−−−−−
√

= 32π ϕ dϕ∫
π/6

0
cos2 ϕ+ ϕ ϕsin4 cos2 sin2

− −−−−−−−−−−−−−−−
√

= 32π ϕ sinϕ dϕ∫
π/6

0
cos2 ϕ+ ϕsin2 cos2

− −−−−−−−−−−
√

= 32π ϕ sinϕ dϕ∫
π/6

0
cos2

= 32π[− ]
ϕcos3

3

π/6

0

= 32π [ − ] = −4 .
1

3

3
–

√

8

32π

3
3
–

√

dS = dS+ dS,∬
S

z2 ∬
S1

z2 ∬
S2

z2

dS = (2π−4) + .∬
S

z2 3
–

√
32π

3

 Exercise 5.7.9

(x−y)dS,∬
S

S + = 1, 0 ≤ z ≤ 2x2 y2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/64026?pdf


Access for free at OpenStax 5.7.20 https://math.libretexts.org/@go/page/64026

0

Scalar surface integrals have several real-world applications. Recall that scalar line integrals can be used to compute the mass of a
wire given its density function. In a similar fashion, we can use scalar surface integrals to compute the mass of a sheet given its
density function. If a thin sheet of metal has the shape of surface  and the density of the sheet at point  is  then
mass  of the sheet is

A flat sheet of metal has the shape of surface  that lies above rectangle  and . If the
density of the sheet is given by , what is the mass of the sheet?

Solution

Let  be the surface that describes the sheet. Then, the mass of the sheet is given by  To compute this

surface integral, we first need a parameterization of . Since  is given by the function , a
parameterization of  is .

The tangent vectors are  and . Therefore,  and .

By the definition of the line integral (Section 16.2),

A piece of metal has a shape that is modeled by paraboloid  and the density of the metal is given by 
. Find the mass of the piece of metal.

Hint

The mass of a sheet is given by Equation . A useful parameterization of a paraboloid was given in a previous example.

Answer

Orientation of a Surface

Recall that when we defined a scalar line integral, we did not need to worry about an orientation of the curve of integration. The
same was true for scalar surface integrals: we did not need to worry about an “orientation” of the surface of integration.

On the other hand, when we defined vector line integrals, the curve of integration needed an orientation. That is, we needed the
notion of an oriented curve to define a vector line integral without ambiguity. Similarly, when we define a surface integral of a
vector field, we need the notion of an oriented surface. An oriented surface is given an “upward” or “downward” orientation or, in
the case of surfaces such as a sphere or cylinder, an “outward” or “inward” orientation.

S (x, y, z) ρ(x, y, z)
m

m = ρ(x, y, z)dS.∬
S

(5.7.3)

 Example : Calculating the Mass of a Sheet5.7.11

z = 1 +x+2y 0 ≤ x ≤ 4 0 ≤ y ≤ 2
ρ(x, y, z) = yzx2

S m = yx dS.∬
S

x2

S S f(x, y) = 1 +x+2y
S (x, y) = ⟨x, y, 1 +x+2y⟩, 0 ≤ x ≤ 4, 0 ≤ y ≤ 2r

⇀

= ⟨1, 0, 1⟩t
⇀
x = ⟨1, 0, 2⟩t

⇀
y + = ⟨−1, −2, 1⟩t

⇀
x t

⇀
y || × || =t

⇀
x t

⇀
y 6

–
√

m = yz dS∬
S

x2

= y(1 +x+2y)dy dx6
–

√ ∫
4

0
∫

2

0
x2

= +2 dx6
–

√ ∫
4

0

22x2

3
x3

= ≈ 696.74.
2560 6

–
√

9

 Exercise 5.7.10

z = + , 0 ≤ z ≤ 4,x2 y2

ρ(x, y, z) = z+1

5.7.3

38.401π ≈ 120.640
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Let S be a smooth surface. For any point  on , we can identify two unit normal vectors  and . If it is possible to
choose a unit normal vector  at every point  on  so that  varies continuously over , then  is “orientable.” Such a
choice of unit normal vector at each point gives the orientation of a surface . If you think of the normal field as describing water
flow, then the side of the surface that water flows toward is the “negative” side and the side of the surface at which the water flows
away is the “positive” side. Informally, a choice of orientation gives  an “outer” side and an “inner” side (or an “upward” side and
a “downward” side), just as a choice of orientation of a curve gives the curve “forward” and “backward” directions.

Closed surfaces such as spheres are orientable: if we choose the outward normal vector at each point on the surface of the sphere,
then the unit normal vectors vary continuously. This is called the positive orientation of the closed surface (Figure ). We also
could choose the inward normal vector at each point to give an “inward” orientation, which is the negative orientation of the
surface.

Figure : An oriented sphere with positive orientation.

A portion of the graph of any smooth function  is also orientable. If we choose the unit normal vector that points
“above” the surface at each point, then the unit normal vectors vary continuously over the surface. We could also choose the unit
normal vector that points “below” the surface at each point. To get such an orientation, we parameterize the graph of  in the
standard way: , where  and  vary over the domain of . Then,  and ,
and therefore the cross product  (which is normal to the surface at any point on the surface) is Since the -
component of this vector is one, the corresponding unit normal vector points “upward,” and the upward side of the surface is
chosen to be the “positive” side.

Let  be a smooth orientable surface with parameterization . For each point  on the surface, vectors  and  lie
in the tangent plane at that point. Vector  is normal to the tangent plane at  and is therefore normal to  at that
point. Therefore, the choice of unit normal vector

gives an orientation of surface .

Give an orientation of cylinder .

Solution

This surface has parameterization 

(x, y, z) S N
⇀

−N
⇀

N
⇀

(x, y, z) S N
⇀

S S

S

S

5.7.18

5.7.18

z = f(x, y)

f

(x, y) = ⟨x, y, f(x, y)⟩r⇀ x y f = ⟨1, 0, ⟩t
⇀
x fx = ⟨0, 1, ⟩t

⇀
y fy

×t
⇀
x t

⇀
y ⟨− , − , 1⟩fx fy z

S (u, v)r
⇀ (a, b)r

⇀
t
⇀
u t

⇀
v

×t
⇀
u t

⇀
v (a, b)r

⇀ S

=N
⇀ ×t

⇀
u t

⇀
v

|| × ||t
⇀
u t

⇀
v

S

 Example :Choosing an Orientation5.7.12

+ = , 0 ≤ z ≤ hx2 y2 r2

(u, v) = ⟨r cosu, r sinu, v⟩, 0 ≤ u < 2π, 0 ≤ v≤ h.r⇀
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The tangent vectors are  and . To get an orientation of the surface, we compute the
unit normal vector

In this case,  and therefore

An orientation of the cylinder is

Notice that all vectors are parallel to the -plane, which should be the case with vectors that are normal to the cylinder.
Furthermore, all the vectors point outward, and therefore this is an outward orientation of the cylinder (Figure ).

Figure : If all the vectors normal to a cylinder point outward, then this is an outward orientation of the cylinder.

Give the “upward” orientation of the graph of .

Hint

Parameterize the surface and use the fact that the surface is the graph of a function.

Answer

Since every curve has a “forward” and “backward” direction (or, in the case of a closed curve, a clockwise and counterclockwise
direction), it is possible to give an orientation to any curve. Hence, it is possible to think of every curve as an oriented curve. This is
not the case with surfaces, however. Some surfaces cannot be oriented; such surfaces are called nonorientable. Essentially, a
surface can be oriented if the surface has an “inner” side and an “outer” side, or an “upward” side and a “downward” side. Some
surfaces are twisted in such a fashion that there is no well-defined notion of an “inner” or “outer” side.

The classic example of a nonorientable surface is the Möbius strip. To create a Möbius strip, take a rectangular strip of paper, give
the piece of paper a half-twist, and the glue the ends together (Figure ). Because of the half-twist in the strip, the surface has
no “outer” side or “inner” side. If you imagine placing a normal vector at a point on the strip and having the vector travel all the
way around the band, then (because of the half-twist) the vector points in the opposite direction when it gets back to its original
position. Therefore, the strip really only has one side.

Figure : The construction of a Möbius strip.

Since some surfaces are nonorientable, it is not possible to define a vector surface integral on all piecewise smooth surfaces. This is
in contrast to vector line integrals, which can be defined on any piecewise smooth curve.

= ⟨−r sinu, r cosu, 0⟩t
⇀
u = ⟨0, 0, 1⟩t

⇀
v

=N
⇀ ×t

⇀
u t

⇀
v

|| × ||t
⇀
u t

⇀
v

× = ⟨r cosu, r sinu, 0⟩t
⇀
u t

⇀
v

|| × || = = r.t
⇀
u t

⇀
v u+ ur2 cos2 r2 sin2− −−−−−−−−−−−−−−

√

(u, v) = = ⟨cosu, sinu, 0⟩.N
⇀ ⟨r cosu, r sinu, 0⟩

r

xy

5.7.19

5.7.19

 Exercise 5.7.11

f(x, y) = xy

(x, y) = ⟨ , , ⟩N
⇀ −y

1 + +x2 y2− −−−−−−−−√

−x

1 + +x2 y2− −−−−−−−−√

1

1 + +x2 y2− −−−−−−−−√

5.7.20

5.7.20
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Surface Integral of a Vector Field
With the idea of orientable surfaces in place, we are now ready to define a surface integral of a vector field. The definition is
analogous to the definition of the flux of a vector field along a plane curve. Recall that if  is a two-dimensional vector field and 
is a plane curve, then the definition of the flux of  along  involved chopping  into small pieces, choosing a point inside each
piece, and calculating  at the point (where  is the unit normal vector at the point). The definition of a surface integral of a
vector field proceeds in the same fashion, except now we chop surface  into small pieces, choose a point in the small (two-
dimensional) piece, and calculate  at the point.

To place this definition in a real-world setting, let  be an oriented surface with unit normal vector . Let  be a velocity field of a
fluid flowing through , and suppose the fluid has density  Imagine the fluid flows through , but  is completely
permeable so that it does not impede the fluid flow (Figure ). The mass flux of the fluid is the rate of mass flow per unit area.
The mass flux is measured in mass per unit time per unit area. How could we calculate the mass flux of the fluid across ?

Figure : Fluid flows across a completely permeable surface .

The rate of flow, measured in mass per unit time per unit area, is . To calculate the mass flux across , chop  into small pieces 
. If  is small enough, then it can be approximated by a tangent plane at some point  in . Therefore, the unit normal vector

at  can be used to approximate  across the entire piece  because the normal vector to a plane does not change as we
move across the plane. The component of the vector  at P in the direction of  is  at . Since  is small, the dot
product  changes very little as we vary across  and therefore  can be taken as approximately constant across .
To approximate the mass of fluid per unit time flowing across  (and not just locally at point ), we need to multiply 

 by the area of . Therefore, the mass of fluid per unit time flowing across  in the direction of  can be
approximated by  where ,  and  are all evaluated at  (Figure ). This is analogous to the flux of two-
dimensional vector field  across plane curve , in which we approximated flux across a small piece of  with the expression 

. To approximate the mass flux across , form the sum

As pieces  get smaller, the sum

gets arbitrarily close to the mass flux. Therefore, the mass flux is

F
⇀

C

F
⇀

C C

⋅F
⇀

N
⇀

N
⇀

S

⋅F
⇀

N
⇀

S N
⇀

v⇀

S ρ(x, y, z) S S

5.7.21
S

5.7.21 S

ρN
⇀

S S

Sij Sij P Sij

P (x, y, z)N
⇀

Sij

ρv N
⇀

ρ ⋅v⇀ N
⇀

P Sij

ρv ⋅N Sij ρ ⋅v
⇀

N
⇀

Sij

Sij P

(ρ ⋅ )(P )v⇀ N
⇀

Sij Sij N
⇀

(ρ ⋅ )Δv⇀ N
⇀

Sij N
⇀

ρ v⇀ P 5.7.22

F
⇀

C C

( ⋅ ) ΔsF
⇀

N
⇀

S

m (ρ ⋅ )Δ .∑
i=1

∑
j=1

n

v
⇀

N
⇀

Sij

Sij

m (ρ ⋅ )Δ∑
i=1

∑
j=1

n
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⇀
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This is a surface integral of a vector field. Letting the vector field  be an arbitrary vector field  leads to the following
definition.

Figure : The mass of fluid per unit time flowing across  in the direction of  can be approximated by .

Let  be a continuous vector field with a domain that contains oriented surface  with unit normal vector . The surface
integral of  over  is

Notice the parallel between this definition and the definition of vector line integral . A surface integral of a vector field

is defined in a similar way to a flux line integral across a curve, except the domain of integration is a surface (a two-dimensional

object) rather than a curve (a one-dimensional object). Integral  is called the flux of  across , just as integral 

 is the flux of  across curve . A surface integral over a vector field is also called a flux integral.

Just as with vector line integrals, surface integral  is easier to compute after surface  has been parameterized. Let 

 be a parameterization of  with parameter domain . Then, the unit normal vector is given by  and,

from Equation , we have

Therefore, to compute a surface integral over a vector field we can use the equation

ρ ⋅ dS = (ρ ⋅ )Δ .∬
s

v
⇀

N
⇀

lim
m,n→∞

∑
i=1

m

∑
j=1

n

v
⇀

N
⇀

Sij

ρv⇀ F
⇀

5.7.22 Sij N
⇀

(ρ ⋅ )Δv⇀ N
⇀

Sij

 Definition: Surface Integrals

F
⇀

S N
⇀

F
⇀

S

⋅ = ⋅ dS.∬
S

F
⇀

S
⇀

∬
S

F
⇀

N
⇀

(5.7.4)

⋅ dS∫
C

F
⇀

N
⇀

⋅ dS∬
S

F
⇀

N
⇀

F
⇀

S

⋅ dS∫
C

F
⇀

N
⇀

F
⇀

C

⋅ dS∬
S

F
⇀

N
⇀

S

(u, v)r⇀ S D =N
⇀ ×t

⇀
u t

⇀
v

|| × ||t
⇀
u t

⇀
v

5.7.4

⋅ dS∫
C

F
⇀

N
⇀

= ⋅ dS∬
S

F
⇀ ×t

⇀
u t

⇀
v

|| × ||t
⇀
u t

⇀
v

= ( ( (u, v)) ⋅ ) || × || dA∬
D

F
⇀

r⇀
×t

⇀
u t

⇀
v

|| × ||t
⇀
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⇀
v

t
⇀
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⇀
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Calculate the surface integral

where  and  is the surface with parameterization

Solution

The tangent vectors are  and . Therefore,

By Equation ,

Therefore, the flux of  across  is 340.

Calculate surface integral

where  and  is the portion of the unit sphere in the first octant with outward orientation.

Hint

Use Equation .

Answer

0

⋅ dS = ( ( (u, v)) ⋅ ( × ))dA.∬
S

F
⇀

N
⇀

∬
D

F
⇀

r
⇀

t
⇀
u t

⇀
v (5.7.5)

 Example : Calculating a Surface Integral5.7.13

⋅ dS,∬
S

F
⇀

N
⇀

= ⟨−y, x, 0⟩F
⇀

S

(u, v) = ⟨u, −u, u+v⟩, 0 ≤ u ≤ 3, 0 ≤ v≤ 4.r
⇀ v2

= ⟨1, −1, 1⟩t
⇀
u = ⟨0, 2v, 1⟩t

⇀
v

× = ⟨−1 −2v, −1, 2v⟩.t
⇀
u t

⇀
v

5.7.5

⋅ dS∬
S

F
⇀

= F ( (u, v)) ⋅ ( × )du dv∫
4

0
∫

3

0
r
⇀

t
⇀
u t

⇀
v

= ⟨u− , u, 0⟩ ⋅ ⟨−1 −2v, −1, 2v⟩du dv∫
4

0
∫

3

0
v2

= [(u− )(−1 −2v) −u] du dv∫
4

0
∫

3

0
v2

= (2 + −2uv−2u)du dv∫
4

0
∫

3

0
v3 v2

= dv∫
4

0
[2 u+ u−v − ]v3 v2 u2 u2 ∣∣

3

0

= (6 +3 −9v−9)dv∫
4

0
v3 v2

= [ + − −9v]
3v4

2
v3 9v2

2

4

0

= 340.

F
⇀

S

 Exercise 5.7.12

⋅ dS,∬
S

F
⇀

N
⇀

= ⟨0, −z, y⟩F
⇀

S

5.7.5
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Let  represent a velocity field (with units of meters per second) of a fluid with constant density 80
kg/m . Let  be hemisphere  with  such that  is oriented outward. Find the mass flow rate of the
fluid across .

Solution

A parameterization of the surface is

As in Example, the tangent vectors are  and 
 and their cross product is

Notice that each component of the cross product is positive, and therefore this vector gives the outward orientation. Therefore
we use the orientation

for the sphere.

By \label{surfaceI},

Therefore, the mass flow rate is .

Let  m/sec represent a velocity field of a fluid with constant density 100 kg/m . Let  be the
half-cylinder  oriented outward. Calculate the mass flux of the fluid across

.

Hint

Use \label{surfaceI}.

Answer

400 kg/sec/m

 Example :Calculating Mass Flow Rate5.7.14

(x, y, z) = ⟨2x, 2y, z⟩v⇀

3 S + + = 9x2 y2 z2 z ≤ 0 S

S

(ϕ, θ) = ⟨3 cosθ sinϕ, 3 sinθ sinϕ, 3 cosϕ⟩, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π/2.r
⇀

= ⟨−3 sinθ sinϕ, 3 cosθ sinϕ, 0⟩t
⇀
θ

= ⟨3 cosθ cosϕ, 3 sinθ cosϕ, −3 sinϕ⟩,t
⇀
ϕ

× = ⟨9 cosθ ϕ, 9 sinθ ϕ, 9 sinϕ cosϕ⟩.t
⇀
ϕ t

⇀
θ sin2 sin2

= ⟨9 cosθ ϕ, 9 sinθ ϕ, 9 sinϕ cosϕ⟩N
⇀

sin2 sin2

ρv ⋅ dS∬
S

= 80 v(r(ϕ, θ)) ⋅ ( × )dϕ dθ∫
2π

0
∫

π/2

0
tϕ tθ

= 80 ⟨6 cosθ sinϕ, 6 sinθ sinϕ, 3 cosϕ⟩ ⋅ ⟨9 cosθ ϕ, 9 sinθ ϕ, 9 sinϕ cosϕ⟩dϕ dθ∫
2π

0
∫

π/2

0
sin2 sin2

= 80 54 ϕ+27 ϕ sinϕ dϕ dθ∫
2π

0
∫

π/2

0
sin3 cos2

= 80 54(1 − ϕ) sinϕ+27 ϕ sinϕ dϕ dθ∫
2π

0
∫

π/2

0
cos2 cos2

= 80 54 sinϕ−27 ϕ sinϕ dϕ dθ∫
2π

0
∫

π/2

0
cos2

= 80 [−54 cosϕ+9 ϕ dθ∫
2π

0
cos3 ]

ϕ=2π

ϕ=0

= 80 45 dθ∫
2π

0

= 7200π.

7200π kg/sec/m
2

 Exercise 5.7.13

(x, y, z) = ⟨ + , z, 4y⟩v
⇀ x2 y2 3 S

(u, v) = ⟨cosu, sinu, v⟩, 0 ≤ u ≤ π, 0 ≤ v≤ 2r
⇀
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In Example , we computed the mass flux, which is the rate of mass flow per unit area. If we want to find the flow rate
(measured in volume per time) instead, we can use flux integral

which leaves out the density. Since the flow rate of a fluid is measured in volume per unit time, flow rate does not take mass into
account. Therefore, we have the following characterization of the flow rate of a fluid with velocity  across a surface :

To compute the flow rate of the fluid in Example, we simply remove the density constant, which gives a flow rate of .

Both mass flux and flow rate are important in physics and engineering. Mass flux measures how much mass is flowing across a
surface; flow rate measures how much volume of fluid is flowing across a surface.

In addition to modeling fluid flow, surface integrals can be used to model heat flow. Suppose that the temperature at point 
in an object is . Then the heat flow is a vector field proportional to the negative temperature gradient in the object. To be
precise, the heat flow is defined as vector field , where the constant k is the thermal conductivity of the substance from
which the object is made (this constant is determined experimentally). The rate of heat flow across surface S in the object is given
by the flux integral

A cast-iron solid cylinder is given by inequalities . The temperature at point  in a region
containing the cylinder is . Given that the thermal conductivity of cast iron is 55, find the heat flow
across the boundary of the solid if this boundary is oriented outward.

Solution

Let  denote the boundary of the object. To find the heat flow, we need to calculate flux integral

Notice that  is not a smooth surface but is piecewise smooth, since  is the union of three smooth surfaces (the circular top
and bottom, and the cylindrical side). Therefore, we calculate three separate integrals, one for each smooth piece of . Before
calculating any integrals, note that the gradient of the temperature is .

First we consider the circular bottom of the object, which we denote . We can see that  is a circle of radius 1 centered at
point  sitting in plane . This surface has parameterization 

Therefore,

 and , and .

Since the surface is oriented outward and  is the bottom of the object, it makes sense that this vector points downward. By
Equation, the heat flow across  is

5.7.14

⋅ dS,∬
S

v
⇀

N
⇀

v
⇀ S

Flow rate of fluid across S = ⋅ dS.∬
S

v⇀

90π /secm3

(x, y, z)
T (x, y, z)

F = −k∇T

⋅ dS = −k T ⋅ dS.∬
S

F
⇀

∬
S

∇
⇀

 Example : Calculating Heat Flow5.7.15

+ ≤ 1, 1 ≤ z ≤ 4x2 y2 (x, y, z)
T (x, y, z) = ( + )zx2 y2

S

−k T ⋅ dS.∬
S

∇
⇀

S S

S

T = ⟨2xz, 2yz, + ⟩∇
⇀

x2 y2

S1 S1

(0, 0, 1) z = 1
(u, v) = ⟨v cosu, v sinu, 1⟩, 0 ≤ u < 2π, 0 ≤ v≤ 1.r⇀

= ⟨−v sinu, v cosu, 0⟩t
⇀
u = ⟨cosu, v sinu, 0⟩t

⇀
v × = ⟨0, 0, −v u−v u⟩ = ⟨0, 0, −v⟩t

⇀
u t

⇀
v sin2 cos2
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Now let’s consider the circular top of the object, which we denote . We see that  is a circle of radius 1 centered at point 
, sitting in plane . This surface has parameterization 

Therefore,  and , and 
.

Since the surface is oriented outward and  is the top of the object, we instead take vector . By Equation,
the heat flow across  is

Last, let’s consider the cylindrical side of the object. This surface has parameterization 
. By Example, we know that . By Equation,

Therefore, the rate of heat flow across  is

−k T ⋅ dS∬
S1

∇
⇀

= −55 T (u, v) ⋅ ( × )dvdu∫
2π

0
∫

1

0
∇
⇀

t
⇀
u t

⇀
v

= −55 ⟨2v cosu, 2v sinu, u+ u⟩ ⋅ ⟨0, 0, −v⟩dvdu∫
2π

0
∫

1

0
v2 cos2 v2 sin2

= −55 ⟨2v cosu, 2v sinu, ⟩ ⋅ ⟨0, 0, −v⟩dvdu∫
2π

0
∫

1

0
v2

= −55 − dvdu∫
2π

0
∫

1

0
v3

= −55 − du∫
2π

0

1

4

= .
55π

2

S2 S2

(0, 0, 4) z = 4 (u, v) = ⟨v cosu, v sinu, 4⟩, 0 ≤ u < 2π, 0 ≤ v≤ 1.r
⇀

= ⟨−v sinu, v cosu, 0⟩t
⇀
u = ⟨cosu, v sinu, 0⟩t

⇀
v

× = ⟨0, 0, −v u−v u⟩ = ⟨0, 0, −v⟩t
⇀
u t

⇀
v sin2 cos2

S1 × = ⟨0, 0, v⟩t
⇀
v t

⇀
u

S1

−k T ⋅ dS∬
S2

∇
⇀

= −55 T (u, v) ⋅ ( × )dvdu∫
2π

0
∫

1

0
∇
⇀

t
⇀
u t

⇀
v

= −55 ⟨8v cosu, 8v sinu, u+ u⟩ ⋅ ⟨0, 0, −v⟩dvdu∫
2π

0
∫

1
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v2 cos2 v2 sin2
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2π
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∫

1

0
v2
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2π

0
∫

1

0
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1
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55π

2
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⇀
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−k T ⋅ dS∬
S3

∇
⇀
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0
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1

0
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2π
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∫

1

0
cos2 sin2
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2π
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∫
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0

= −55 du∫
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A cast-iron solid ball is given by inequality . The temperature at a point in a region containing the ball is 

. Find the heat flow across the boundary of the solid if this boundary is oriented outward.

Hint

Follow the steps of Example .

Answer

Key Concepts
Surfaces can be parameterized, just as curves can be parameterized. In general, surfaces must be parameterized with two
parameters.
Surfaces can sometimes be oriented, just as curves can be oriented. Some surfaces, such as a Möbius strip, cannot be oriented.
A surface integral is like a line integral in one higher dimension. The domain of integration of a surface integral is a surface in a
plane or space, rather than a curve in a plane or space.
The integrand of a surface integral can be a scalar function or a vector field. To calculate a surface integral with an integrand
that is a function, use Equation. To calculate a surface integral with an integrand that is a vector field, use Equation.
If  is a surface, then the area of  is

Key Equations
Scalar surface integral

Flux integral

Glossary

flux integral
another name for a surface integral of a vector field; the preferred term in physics and engineering

grid curves
curves on a surface that are parallel to grid lines in a coordinate plane

heat flow
a vector field proportional to the negative temperature gradient in an object

mass flux
the rate of mass flow of a fluid per unit area, measured in mass per unit time per unit area

orientation of a surface

− −110π = −110π.
55π

2

55π

2

 Exercise 5.7.14
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∬
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if a surface has an “inner” side and an “outer” side, then an orientation is a choice of the inner or the outer side; the surface
could also have “upward” and “downward” orientations

parameter domain (parameter space)
the region of the -plane over which the parameters  and  vary for parameterization 

parameterized surface (parametric surface)
a surface given by a description of the form , where the parameters  and  vary over a
parameter domain in the -plane

regular parameterization
parameterization  such that  is not zero for point  in the parameter domain

surface area
the area of surface  given by the surface integral

surface integral
an integral of a function over a surface

surface integral of a scalar-valued function
a surface integral in which the integrand is a scalar function

surface integral of a vector field
a surface integral in which the integrand is a vector field

This page titled 5.7: Surface Integrals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

16.6: Surface Integrals by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.
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5.8: Stokes’ Theorem

Explain the meaning of Stokes’ theorem.
Use Stokes’ theorem to evaluate a line integral.
Use Stokes’ theorem to calculate a surface integral.
Use Stokes’ theorem to calculate a curl.

In this section, we study Stokes’ theorem, a higher-dimensional generalization of Green’s theorem. This theorem, like the
Fundamental Theorem for Line Integrals and Green’s theorem, is a generalization of the Fundamental Theorem of Calculus to
higher dimensions. Stokes’ theorem relates a vector surface integral over surface  in space to a line integral around the boundary
of . Therefore, just as the theorems before it, Stokes’ theorem can be used to reduce an integral over a geometric object  to an
integral over the boundary of . In addition to allowing us to translate between line integrals and surface integrals, Stokes’ theorem
connects the concepts of curl and circulation. Furthermore, the theorem has applications in fluid mechanics and electromagnetism.
We use Stokes’ theorem to derive Faraday’s law, an important result involving electric fields.

Stokes’ Theorem

Stokes’ theorem says we can calculate the flux of  across surface  by knowing information only about the values of 
along the boundary of . Conversely, we can calculate the line integral of vector field  along the boundary of surface  by
translating to a double integral of the curl of  over .

Let  be an oriented smooth surface with unit normal vector . Furthermore, suppose the boundary of  is a simple closed curve 
. The orientation of  induces the positive orientation of  if, as you walk in the positive direction around  with your head

pointing in the direction of , the surface is always on your left. With this definition in place, we can state Stokes’ theorem.

Let  be a piecewise smooth oriented surface with a boundary that is a simple closed curve  with positive orientation (Figure
). If  is a vector field with component functions that have continuous partial derivatives on an open region containing ,

then

Figure : Stokes’ theorem relates the flux integral over the surface to a line integral around the boundary of the surface.
Note that the orientation of the curve is positive.

Suppose surface  is a flat region in the -plane with upward orientation. Then the unit normal vector is  and surface integral
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is actually the double integral

In this special case, Stokes’ theorem gives

However, this is the flux form of Green’s theorem, which shows us that Green’s theorem is a special case of Stokes’ theorem.
Green’s theorem can only handle surfaces in a plane, but Stokes’ theorem can handle surfaces in a plane or in space.

The complete proof of Stokes’ theorem is beyond the scope of this text. We look at an intuitive explanation for the truth of the
theorem and then see proof of the theorem in the special case that surface  is a portion of a graph of a function, and , the
boundary of , and  are all fairly tame.

First, we look at an informal proof of the theorem. This proof is not rigorous, but it is meant to give a general feeling for why
the theorem is true. Let  be a surface and let  be a small piece of the surface so that  does not share any points with the
boundary of . We choose  to be small enough so that it can be approximated by an oriented square . Let  inherit its
orientation from , and give  the same orientation. This square has four sides; denote them , and  for the left,
right, up, and down sides, respectively. On the square, we can use the flux form of Green’s theorem:

To approximate the flux over the entire surface, we add the values of the flux on the small squares approximating small pieces
of the surface (Figure ).

Figure : Chop the surface into small pieces. The pieces should be small enough that they can be approximated by a
square.

By Green’s theorem, the flux across each approximating square is a line integral over its boundary. Let  be an approximating
square with an orientation inherited from  and with a right side  (so  is to the left of ). Let  denote the right side of 

; then, . In other words, the right side of  is the same curve as the left side of , just oriented in the opposite
direction. Therefore,

As we add up all the fluxes over all the squares approximating surface , line integrals
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and

cancel each other out. The same goes for the line integrals over the other three sides of . These three line integrals cancel out
with the line integral of the lower side of the square above , the line integral over the left side of the square to the right of ,
and the line integral over the upper side of the square below  (Figure ). After all this cancelation occurs over all the
approximating squares, the only line integrals that survive are the line integrals over sides approximating the boundary of .
Therefore, the sum of all the fluxes (which, by Green’s theorem, is the sum of all the line integrals around the boundaries of
approximating squares) can be approximated by a line integral over the boundary of . In the limit, as the areas of the
approximating squares go to zero, this approximation gets arbitrarily close to the flux.

Figure : (a) The line integral along  cancels out the line integral along  because . (b) The line integral
along any of the sides of  cancels out with the line integral along a side of an adjacent approximating square.

Let’s now look at a rigorous proof of the theorem in the special case that  is the graph of function , where  and 
vary over a bounded, simply connected region  of finite area (Figure ). Furthermore, assume that  has continuous
second-order partial derivatives. Let  denote the boundary of  and let  denote the boundary of . Then,  is the
“shadow” of  in the plane and  is the “shadow” of . Suppose that  is oriented upward. The counterclockwise orientation
of  is positive, as is the counterclockwise orientation of . Let  be a vector field with component
functions that have continuous partial derivatives.

Figure :  is the “shadow,” or projection, of  in the plane and  is the projection of .

We take the standard parameterization of . The tangent vectors are  and 
, and therefore .

where the partial derivatives are all evaluated at , making the integrand depend on  and  only. Suppose 
 is a parameterization of . Then, a parameterization of  is .
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Armed with these parameterizations, the Chain rule, and Green’s theorem, and keeping in mind that ,  and  are all
functions of  and , we can evaluate line integral

By Clairaut’s theorem,

Therefore, four of the terms disappear from this double integral, and we are left with

which equals

We have shown that Stokes’ theorem is true in the case of a function with a domain that is a simply connected region of finite area.
We can quickly confirm this theorem for another important case: when vector field  is a conservative field. If  is conservative,
the curl of  is zero, so

Since the boundary of  is a closed curve, the integral

is also zero.

Verify that Stokes’ theorem is true for vector field  and surface , where  is the hemisphere, oriented
outward, with parameterization  as shown in Figure .
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Figure : Verifying Stokes’ theorem for a hemisphere in a vector field.

Solution

Let  be the boundary of . Note that  is a circle of radius 1, centered at the origin, sitting in plane . This circle has
parameterization . the equation for scalar surface integrals

By the equation for vector line integrals,

Therefore, we have verified Stokes’ theorem for this example.

Verify that Stokes’ theorem is true for vector field  and surface , where  is the upwardly oriented
portion of the graph of  over a triangle in the -plane with vertices , and .

Hint

Calculate the double integral and line integral separately.

5.8.5

C S C y = 0

⟨cos t, 0, sin t⟩, 0 ≤ t ≤ 2π

⋅ d∫
C

F
⇀

r
⇀ = ⟨−sin t, cos t, 0⟩ ⋅ ⟨−sin t, 0, cos t⟩dt∫

2π

0

= t dt∫
2π

0

sin2

= π.

curl ⋅ d∬
S

F
⇀

S
⇀

= curl ( (ϕ, θ)) ⋅ ( × )dA∬
D

F
⇀

r
⇀

t
⇀
ϕ t

⇀
θ

= ⟨0, −1, 1⟩ ⋅ ⟨cosθ ϕ, sinθ ϕ, sinϕ cosϕ⟩dA∬
D

sin2 sin2

= (sinϕ cosϕ−sinθ ϕ)dϕdθ∫
π

0

∫
π

0

sin2

= sinθ dθ
π

2
∫

π

0

= π.

 Exercise 5.8.1

(x, y, z) = ⟨y, x, −z⟩F
⇀

S S

f(x, y) = yx2 xy (0, 0), (2, 0) (0, 2)
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Answer

Both integrals give :

Applying Stokes’ Theorem

Stokes’ theorem translates between the flux integral of surface  to a line integral around the boundary of . Therefore, the
theorem allows us to compute surface integrals or line integrals that would ordinarily be quite difficult by translating the line
integral into a surface integral or vice versa. We now study some examples of each kind of translation.

Calculate surface integral

where  is the surface, oriented outward, in Figure  and .

Figure : A complicated surface in a vector field.

Solution

Note that to calculate

without using Stokes’ theorem, we would need the equation for scalar surface integrals. Use of this equation requires a
parameterization of . Surface  is complicated enough that it would be extremely difficult to find a parameterization.
Therefore, the methods we have learned in previous sections are not useful for this problem. Instead, we use Stokes’ theorem,
noting that the boundary  of the surface is merely a single circle with radius 1.

The curl of  is . By Stokes’ theorem,

where  has parameterization . By the equation for vector line integrals,

−
136

45

S S

 Example : Calculating a Surface Integral5.8.2

curl ⋅ d ,∬
S

F
⇀

S
⇀

S 5.8.6 = ⟨z, 2xy, x+y⟩F
⇀

5.8.6

curl ⋅ d∬
S

F
⇀

S
⇀

S S

C

F
⇀

⟨1, 1, 2y⟩

curl ⋅ d = ⋅ d ,∬
S

F
⇀

S
⇀

∫
C

F
⇀

r
⇀

C ⟨cos t, sin t, 1⟩, 0 ≤ t ≤ 2π
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An amazing consequence of Stokes’ theorem is that if  is any other smooth surface with boundary  and the same orientation as 
, then

because Stokes’ theorem says the surface integral depends on the line integral around the boundary only.

In Example , we calculated a surface integral simply by using information about the boundary of the surface. In general, let 
 and  be smooth surfaces with the same boundary  and the same orientation. By Stokes’ theorem,

Therefore, if

is difficult to calculate but

is easy to calculate, Stokes’ theorem allows us to calculate the easier surface integral. In Example , we could have calculated

by calculating

where  is the disk enclosed by boundary curve  (a much more simple surface with which to work).

Equation  shows that flux integrals of curl vector fields are surface independent in the same way that line integrals of gradient
fields are path independent. Recall that if  is a two-dimensional conservative vector field defined on a simply connected domain, 

 is a potential function for , and  is a curve in the domain of , then

depends only on the endpoints of . Therefore if  is any other curve with the same starting point and endpoint as  (that is, 
has the same orientation as ), then

curl F ⋅ d∬
S

S
⇀

= ⋅ d∫
C

F
⇀

r
⇀

= ⟨1, sin t cos t, cos t+sin t⟩ ⋅ ⟨−sin t, cos t, 0⟩dt∫
2

0

= (−sin t+2 sin t t)dt∫
2π

0

cos2

= [cos t− ]
2 tcos3

3

2π

0

= cos(2π) − −(cos(0) − )
2 (2π)cos3

3

2 (0)cos3

3

= 0.

S ′ C

S

curl ⋅ d = ⋅ d = 0∬
S

F
⇀

S
⇀

∫
C

F
⇀

r
⇀

5.8.2

S1 S2 C

curl ⋅ d = ⋅ d = curl ⋅ d .∬
S1

F
⇀

S
⇀

∫
C

F
⇀

r
⇀ ∬

S2

F
⇀

S
⇀

(5.8.2)

curl ⋅ d∬
S1

F
⇀

S
⇀

curl ⋅ d∬
S2

F
⇀

S
⇀

5.8.2

curl ⋅ d∬
S

F
⇀

S
⇀

curl ⋅ d ,∬
S ′

F
⇀

S
⇀

S
⇀′

C

5.8.2

F
⇀

f F
⇀

C F
⇀

⋅ d∫
C

F
⇀

r
⇀

C C ′ C C ′

C
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In other words, the value of the integral depends on the boundary of the path only; it does not really depend on the path itself.

Analogously, suppose that  and  are surfaces with the same boundary and same orientation, and suppose that  is a three-
dimensional vector field that can be written as the curl of another vector field  (so that  is like a “potential field” of ). By
Equation ,

Therefore, the flux integral of  does not depend on the surface, only on the boundary of the surface. Flux integrals of vector
fields that can be written as the curl of a vector field are surface independent in the same way that line integrals of vector fields that
can be written as the gradient of a scalar function are path independent.

Use Stokes’ theorem to calculate surface integral

where  and  is the surface as shown in the following figure.

Hint

Parameterize the boundary of  and translate to a line integral.

Answer

Calculate the line integral

where  and  is the boundary of the parallelogram with vertices ,
and .

Solution

To calculate the line integral directly, we need to parameterize each side of the parallelogram separately, calculate four separate
line integrals, and add the result. This is not overly complicated, but it is time-consuming.

By contrast, let’s calculate the line integral using Stokes’ theorem. Let  denote the surface of the parallelogram. Note that  is
the portion of the graph of  for  varying over the rectangular region with vertices , and

 in the -plane. Therefore, a parameterization of  is . The curl of  is 
,and Stokes’ theorem and the equation for scalar surface integrals

⋅ d = ⋅ d∫
C

F
⇀

r
⇀ ∫

C ′
F
⇀

r
⇀

S S ′
G
⇀

F
⇀

F
⇀

G
⇀

5.8.2

⋅ d = curl ⋅ d = ⋅ d = curl ⋅ d = ⋅ d .∬
S

G
⇀

S
⇀

∬
S

F
⇀

S
⇀

∫
C

F
⇀

r
⇀ ∬

S ′
F
⇀

S
⇀

∬
S ′

G
⇀

S
⇀

G
⇀

 Exercise 5.8.1

curl ⋅ d ,∬
S

F
⇀

S
⇀

= ⟨x, y, z⟩F
⇀

S

S

−π

 Example : Calculating a Line Integral5.8.3

⋅ d ,∫
C

F
⇀

r
⇀

= ⟨xy, + + , yz⟩F
⇀

x2 y2 z2 C (0, 0, 1), (0, 1, 0), (2, 0, −1)

(2, 1, −2)

S S

z = 1 −x−y (x, y) (0, 0), (0, 1), (2, 0)

(2, 1) xy S ⟨x, y, 1 −x−y⟩, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1 F
⇀

⟨−z, 0, x⟩
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Use Stokes’ theorem to calculate line integral

where  and  is the boundary of a triangle with vertices , and .

Hint

This triangle lies in plane .

Answer

Interpretation of Curl
In addition to translating between line integrals and flux integrals, Stokes’ theorem can be used to justify the physical interpretation
of curl that we have learned. Here we investigate the relationship between curl and circulation, and we use Stokes’ theorem to state
Faraday’s law—an important law in electricity and magnetism that relates the curl of an electric field to the rate of change of a
magnetic field.

Recall that if  is a closed curve and  is a vector field defined on , then the circulation of  around  is line integral

If  represents the velocity field of a fluid in space, then the circulation measures the tendency of the fluid to move in the direction
of .

Let  be a continuous vector field and let  be a small disk of radius  with center  (Figure ). If  is small enough, then 
 for all points  in  because the curl is continuous. Let  be the boundary circle of : By

Stokes’ theorem,

⋅ d∫
C

F
⇀

r
⇀ = curl ⋅ d∬

S

F
⇀

S
⇀

= curl (x, y) ⋅ ( × )dy dx∫
2

0

∫
1

0

F
⇀

t
⇀
x t

⇀
y

= ⟨−(1 −x−y), 0, x⟩ ⋅ (⟨1, 0, −1⟩× ⟨0, 1, −1⟩)dy dx∫
2

0

∫
1

0

= ⟨x+y−1, 0, x⟩ ⋅ ⟨1, 1, 1⟩dy dx∫
2

0

∫
1

0

= 2x+y−1 dy dx∫
2

0

∫
1

0

= 3.

 Exercise 5.8.3

⋅ d ,∫
C

F
⇀

r
⇀

= ⟨z, x, y⟩F
⇀

C (0, 0, 1), (3, 0, −2) (0, 1, 2)

z = 1 −x+y

3

2

C F
⇀

C F
⇀

C

⋅ d .∫
C

F
⇀

r
⇀

F
⇀

C

F
⇀

Dτ r P0 5.8.7 Dτ

(curl )(P ) ≈ (curl )( )F
⇀

F
⇀

P0 P Dτ Cτ Dτ

⋅ d = curl ⋅ d ≈ (curl )( ) ⋅ ( )d .∫
Cτ

F
⇀

r
⇀ ∬

Dτ

F
⇀

N
⇀

S
⇀

∬
Dτ

F
⇀

P0 N
⇀

P0 S
⇀
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Figure : Disk  is a small disk in a continuous vector field.

The quantity  is constant, and therefore

Thus

and the approximation gets arbitrarily close as the radius shrinks to zero. Therefore Stokes’ theorem implies that

This equation relates the curl of a vector field to the circulation. Since the area of the disk is , this equation says we can view
the curl (in the limit) as the circulation per unit area. Recall that if  is the velocity field of a fluid, then circulation

is a measure of the tendency of the fluid to move around : The reason for this is that  is a component of  in the direction
of , and the closer the direction of  is to , the larger the value of  (remember that if  and  are vectors and  is fixed,
then the dot product  is maximal when  points in the same direction as ). Therefore, if  is the velocity field of a fluid,
then  is a measure of how the fluid rotates about axis . The effect of the curl is largest about the axis that points in the
direction of , because in this case  is as large as possible.

To see this effect in a more concrete fashion, imagine placing a tiny paddlewheel at point  (Figure ). The paddlewheel
achieves its maximum speed when the axis of the wheel points in the direction of curl . This justifies the interpretation of the curl
we have learned: curl is a measure of the rotation in the vector field about the axis that points in the direction of the normal vector 

, and Stokes’ theorem justifies this interpretation.

5.8.7 Dτ

(curl )( ) ⋅ ( )F
⇀

P0 N
⇀

P0

(curl )( ) ⋅ ( )d = π [(curl )( ) ⋅ ( )].∬
Dτ

F
⇀

P0 N
⇀

P0 S
⇀

r2
F
⇀

P0 N
⇀

P0

⋅ d ≈ π [(curl )( ) ⋅ ( )],∫
Cτ

F
⇀

r
⇀ r2

F
⇀

P0 N
⇀

P0

(curl )( ) ⋅ ( ) = ⋅ d .F
⇀

P0 N
⇀

P0 lim
r→0+

1

πr2
∫
Cτ

F
⇀

r
⇀

πr2

F
⇀

⋅ d = ⋅ ds∮
Cτ

F
⇀

r
⇀ ∮

Cτ

F
⇀

T
⇀

Cτ ⋅F
⇀

T
⇀

F
⇀

T
⇀

F
⇀

T
⇀

⋅F
⇀

T
⇀

a
⇀

b
⇀

b
⇀

⋅a
⇀

b
⇀

a
⇀

b
⇀

F
⇀

curl ⋅F
⇀

N
⇀

N
⇀

N
⇀

curl ⋅F
⇀

N
⇀

P0 5.8.8

F
⇀

N
⇀
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Figure : To visualize curl at a point, imagine placing a tiny paddlewheel at that point in the vector field.

Now that we have learned about Stokes’ theorem, we can discuss applications in the area of electromagnetism. In particular, we
examine how we can use Stokes’ theorem to translate between two equivalent forms of Faraday’s law. Before stating the two forms
of Faraday’s law, we need some background terminology.

Let  be a closed curve that models a thin wire. In the context of electric fields, the wire may be moving over time, so we write 
 to represent the wire. At a given time , curve  may be different from original curve  because of the movement of the

wire, but we assume that  is a closed curve for all times . Let  be a surface with  as its boundary, and orient  so
that  has positive orientation. Suppose that is in a magnetic field  that can also change over time. In other words, 
has the form

where , , and  can all vary continuously over time. We can produce current along the wire by changing field  (this is a

consequence of Ampere’s law). Flux  creates electric field  that does work. The integral form of

Faraday’s law states that

In other words, the work done by  is the line integral around the boundary, which is also equal to the rate of change of the flux
with respect to time. The differential form of Faraday’s law states that

Using Stokes’ theorem, we can show that the differential form of Faraday’s law is a consequence of the integral form. By Stokes’
theorem, we can convert the line integral in the integral form into surface integral

Since

then as long as the integration of the surface does not vary with time we also have

5.8.8

C

C(t) t C(t) C

C(t) t D(t) C(t) C(t)

D(t) C(t) (t)B
⇀

B
⇀

(x, y, z) = ⟨P (x, y, z), Q(x, y, z), R(x, y, z)⟩,B
⇀

P Q R (t)B
⇀

ϕ(t) = (t) ⋅ d∬
D(t)

B
⇀

S
⇀

(t)E
⇀

Work = (t) ⋅ d = − .∫
C(t)

E
⇀

r
⇀ ∂ϕ

∂t

E
⇀

curl = − .E
⇀ ∂B

⇀

∂t

− = (t) ⋅ d = curl (t) ⋅ d .
∂ϕ

∂t
∫
C(t)

E
⇀

r
⇀ ∬

D(t)

E
⇀

S
⇀

ϕ(t) = B(t) ⋅ d ,∬
D(t)

S
⇀

− = − ⋅ d .
∂ϕ

∂t
∬

D(t)

∂B
⇀

∂t
S
⇀
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Therefore,

To derive the differential form of Faraday’s law, we would like to conclude that : In general, the equation

is not enough to conclude that : The integral symbols do not simply “cancel out,” leaving equality of the

integrands. To see why the integral symbol does not just cancel out in general, consider the two single-variable integrals 

and , where

Both of these integrals equal , so .

However, . Analogously, with our equation

we cannot simply conclude that  just because their integrals are equal. However, in our context, equation

is true for any region, however small (this is in contrast to the single-variable integrals just discussed). If  and  are three-
dimensional vector fields such that

for any surface , then it is possible to show that  by shrinking the area of  to zero by taking a limit (the smaller the area

of , the closer the value of  to the value of  at a point inside ). Therefore, we can let area  shrink to zero by

taking a limit and obtain the differential form of Faraday’s law:

In the context of electric fields, the curl of the electric field can be interpreted as the negative of the rate of change of the
corresponding magnetic field with respect to time.

Calculate the curl of electric field  if the corresponding magnetic field is constant field .

Solution

− ⋅ d = curl ⋅ d .∬
D(t)

∂B
⇀

∂t
S
⇀

∬
D(t)

E
⇀

S
⇀

curl = −E
⇀ ∂B

⇀

∂t

− ⋅ d = curl ⋅ d∬
D(t)

∂B
⇀

∂t
S
⇀

∬
D(t)

E
⇀

S
⇀

curl = −E
⇀ ∂B

⇀

∂t

x dx∫
1

0

f(x)dx∫
1

0

f(x) ={
1,

0,

if 0 ≤ x ≤ 1/2

if 1/2 ≤ x ≤ 1.

1

2
x dx = f(x)dx∫

1

0

∫
1

0

x ≠ f(x)

− ⋅ d = curl ⋅ d ,∬
D(t)

∂B
⇀

∂t
S
⇀

∬
D(t)

E
⇀

S
⇀

curl = −E
⇀ ∂B

⇀

∂t

− ⋅ d = curl ⋅ d∬
D(t)

∂B
⇀

∂t
S
⇀

∬
D(t)

E
⇀

S
⇀

F
⇀

G
⇀

⋅ d = ⋅ d∬
S

F
⇀

S
⇀

∬
S

G
⇀

S
⇀

S =F
⇀

G
⇀

S

S ⋅ d∬
S

F
⇀

S
⇀

F
⇀

S D(t)

curl = − .E
⇀ ∂B

⇀

∂t

 Example : Using Faraday’s Law5.8.4

E
⇀

(t) = ⟨1, −4, 2⟩B
⇀
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Since the magnetic field does not change with respect to time, . By Faraday’s law, the curl of the electric field is

therefore also zero.

Analysis

A consequence of Faraday’s law is that the curl of the electric field corresponding to a constant magnetic field is always zero.

Calculate the curl of electric field  if the corresponding magnetic field is 

Hint
Use the differential form of Faraday’s law.
Notice that the curl of the electric field does not change over time, although the magnetic field does change over time.

Answer

Key Concepts
Stokes’ theorem relates a flux integral over a surface to a line integral around the boundary of the surface. Stokes’ theorem is a
higher dimensional version of Green’s theorem, and therefore is another version of the Fundamental Theorem of Calculus in
higher dimensions.
Stokes’ theorem can be used to transform a difficult surface integral into an easier line integral, or a difficult line integral into an
easier surface integral.
Through Stokes’ theorem, line integrals can be evaluated using the simplest surface with boundary .
Faraday’s law relates the curl of an electric field to the rate of change of the corresponding magnetic field. Stokes’ theorem can
be used to derive Faraday’s law.

Key Equations
Stokes’ theorem

Glossary

Stokes’ theorem
relates the flux integral over a surface  to a line integral around the boundary  of the surface 

surface independent
flux integrals of curl vector fields are surface independent if their evaluation does not depend on the surface but only on the
boundary of the surface

This page titled 5.8: Stokes’ Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

16.7: Stokes’ Theorem by Edwin “Jed” Herman, Gilbert Strang is licensed CC BY-NC-SA 4.0. Original source:
https://openstax.org/details/books/calculus-volume-1.

− =
∂B

⇀

∂t
0
⇀

 Exercise 5.8.4

E
⇀

(t) = ⟨tx, ty, −2tz⟩, 0 ≤ t < ∞.B
⇀

curl = ⟨x, y, −2z⟩E
⇀

C

⋅ d = curl ⋅ d∫
C

F
⇀

r
⇀ ∬

S

F
⇀

S
⇀

S C S
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5.9: The Divergence Theorem

Explain the meaning of the divergence theorem.
Use the divergence theorem to calculate the flux of a vector field.
Apply the divergence theorem to an electrostatic field.

We have examined several versions of the Fundamental Theorem of Calculus in higher dimensions that relate the integral around
an oriented boundary of a domain to a “derivative” of that entity on the oriented domain. In this section, we state the divergence
theorem, which is the final theorem of this type that we will study. The divergence theorem has many uses in physics; in particular,
the divergence theorem is used in the field of partial differential equations to derive equations modeling heat flow and conservation
of mass. We use the theorem to calculate flux integrals and apply it to electrostatic fields.

Before examining the divergence theorem, it is helpful to begin with an overview of the versions of the Fundamental Theorem
of Calculus we have discussed:

1. The Fundamental Theorem of Calculus:

This theorem relates the integral of derivative  over line segment  along the -axis to a difference of  evaluated on
the boundary.

2. The Fundamental Theorem for Line Integrals:

where  is the initial point of  and  is the terminal point of . The Fundamental Theorem for Line Integrals allows
path  to be a path in a plane or in space, not just a line segment on the -axis. If we think of the gradient as a derivative,
then this theorem relates an integral of derivative  over path  to a difference of  evaluated on the boundary of .

3. Green’s theorem, circulation form:

Since  and curl is a derivative of sorts, Green’s theorem relates the integral of derivative curl  over
planar region  to an integral of  over the boundary of .

4. Green’s theorem, flux form:

Since  and divergence is a derivative of sorts, the flux form of Green’s theorem relates the integral of
derivative div  over planar region  to an integral of  over the boundary of .

5. Stokes’ theorem:

If we think of the curl as a derivative of sorts, then Stokes’ theorem relates the integral of derivative curl  over surface 
(not necessarily planar) to an integral of  over the boundary of .
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Stating the Divergence Theorem
The divergence theorem follows the general pattern of these other theorems. If we think of divergence as a derivative of sorts, then
the divergence theorem relates a triple integral of derivative div  over a solid to a flux integral of  over the boundary of the
solid. More specifically, the divergence theorem relates a flux integral of vector field  over a closed surface  to a triple integral
of the divergence of  over the solid enclosed by .

Let  be a piecewise, smooth closed surface that encloses solid  in space. Assume that  is oriented outward, and let  be a
vector field with continuous partial derivatives on an open region containing  (Figure ). Then

Figure : The divergence theorem relates a flux integral across a closed surface  to a triple integral over solid  enclosed
by the surface.

Recall that the flux form of Green’s theorem states that

Therefore, the divergence theorem is a version of Green’s theorem in one higher dimension.

The proof of the divergence theorem is beyond the scope of this text. However, we look at an informal proof that gives a general
feel for why the theorem is true, but does not prove the theorem with full rigor. This explanation follows the informal explanation
given for why Stokes’ theorem is true.

Let  be a small box with sides parallel to the coordinate planes inside  (Figure ). Let the center of  have
coordinates  and suppose the edge lengths are , and . (Figure ). The normal vector out of the top of
the box is  and the normal vector out of the bottom of the box is . The dot product of  with  is  and the
dot product with  is . The area of the top of the box (and the bottom of the box)  is .
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Figure : (a) A small box  inside surface  has sides parallel to the coordinate planes. (b) Box  has side lengths
, and  (c) If we look at the side view of , we see that, since  is the center of the box, to get to the top of

the box we must travel a vertical distance of  up from . Similarly, to get to the bottom of the box we must travel a
distance  down from .

The flux out of the top of the box can be approximated by  (Figure ) and the flux out of the

bottom of the box is . If we denote the difference between these values as , then the net flux

in the vertical direction can be approximated by . However,

Therefore, the net flux in the vertical direction can be approximated by . Similarly, the net flux in the -direction

can be approximated by  and the net flux in the -direction can be approximated by . Adding the fluxes

in all three directions gives an approximation of the total flux out of the box:

This approximation becomes arbitrarily close to the value of the total flux as the volume of the box shrinks to zero.

The sum of  over all the small boxes approximating  is approximately . On the other hand, the sum
of  over all the small boxes approximating  is the sum of the fluxes over all these boxes. Just as in the informal
proof of Stokes’ theorem, adding these fluxes over all the boxes results in the cancelation of a lot of the terms. If an
approximating box shares a face with another approximating box, then the flux over one face is the negative of the flux over
the shared face of the adjacent box. These two integrals cancel out. When adding up all the fluxes, the only flux integrals that
survive are the integrals over the faces approximating the boundary of . As the volumes of the approximating boxes shrink to
zero, this approximation becomes arbitrarily close to the flux over .

Verify the divergence theorem for vector field  and surface  that consists of cone 
, and the circular top of the cone (see the following figure). Assume this surface is positively

oriented.
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Solution

Let  be the solid cone enclosed by . To verify the theorem for this example, we show that

by calculating each integral separately.

To compute the triple integral, note that , and therefore the triple integral is

The volume of a right circular cone is given by . In this case, . Therefore,

To compute the flux integral, first note that  is piecewise smooth;  can be written as a union of smooth surfaces. Therefore,
we break the flux integral into two pieces: one flux integral across the circular top of the cone and one flux integral across the
remaining portion of the cone. Call the circular top  and the portion under the top . We start by calculating the flux across
the circular top of the cone. Notice that  has parameterization

Then, the tangent vectors are  and . Therefore, the flux across  is

We now calculate the flux over . A parameterization of this surface is
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The tangent vectors are  and , so the cross product is

Notice that the negative signs on the  and  components induce the negative (or inward) orientation of the cone. Since the
surface is positively oriented, we use vector  in the flux integral. The flux across  is then

The total flux across  is

and we have verified the divergence theorem for this example.

Verify the divergence theorem for vector field  and surface  given by the cylinder 
 plus the circular top and bottom of the cylinder. Assume that  is positively oriented.

Hint

Calculate both the flux integral and the triple integral with the divergence theorem and verify they are equal.

Answer

Both integrals equal .

  Recall that the divergence of continuous field  at point  is a measure of the “outflowing-ness” of the field at . If  represents
the velocity field of a fluid, then the divergence can be thought of as the rate per unit volume of the fluid flowing out less the rate
per unit volume flowing in. The divergence theorem confirms this interpretation. To see this, let  be a point and let  be a ball of
small radius  centered at  (Figure ). Let  be the boundary sphere of . Since the radius is small and  is continuous, 

 for all other points  in the ball. Therefore, the flux across  can be approximated using the divergence
theorem:

Since  is a constant,
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can be approximated by . This approximation gets better as the radius shrinks to zero, and therefore

This equation says that the divergence at  is the net rate of outward flux of the fluid per unit volume.

Figure : Ball  of small radius  centered at .

Using the Divergence Theorem
The divergence theorem translates between the flux integral of closed surface  and a triple integral over the solid enclosed by .
Therefore, the theorem allows us to compute flux integrals or triple integrals that would ordinarily be difficult to compute by
translating the flux integral into a triple integral and vice versa.

Calculate the surface integral

where  is cylinder , including the circular top and bottom, and 

.

Solution

We could calculate this integral without the divergence theorem, but the calculation is not straightforward because we would
have to break the flux integral into three separate integrals: one for the top of the cylinder, one for the bottom, and one for the
side. Furthermore, each integral would require parameterizing the corresponding surface, calculating tangent vectors and their
cross product..

By contrast, the divergence theorem allows us to calculate the single triple integral

where  is the solid enclosed by the cylinder. Using the divergence theorem (Equation ) and converting to cylindrical
coordinates, we have
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Use the divergence theorem to calculate flux integral

where  is the boundary of the box given by  and 
(see the following figure).

Hint

Calculate the corresponding triple integral.

Answer

40

Let  be the velocity field of a fluid. Let  be the solid cube given by , and
let  be the boundary of this cube (see the following figure). Find the flow rate of the fluid across .
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Figure : Vector field .

Solution

The flow rate of the fluid across  is . Before calculating this flux integral, let’s discuss what the value of the
integral should be. Based on Figure , we see that if we place this cube in the fluid (as long as the cube doesn’t encompass
the origin), then the rate of fluid entering the cube is the same as the rate of fluid exiting the cube. The field is rotational in
nature and, for a given circle parallel to the -plane that has a center on the z-axis, the vectors along that circle are all the
same magnitude. That is how we can see that the flow rate is the same entering and exiting the cube. The flow into the cube
cancels with the flow out of the cube, and therefore the flow rate of the fluid across the cube should be zero.

To verify this intuition, we need to calculate the flux integral. Calculating the flux integral directly requires breaking the flux
integral into six separate flux integrals, one for each face of the cube. We also need to find tangent vectors, compute their cross
product. However, using the divergence theorem makes this calculation go much more quickly:

Therefore the flux is zero, as expected.

Let  be the velocity field of a fluid. Let  be the solid cube given by , and
let  be the boundary of this cube (see the following figure). Find the flow rate of the fluid across .
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Hint

Use the divergence theorem and calculate a triple integral

Answer

Example illustrates a remarkable consequence of the divergence theorem. Let  be a piecewise, smooth closed surface and let  be
a vector field defined on an open region containing the surface enclosed by . If  has the form ,
then the divergence of  is zero. By the divergence theorem, the flux of  across  is also zero. This makes certain flux integrals
incredibly easy to calculate. For example, suppose we wanted to calculate the flux integral  where  is a cube and

Calculating the flux integral directly would be difficult, if not impossible, using techniques we studied previously. At the very least,
we would have to break the flux integral into six integrals, one for each face of the cube. But, because the divergence of this field is
zero, the divergence theorem immediately shows that the flux integral is zero.

We can now use the divergence theorem to justify the physical interpretation of divergence that we discussed earlier. Recall that if 
 is a continuous three-dimensional vector field and  is a point in the domain of , then the divergence of  at  is a measure of

the “outflowing-ness” of  at . If  represents the velocity field of a fluid, then the divergence of  at  is a measure of the net
flow rate out of point  (the flow of fluid out of  less the flow of fluid in to ). To see how the divergence theorem justifies this
interpretation, let  be a ball of very small radius r with center , and assume that  is in the domain of . Furthermore,
assume that  has a positive, outward orientation. Since the radius of  is small and  is continuous, the divergence of  is
approximately constant on . That is, ifv  is any point in , then . Let  denote the boundary sphere
of . We can approximate the flux across  using the divergence theorem as follows:
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As we shrink the radius  to zero via a limit, the quantity  gets arbitrarily close to the flux. Therefore,

and we can consider the divergence at  as measuring the net rate of outward flux per unit volume at . Since “outflowing-ness”
is an informal term for the net rate of outward flux per unit volume, we have justified the physical interpretation of divergence we
discussed earlier, and we have used the divergence theorem to give this justification.

Application to Electrostatic Fields

The divergence theorem has many applications in physics and engineering. It allows us to write many physical laws in both an
integral form and a differential form (in much the same way that Stokes’ theorem allowed us to translate between an integral and
differential form of Faraday’s law). Areas of study such as fluid dynamics, electromagnetism, and quantum mechanics have
equations that describe the conservation of mass, momentum, or energy, and the divergence theorem allows us to give these
equations in both integral and differential forms.

One of the most common applications of the divergence theorem is to electrostatic fields. An important result in this subject is
Gauss’ law. This law states that if  is a closed surface in electrostatic field , then the flux of  across  is the total charge
enclosed by  (divided by an electric constant). We now use the divergence theorem to justify the special case of this law in which
the electrostatic field is generated by a stationary point charge at the origin.

If  is a point in space, then the distance from the point to the origin is . Let  denote radial vector

field .The vector at a given position in space points in the direction of unit radial vector  and is

scaled by the quantity . Therefore, the magnitude of a vector at a given point is inversely proportional to the square of the
vector’s distance from the origin. Suppose we have a stationary charge of  Coulombs at the origin, existing in a vacuum. The
charge generates electrostatic field  given by

where the approximation  farad (F)/m is an electric constant. (The constant  is a measure of the resistance
encountered when forming an electric field in a vacuum.) Notice that  is a radial vector field similar to the gravitational field
described in [link]. The difference is that this field points outward whereas the gravitational field points inward. Because

we say that electrostatic fields obey an inverse-square law. That is, the electrostatic force at a given point is inversely proportional
to the square of the distance from the source of the charge (which in this case is at the origin). Given this vector field, we show that
the flux across closed surface  is zero if the charge is outside of , and that the flux is  if the charge is inside of . In
other words, the flux across S is the charge inside the surface divided by constant . This is a special case of Gauss’ law, and here
we use the divergence theorem to justify this special case.

To show that the flux across  is the charge inside the surface divided by constant , we need two intermediate steps. First we
show that the divergence of  is zero and then we show that the flux of  across any smooth surface  is either zero or . We
can then justify this special case of Gauss’ law.

Verify that the divergence of  is zero where  is defined (away from the origin).

Solution

Since , the quotient rule gives us
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Similarly,

Therefore,

Notice that since the divergence of  is zero and  is  scaled by a constant, the divergence of electrostatic field  is also zero
(except at the origin).

Let  be a connected, piecewise smooth closed surface and let . Then,

In other words, this theorem says that the flux of  across any piecewise smooth closed surface  depends only on whether the
origin is inside of .

The logic of this proof follows the logic of [link], only we use the divergence theorem rather than Green’s theorem.

First, suppose that  does not encompass the origin. In this case, the solid enclosed by  is in the domain of , and since the
divergence of  is zero, we can immediately apply the divergence theorem and find that

is zero.

Now suppose that  does encompass the origin. We cannot just use the divergence theorem to calculate the flux, because the
field is not defined at the origin. Let  be a sphere of radius a inside of  centered at the origin. The outward normal vector
field on the sphere, in spherical coordinates, is

(see [link]). Therefore, on the surface of the sphere, the dot product  (in spherical coordinates) is

( )
∂

∂x

x

τ 3
= ( )

∂

∂x

x

( + +x2 y2 z2)3/2

=

( + + −x [ ( + + 2x]x2 y2 z2)3/2 3

2
x2 y2 z2)1/2

( + +x2 y2 z2)3

= = .
−3 ττ 3 x2

τ 6

−3τ 2 x2

τ 5

( ) = and ( ) = .
∂

∂y

y

τ 3

−3τ 2 y2

τ 5

∂

∂z

z

τ 3

−3τ 2 z2

τ 5

div F
⇀
τ = + +

−3τ 2 x2

τ 5

−3τ 2 y2

τ 5

−3τ 2 z2

τ 5

=
3 −3( + + )τ 2 x2 y2 z2

τ 5

= = 0.
3 −3τ 2 τ 2

τ 5

F
⇀
τ E

⇀
F
⇀
τ E

⇀

 Flux across a Smooth Surface

S = ⟨ , , ⟩F
⇀
τ
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x

τ

y

τ

z

τ

⋅ d ={∬
S

F
⇀
τ S

⇀ 0,
4π,

if S does not encompass the origin
if S encompasses the origin.

F
⇀
τ S
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The flux of  across  is

Now, remember that we are interested in the flux across , not necessarily the flux across . To calculate the flux across ,
let  be the solid between surfaces  and . Then, the boundary of  consists of  and . Denote this boundary by 
to indicate that  is oriented outward but now  is oriented inward. We would like to apply the divergence theorem to solid 

. Notice that the divergence theorem, as stated, can’t handle a solid such as  because  has a hole. However, the divergence
theorem can be extended to handle solids with holes, just as Green’s theorem can be extended to handle regions with holes.
This allows us to use the divergence theorem in the following way. By the divergence theorem,

Therefore,

and we have our desired result.

Now we return to calculating the flux across a smooth surface in the context of electrostatic field  of a point charge at

the origin. Let  be a piecewise smooth closed surface that encompasses the origin. Then

If  does not encompass the origin, then

Therefore, we have justified the claim that we set out to justify: the flux across closed surface  is zero if the charge is outside of 
, and the flux is  if the charge is inside of .

This analysis works only if there is a single point charge at the origin. In this case, Gauss’ law says that the flux of  across  is
the total charge enclosed by . Gauss’ law can be extended to handle multiple charged solids in space, not just a single point
charge at the origin. The logic is similar to the previous analysis, but beyond the scope of this text. In full generality, Gauss’ law
states that if  is a piecewise smooth closed surface and  is the total amount of charge inside of , then the flux of  across  is 

.

⋅F
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⇀
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Suppose we have four stationary point charges in space, all with a charge of 0.002 Coulombs (C). The charges are located at 
, and . Let  denote the electrostatic field generated by these point charges. If  is the

sphere of radius  oriented outward and centered at the origin, then find

Solution

According to Gauss’ law, the flux of  across  is the total charge inside of  divided by the electric constant. Since  has
radius , notice that only two of the charges are inside of : the charge at  and the charge at . Therefore, the
total charge encompassed by  is  and, by Gauss’ law,

Work the previous example for surface  that is a sphere of radius 4 centered at the origin, oriented outward.

Hint

Use Gauss’ law.

Answer

Key Concepts
The divergence theorem relates a surface integral across closed surface  to a triple integral over the solid enclosed by . The
divergence theorem is a higher dimensional version of the flux form of Green’s theorem, and is therefore a higher dimensional
version of the Fundamental Theorem of Calculus.
The divergence theorem can be used to transform a difficult flux integral into an easier triple integral and vice versa.
The divergence theorem can be used to derive Gauss’ law, a fundamental law in electrostatics.

Key Equations
Divergence theorem

Glossary

divergence theorem
a theorem used to transform a difficult flux integral into an easier triple integral and vice versa

Gauss’ law
if S is a piecewise, smooth closed surface in a vacuum and  is the total stationary charge inside of , then the flux of
electrostatic field  across  is 

inverse-square law
the electrostatic force at a given point is inversely proportional to the square of the distance from the source of the charge

This page titled 5.9: The Divergence Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by
OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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5.E: Vector Calculus (Exercises)

5.2: Vector Fields 

1. The domain of vector field  is a set of points  in a plane, and the range of  is a set of what in the plane?

Answer
Vectors

For exercises 2 - 4, determine whether the statement is true or false.

2. Vector field  is a gradient field for both  and 

3. Vector field  is constant in direction and magnitude on a unit circle.

Answer
False

4. Vector field  is neither a radial field nor a rotation field.

For exercises 5 - 13, describe each vector field by drawing some of its vectors.

5. [T] 

Answer
Answers may vary

6. [T] 

7. [T] 

Answer
Answers may vary

8. [T] 

9. [T] 

Answer
Answers may vary

10. [T] 

11. [T] 

Answer

= (x, y)F
⇀

F
⇀

(x, y) F
⇀

= ⟨3 , 1⟩F
⇀

x2 (x, y) = +yϕ1 x3 (x, y) = y+ +100.ϕ2 x3

=F
⇀ ⟨y, x⟩

+x2 y2− −−−−−√

=F
⇀ ⟨y, x⟩

+x2 y2− −−−−−
√

(x, y) = x +yF
⇀

î ĵ

(x, y) = −y +xF
⇀

î ĵ

(x, y) = x −yF
⇀

î ĵ

(x, y) = +F
⇀

î ĵ

(x, y) = 2x +3yF
⇀

î ĵ

(x, y) = 3 +xF
⇀

î ĵ

(x, y) = y +sinxF
⇀

î ĵ
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12. [T] 

13. [T] 

Answer

14. [T] 

For exercises 15 - 20, find the gradient vector field of each function .

15. 

Answer

16. 

17. 

Answer

18. 

19. 

Answer

20. 

(x, y, z) = x +y +zF
⇀

î ĵ k̂

(x, y, z) = 2x −2y −2zF
⇀

î ĵ k̂

(x, y, z) = yz −xzF
⇀

î ĵ

f

f(x, y) = x siny+cosy

(x, y) = sin(y) +(x cosy−siny)F
⇀

î ĵ

f(x, y, z) = ze−xy

f(x, y, z) = y+xy+ zx2 y2

(x, y, z) = (2xy+y) +( +x+2yz) +F
⇀

î x2 ĵ y2 k̂

f(x, y) = sin(5y)x2

f(x, y) = ln(1 + +2 )x2 y2

(x, y) = +F
⇀ 2x

1 + +2x2 y2
î

4y

1 + +2x2 y2
ĵ

f(x, y, z) = x cos( )y
z
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21. What is vector field  with a value at  that is of unit length and points toward ?

Answer

For exercises 22 - 24, write formulas for the vector fields with the given properties.

22. All vectors are parallel to the -axis and all vectors on a vertical line have the same magnitude.

23. All vectors point toward the origin and have constant length.

Answer

24. All vectors are of unit length and are perpendicular to the position vector at that point.

25. Give a formula  for the vector field in a plane that has the properties that  at  and
that at any other point  is tangent to circle  and points in the clockwise direction with magnitude 

.

Answer

26. Is vector field  a gradient field?

27. Find a formula for vector field  given the fact that for all points ,  points toward the

origin and .

Answer

For exercises 28 - 29, assume that an electric field in the -plane caused by an infinite line of charge along the -axis is a

gradient field with potential function , where  is a constant and  is a reference distance at

which the potential is assumed to be zero.

28. Find the components of the electric field in the - and -directions, where 

29. Show that the electric field at a point in the -plane is directed outward from the origin and has magnitude , where 

.

Answer

A flow line (or streamline) of a vector field  is a curve  such that . If  represents the velocity field of a
moving particle, then the flow lines are paths taken by the particle. Therefore, flow lines are tangent to the vector field.

For exercises 30 and 31, show that the given curve  is a flow line of the given velocity vector field .

30. 

31. 

(x, y)F
⇀

(x, y) (1, 0)

(x, y) =F
⇀ (1 −x) −yî ĵ

(1 −x +)2 y2− −−−−−−−−−−√

x

(x, y) =F
⇀ (y −x )î ĵ

+x2 y2− −−−−−
√

(x, y) = M(x, y) +N(x, y)F
⇀

î ĵ =F
⇀

0
⇀

(0, 0)

(a, b), F
⇀

+ = +x2 y2 a2 b2

∥ ∥ =F
⇀

+a2 b2− −−−−−√

(x, y) = y −xF
⇀

î ĵ

(x, y) = (P (x, y),Q(x, y)) = (sinx+y) +(cosy+x)F
⇀

î ĵ

(x, y) = M(x, y) +N(x, y)F
⇀

î ĵ (x, y) F
⇀

∥ ∥ =F
⇀ 10

+x2 y2

(x, y) = (x +y )F
⇀ −10

( +x2 y2)3/2
î ĵ

xy x

V (x, y) = c ln( )r0

+x2 y2√
c > 0 r0

x y (x, y) = − V (x, y).E
⇀

∇
⇀

xy ∥ ∥ =E
⇀ c

r
r = +x2 y2− −−−−−√

∥ ∥ = r =E
⇀ c

|r|2
c

|r|

r

|r|

F
⇀

(t)r⇀ d /dt = ( (t))r⇀ F
⇀

r⇀ F
⇀

(t)c⇀ (x,y,z)F
⇀

(t) = ⟨ , ln |t|, ⟩, t ≠ 0; (x, y, z) = ⟨2x, z, − ⟩c⇀ e2t 1
t

F
⇀

z2

(t) = ⟨sin t, cos t, ⟩; (x, y, z) = ⟨y, −x, z⟩c⇀ et F
⇀
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Answer

For exercises 32 - 34, let , , and . Match , , and  with their graphs.
Explain.

32.

33.

Answer

34.

For exercises 35 - 38, let , , and . Match the vector fields with their
graphs in (I)−(IV). Explain.

a. 
b. 
c. 

'(t) = ⟨cos t, −sin t, ⟩ = ( (t))c⇀ e−t F
⇀

c⇀

= x +yF
⇀

î ĵ = −y +xG
⇀

î ĵ = x −yH
⇀

î ĵ F
⇀

G
⇀

H
⇀

H
⇀

= x +yF
⇀

î ĵ = −y +xG
⇀

î ĵ = −x +yH
⇀

î ĵ

+F
⇀

G
⇀

+F
⇀

H
⇀

+G
⇀

H
⇀
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d. 

35.

Answer

d. 

36.

37.

 

 

Answer

a. 

38.

For the following exercises, determine whether the vector field is conservative and, if so, find a potential function.

39. 

40. 

− +F
⇀

G
⇀

− +F
⇀

G
⇀

+F
⇀

G
⇀

(x, y) = 2x +3F
⇀

y3 î y2x2 ĵ

(x, y) = (−y+ siny) +((x+2) cosy)F
⇀

ex î ex ĵ
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Answer
Not conservative

41. 

42. 

Answer
Conservative, 

43. 

44. 

Answer
Conservative, 

45. 

46. 

Answer

 is not conservative.

47. 

48. 

Answer

 is conservative and a potential function is .

49. 

50. 

Answer

 is conservative and a potential function is 

51. 

52. 

Answer

 is conservative and a potential function is 

53. 

54. 

Answer

 is conservative and a potential function is 

 

(x, y) = ( siny) +( cosy)F
⇀

e2x î e2x ĵ

(x, y) = (6x+5y) +(5x+4y)F
⇀

î ĵ

f(x, y) = 3 +5xy+2 +kx2 y2

(x, y) = (2x cos(y) −y cos(x)) +(− sin(y) −sin(x))F
⇀

î x2 ĵ

(x, y) = (y +sin(y)) +( +x cos(y))F
⇀

ex î ex ĵ

f(x, y) = y +x sin(y) +kex

(x, y) = (12xy) +6( + )F
⇀

î x2 y2 ĵ

(x, y) = ( cosy) +6( siny)F
⇀

ex î ex ĵ

F
⇀

(x, y) = (2xy ) +6( )F
⇀

e yx2
î x2e yx2

ĵ

(x, y, z) = (y ) +(x ) +(xy )F
⇀

ez î ez ĵ ez k̂

F
⇀

f(x, y, z) = xy +kez

(x, y, z) = (siny) −(x cosy) +F
⇀

î ĵ k̂

(x, y, z) = − +(2z−1)F
⇀ 1

y
î

x

y2 ĵ k̂

F
⇀

f(x, y, z) = + −z+k.
x

y
z2

(x, y, z) = 3 −cosy +2xzF
⇀

z2 î ĵ k̂

(x, y, z) = (2xy) +( +2yz) +F
⇀

î x2 ĵ y2 k̂

F
⇀

f(x, y, z) = y+ z+k.x2 y2

(x, y) = ( cosy) +6( siny)F
⇀

ex î ex ĵ

(x, y) = (2xy ) +6( )F
⇀

e yx2
î x2e yx2

ĵ

F
⇀

f(x, y) = +ke yx2
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5.3: Line Integrals 

1. True or False? Line integral  is equal to a definite integral if  is a smooth curve defined on  and if

function  is continuous on some region that contains curve .

Answer
True

2. True or False? Vector functions  and , define the
same oriented curve.

3. True or False? 

Answer
False

4. True or False? A piecewise smooth curve  consists of a finite number of smooth curves that are joined together end to
end.

5. True or False? If  is given by , then 

Answer
False

For the following exercises, use a computer algebra system (CAS) to evaluate the line integrals over the indicated path.

6. [T] 

 from  to 

7. [T] 

 when 

Answer

8. [T] 

 when 

9. [T] Evaluate , where  is the right half of circle  and is traversed in the clockwise direction.

Answer

10. [T] Evaluate , where C is the line segment from  to .

For the following exercises, find the work done.

11. Find the work done by vector field  on a particle moving along a line segment that
goes from  to .

f(x, y)ds∫
C

C [a, b]

f C

= t + , 0 ≤ t ≤ 1,r⇀1 î t2 ĵ = (1 − t) +(1 − t , 0 ≤ t ≤ 1r⇀2 î )2 ĵ

(P dx+Q dy) = (P dx−Q dy)∫
−C

∫
C

C

C x(t) = t, y(t) = t, 0 ≤ t ≤ 1 xy ds = dt.∫
C

∫
1

0
t2

(x+y)ds∫
C

C : x = t, y = (1 − t), z = 0 (0, 1, 0) (1, 0, 0)

(x−y)ds∫
C

C : (t) = 4t +3tr⇀ î ĵ 0 ≤ t ≤ 2

(x−y)ds = 10∫
C

( + + )ds∫
C

x2 y2 z2

C : (t) = sin t +cos t +8tr⇀ î ĵ k̂ 0 ≤ t ≤
π

2

x ds∫
C

y4 C + = 16x2 y2

x ds =∫
C

y4 8192

5

4 ds∫
C

x3 (−2, −1) (1, 2)

(x, y, z) = x +3xy −(x+z)F
⇀

î ĵ k̂

(1, 4, 2) (0, 5, 1)
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Answer
 units of work

12. Find the work done by a person weighing 150 lb walking exactly one revolution up a circular, spiral staircase of radius 3
ft if the person rises 10 ft.

13. Find the work done by force field  on a particle as it moves along the helix 

 from point  to point .

Answer
 units of work

14. Find the work done by vector field  in moving an object along path , which joins points  and
.

15. Find the work done by force  in moving an object along curve 
, where .

Answer
 units of work

16. Find the mass of a wire in the shape of a circle of radius 2 centered at (3, 4) with linear mass density .

For the following exercises, evaluate the line integrals.

17. Evaluate , where , and  is the part of the graph of  from  to .

Answer

18. Evaluate , where  is the helix  with 

19. Evaluate  over the line segment from  to 

Answer

20. Let  be the line segment from point (0, 1, 1) to point (2, 2, 3). Evaluate line integral 

21. [T] Use a computer algebra system to evaluate the line integral , where  is the arc of the parabola 

 from  to .

Answer

22. [T] Use a computer algebra system to evaluate the line integral  over the path  given by 

 where 

23. [T] Use a CAS to evaluate line integral  over path  given by , where .

W = 8

(x, y, z) = − x − y +F
⇀ 1

2
î

1

2
ĵ

1

4
k̂

(t) = cos t +sin t + tr⇀ î ĵ k̂ (1, 0, 0) (−1, 0, 3π)

W = 3π
4

(x, y) = y +2xF
⇀

î ĵ C (1, 0)
(0, 1)

(x, y) = 2y +3x +(x+y)F
⇀

î ĵ k̂

(t) = cos(t) +sin(t) +16r⇀ î ĵ k̂ 0 ≤ t ≤ 2π

W = π

ρ(x, y) = y2

⋅ d∫
C

F
⇀

r⇀ (x, y) = −1F
⇀

ĵ C y = −3xx3 (2, 2) (−2, −2)

⋅ d = 4∫
C

F
⇀

r⇀

( + + ds∫
γ

x2 y2 z2)−1 γ x = cos t, y = sin t, z = t, 0 ≤ t ≤ T .

yz dx+xzdy+xy dz∫
C

(1, 1, 1) (3, 2, 0).

yz dx+xzdy+xy dz = −1∫
C

C y ds.∫
C

dx+x dy∫
C

y2 C

x = 4 −y2 (−5, −3) (0, 2)

( )dx+(x)dy =∫
C

y2 245

6

(x+3 )dy∫
C

y2 C

x = 2t, y = 10t, 0 ≤ t ≤ 1.

xy dx+y dy∫
C

C x = 2t, y = 10t 0 ≤ t ≤ 1
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Answer

24. Evaluate line integral , where  lies along the -axis from  to .

26. [T] Use a CAS to evaluate , where  is defined by the parametric equations , for 

Answer

27. [T] Use a CAS to evaluate , where  is defined by the parametric equations , for 

In the following exercises, find the work done by force field  on an object moving along the indicated path.

28. 

 from  to 

Answer
 units of work

29. 

< : counterclockwise around the triangle with vertices  and 

30. 

Answer
 units of work

31. Let  be vector field . Compute the work of integral ,

where  is the path .

32. Compute the work done by force  along path ,where .

Answer
 units of work

33. Evaluate , where  and  is the segment of the unit circle going

counterclockwise from  to .

34. Force  acts on a particle that travels from the origin to point . Calculate the work
done if the particle travels:

a. along the path  along straight-line segments joining each pair of endpoints;
b. along the straight line joining the initial and final points.
c. Is the work the same along the two paths?

xy dx+y dy =∫
C

190

3

(2x−y)dx+(x+3y)dy∫
C

C x x = 0 x = 5

ds∫
C

y

2 −x2 y2
C x = t, y = t

1 ≤ t ≤ 5.

ds = ln5∫
C

y

2 −x2 y2
2–√

xy ds∫
C

C x = , y = 4tt2 0 ≤ t ≤ 1.

F
⇀

(x, y) = −x −2yF
⇀

î ĵ

C : y = x3 (0, 0) (2, 8)

W = −66

(x, y) = 2x +yF
⇀

î ĵ

C (0, 0), (1, 0), (1, 1)

(x, y, z) = x +y −5zF
⇀

î ĵ k̂

C : (t) = 2 cos t +2 sin t + t , 0 ≤ t ≤ 2πr⇀ î ĵ k̂

W = −10π2

F
⇀

(x, y) = ( +2x +1) +(2xy+ +2y)F
⇀

y2 ey î x2ey ĵ ⋅ d∫
C

F
⇀

r⇀

C (t) = sin t +cos t , 0 ≤ t ≤r⇀ î ĵ
π

2

(x, y, z) = 2x +3y −zF
⇀

î ĵ k̂ (t) = t + +r⇀ î t2 ĵ t3 k̂ 0 ≤ t ≤ 1

W = 2

⋅ d∫
C

F
⇀

r⇀ (x, y) = +F
⇀ 1

x+y
î

1

x+y
ĵ C

(1, 0) (0, 1)

(x, y, z) = zy +x + xF
⇀

î ĵ z2 k̂ (1, 2, 3)

(0, 0, 0) → (1, 0, 0) → (1, 2, 0) → (1, 2, 3)
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Answer
a.  units of work; 
b.  units of work; 
c. Yes

35. Find the work done by vector field  on a particle moving along a line segment that
goes from  to 

36. How much work is required to move an object in vector field  along the upper part of ellipse 

 from  to ?

Answer
 units of work

37. A vector field is given by . Evaluate the line integral of the field around a circle of
unit radius traversed in a clockwise fashion.

38. Evaluate the line integral of scalar function  along parabolic path  connecting the origin to point .

Answer

39. Find  along  from  to 

40. Find  along  from  to 

Answer

For the following exercises, use a CAS to evaluate the given line integrals.

41. [T] Evaluate , where  is represented by .

42. [T] Evaluate line integral  where,  is the arc of curve  from  to .

W = 11
W = 11

(x, y, z) = x +3xy −(x+z)F
⇀

î ĵ k̂

(1, 4, 2) (0, 5, 1).

(x, y) = y +3xF
⇀

î ĵ

+ = 1
x2

4
y2 (2, 0) (−2, 0)

W = 2π

(x, y) = (2x+3y) +(3x+2y)F
⇀

î ĵ

xy y = x2 (1, 1)

f ds =∫
C

25 +15–√

120

dx+(xy− )dy∫
C

y2 x2 C : y = 3x (0, 0) (1, 3).

dx+(xy− )dy∫
C

y2 x2 C : = 9xy2 (0, 0) (1, 3).

dx+(xy− )dy = 6.15∫
C

y2 x2

(x, y, z) = z +6y +yF
⇀

x2 î ĵ z2 k̂ C (t) = t + +ln t , 1 ≤ t ≤ 3r⇀ î t2 ĵ k̂

x ds∫
γ

ey γ x = ey (1, 0) (e, 1)
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Answer

43. [T] Evaluate the integral , where  is a triangle with vertices , and .

44. [T] Evaluate line integral , where  is curve  from  toward .

Answer

45. [T] Evaluate line integral , where  is the right half of circle .

46. [T] Evaluate  where  and

.

Answer

 units of work

47. Evaluate , where  and

 is any path from  to .

48. Find the line integral of  over path  defined by  from point 
 to point .

Answer

 units of work

49. Find the line integral of , where  is ellipse  from 

For the following exercises, find the flux.

50. Compute the flux of  across a line segment from  to 

Answer

51. Let  and let  be curve  with . Find the flux across .

52. Let  and let  be curve  with . Find the flux across .

Answer

53. Let  and let  for . Calculate the flux across .

54. Let . Calculate flux  orientated counterclockwise across the curve 

Answer

x ds ≈ 7.157∫
γ

ey

x ds∫
γ

y2 γ (0, 1, 2), (1, 0, 3) (0, −1, 0)

( −xy)dx∫
γ

y2 γ y = lnx (1, 0) (e, 1)

( −xy)dx ≈ −1.379∫
γ

y2

x ds∫
γ

y4 γ + = 16x2 y2

∫ C ⋅ d , ∫ C ⋅ d ,F
⇀

r⇀ F
⇀

r⇀ (x, y, z) = y +(x−z) +xyzF
⇀

x2 î ĵ k̂

C : (t) = t + +2 , 0 ≤ t ≤ 1r⇀ î t2 ĵ k̂

⋅ d ≈ −1.133∫
C

F
⇀

r⇀

⋅ d∫
C

F
⇀

r⇀ (x, y) = 2x siny +( cosy−3 )F
⇀

î x2 y2 ĵ

C (−1, 0) (5, 1)

(x, y, z) = 12 −5xy +xzF
⇀

x2 î ĵ k̂ C y = , z =x2 x3

(0, 0, 0) (2, 4, 8)

⋅ d ≈ 22.857∫
C

F
⇀

r⇀

(1 + y)ds∫
C

x2 C (t) = 2 cos t +3 sin tr⇀ î ĵ 0 ≤ t ≤ π.

= +yF
⇀

x2 î ĵ (0, 0) (1, 2).

flux = − 1
3

= 5F
⇀

î C y = 0, 0 ≤ x ≤ 4 C

= 5F
⇀

ĵ C y = 0, 0 ≤ x ≤ 4 C

flux = −20

= −y +xF
⇀

î ĵ C : (t) = cos t +sin tr⇀ î ĵ 0 ≤ t ≤ 2π C

= ( + ) +(2xy)F
⇀

x2 y3 î ĵ F
⇀

C : + = 9.x2 y2

flux = 0
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Complete the rest of the exercises as stated.

55. Find the line integral of  where  consists of two parts:  and   is the intersection of

cylinder  and plane  from  to   is a line segment from  to .

56. A spring is made of a thin wire twisted into the shape of a circular helix  Find the mass
of two turns of the spring if the wire has a constant mass density of  grams per cm.

Answer
 grams

57. A thin wire is bent into the shape of a semicircle of radius . If the linear mass density at point  is directly proportional
to its distance from the line through the endpoints, find the mass of the wire.

58. An object moves in force field  counterclockwise from point  along elliptical path 
 to , and back to point  along the -axis. How much work is done by the force field on the object?

Answer
 units of work

59. Find the work done when an object moves in force field  along the path given
by 

60. If an inverse force field  is given by , where  is a constant, find the work done by  as its point of

application moves along the -axis from  to .

Answer
 units of work

61. David and Sandra plan to evaluate line integral  along a path in the -plane from  to . The force

field is . David chooses the path that runs along the -axis from  to  and
then runs along the vertical line  from  to the final point . Sandra chooses the direct path along the diagonal
line  from  to . Whose line integral is larger and by how much?

5.4: Conservative Vector Fields 

1. True or False? If vector field  is conservative on the open and connected region , then line integrals of  are path
independent on , regardless of the shape of .

Answer
True

2. True or False? Function , where , parameterizes the straight-line segment from  to .

Answer
True

3. True or False? Vector field  is conservative.

Answer
True

4. True or False? Vector field  is conservative.

dx+y dy+2y dz,∫
C

z2 C C1 .C2 C1

+ = 16x2 y2 z = 3 (0, 4, 3) (−4, 0, 3).C2 (−4, 0, 3) (0, 1, 5)

x = 2 cos t, y = 2 sin t, z = t.
ρ

m = 4πρ 5–√

a P

(x, y) = +2(x+1)yF
⇀

y2 î ĵ (2, 0)
+4 = 4x2 y2 (−2, 0) (2, 0) x

W = 0

(x, y, z) = 2x −(x+z) +(y−x)F
⇀

î ĵ k̂

(t) = +( − t) +3 , 0 ≤ t ≤ 1.r⇀ t2 î t2 ĵ k̂

F
⇀

(x, y, z) = rF
⇀ k

∥r∥3
k F

⇀

x A(1, 0, 0) B(2, 0, 0)

W = k

2

⋅ d∫
C

F
⇀

r⇀ xy (0, 0) (1, 1)

(x, y) = (x+2y) +(−x+ )F
⇀

î y2 ĵ x (0, 0) (1, 0)
x = 1 (1, 0) (1, 1)

y = x (0, 0) (1, 1)

F
⇀

D F
⇀

D D

(t) = + t( − )r⇀ a⇀ b
⇀

a⇀ 0 ≤ t ≤ 1 a⇀ b
⇀

(x, y, z) = (y sinz) +(x sinz) +(xy cosz)F
⇀

î ĵ k̂

(x, y, z) = y +(x+z) −yF
⇀

î ĵ k̂
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5. Use the Fundamental Theorem of Line Integrals to evaluate  in the case when 

 and  is a portion of the positively oriented circle  from  to 

Answer

 units of work

6. [T] Find  where  and  is a portion of curve  from 

 to .

7. [T] Evaluate line integral , where , and  is the path given

by  for .

Answer

 units of work

 

For the following exercises, evaluate the line integrals using the Fundamental Theorem of Line Integrals.

8.  where  is any path from  to 

9.  where  is the line segment from  to 

Answer

 units of work

10. [T] , where  is any smooth curve from  to 

11. Find the conservative vector field for the potential function 

Answer

⋅ d∫
C

F
⇀

r⇀

(x, y) = (2x+2y) +(2x+2y)F
⇀

î ĵ C + = 25x2 y2 (5, 0)
(3, 4).

⋅ d = 24∫
C

F
⇀

r⇀

⋅ d ,∫
C

F
⇀

r⇀ (x, y) = (y +cosx) +(x + )F
⇀

exy î exy 1
+1y2 ĵ C y = sinx

x = 0 x = π

2

⋅ d∫
C

F
⇀

r⇀ (x, y) = ( siny−y) +( cosy−x−2)F
⇀

ex î ex ĵ C

(t) = ( sin ) −( cos( + ))r⇀ t3 πt

2 î π

2
πt

2
π

2 ĵ 0 ≤ t ≤ 1

⋅ d =(e− )∫
C

F
⇀

r⇀
3π

2

(y +x ) ⋅ d ,∮
C

î ĵ r⇀ C (0, 0) (2, 4)

(2y dx+2x dy),∮
C

C (0, 0) (4, 4)

(2y dx+2x dy) = 32∮
C

[arctan − ] dx+[ + (1 −y)] dy∮
C

y

x

xy

+x2 y2

x2

+x2 y2
e−y C (1, 1)

(−1, 2).

f(x, y) = 5 +3xy+10 .x2 y2
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For the following exercises, evaluate the integral using the Fundamental Theorem of Line Integrals.

12. Evaluate , where  and  is any path that starts at  and ends

at .

13. [T] Evaluate , where  and  is a straight line from  to .

Answer

 units of work

14. [T] Evaluate  where  and  is any path in a plane from (1, 2) to (3, 2).

15. Evaluate  where  and  has initial point  and terminal point 

Answer

 units of work

For the following exercises, let  and , and let  be the
curve consisting of the circle of radius 2, centered at the origin and oriented counterclockwise, and  be the curve
consisting of a line segment from  to  followed by a line segment from  to 

16. Calculate the line integral of  over .

17. Calculate the line integral of  over .

Answer

 units of work

18. Calculate the line integral of  over .

19. Calculate the line integral of  over .

Answer

 units of work

20. [T] Let . Calculate , where  is a path from  to 

.

(x, y) = (10x+3y) +(3x+20y)F
⇀

î ĵ

f ⋅ d∫
C

∇
⇀

r⇀ f(x, y, z) = cos(πx) +sin(πy) −xyz C (1, 12, 2)

(2, 1, −1)

f ⋅ d∫
C

∇
⇀

r⇀ f(x, y) = xy+ex C (0, 0) (2, 1)

⋅ d = ( +1)∫
C

F
⇀

r⇀ e2

f ⋅ d ,∫
C

∇
⇀

r⇀ f(x, y) = y−xx2 C

f ⋅ d ,∫
C

∇
⇀

r⇀ f(x, y, z) = xy −yzz2 C (1, 2, 3) (3, 5, 2).

⋅ d = 38∫
C

F
⇀

r⇀

(x, y) = 2x +(2y +2y)F
⇀

y2 î x2 ĵ G(x, y) = (y+x) +(y−x)î ĵ C1

C2

(0, 0) (1, 1) (1, 1) (3, 1).

F
⇀

C1

G
⇀

C1

⋅ d = −8π∮
C1

G
⇀

r⇀

F
⇀

C2

G
⇀

C2

⋅ d = 7∮
C2

F
⇀

r⇀

(x, y, z) = +z sin(yz) +y sin(yz)F
⇀

x2 î ĵ k̂ ⋅ d∮
C

F
⇀

r⇀ C A = (0, 0, 1)

B = (3, 1, 2)
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21. [T] Find line integral  of vector field  along curve  parameterized

by 

Answer

 units of work

For exercises 22 - 24, show that the following vector fields are conservative. Then calculate  for the given curve.

22. ;  is the curve consisting of line segments from  to  to 

23. ;  is parameterized by , for 

Answer

 units of work

24. [T] ;  is the curve  for .

25. The mass of Earth is approximately  and that of the Sun is 330,000 times as much. The gravitational constant is
. The distance of Earth from the Sun is about . Compute, approximately, the work

necessary to increase the distance of Earth from the Sun by .

Answer
 erg

26. [T] Let . Evaluate the integral , where 

for 

27. [T] Let  be given by . Use a computer to compute the integral 

, where 

Answer

 units of work

28. [T] Use a computer algebra system to find the mass of a wire that lies along the curve  where 

, if the density is given by .

29. Find the circulation and flux of field  around and across the closed semicircular path that consists
of semicircular arch , followed by line segment 

⋅ dr∮
C

F
⇀

(x, y, z) = 3 z + +( +2yz)F
⇀

x2 î z2 ĵ x3 k̂ C

(t) = ( ) + + t cos(πt), 1 ≤ t ≤ 4.r⇀ ln t

ln 2 î t3/2 ĵ

⋅ d = 150∫
C

F
⇀

r⇀

⋅ d∫
C

F
⇀

r⇀

(x, y) = (x +3 y) +(x+y)F
⇀

y2 x2 î x2 ĵ C (1, 1) (0, 2) (3, 0).

(x, y) = −F
⇀ 2x

+1y2
î

2y( +1)x2

( +1y2 )2
ĵ C x = −1, y = − tt3 t6 0 ≤ t ≤ 1.

⋅ d = −1∫
C

F
⇀

r⇀

(x, y) = [cos(x ) −x sin(x )] −2 y sin(x )F
⇀

y2 y2 y2 î x2 y2 ĵ C ⟨ , ⟩,et et+1 −1 ≤ t ≤ 0

6 × g1027

6.7 × c / ⋅ g10−8 m3 s2 1.5 × cm1012

1 cm

4 ×1031

(x, y, z) = ( siny) +( cosy) +F
⇀

ex î ex ĵ z2 k̂ ⋅ d∫
C

F
⇀

r⇀ (t) = ⟨ , , ⟩,r⇀ t√ t3 e t√

0 ≤ t ≤ 1.

C : [1, 2] → R
2 x = , y = sin( )et−1 π

t

⋅ d = 2x cosy dx− siny dy∫
C

F
⇀

r⇀ ∫
C

x2 (x, y) = (2x cosy) −( siny) .F
⇀

î x2 ĵ

⋅ d = 0.4687∫
C

F
⇀

s⇀

(t) = ( −1) +2t ,r⇀ t2 ĵ k̂

0 ≤ t ≤ 1 d(t) = t
3

2

(x, y) = −y +xF
⇀

î ĵ

(t) = (a cos t) +(a sin t) , 0 ≤ t ≤ πr⇀1 î ĵ (t) = t , −a ≤ t ≤ a.r⇀2 î
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Answer
 and 

30. Compute  where 

31. Complete the proof of the theorem titled THE PATH INDEPENDENCE TEST FOR CONSERVATIVE FIELDS by
showing that 

5.5: Green’s Theorem 
For the following exercises, evaluate the line integrals by applying Green’s theorem.

1. , where  is the path from  to  along the graph of  and from  to 

along the graph of  oriented in the counterclockwise direction

2. , where  is the boundary of the region lying between the graphs of  and 

oriented in the counterclockwise direction

Answer

 units of work

3. , where  is defined by  oriented in the

counterclockwise direction

4. , where  is the boundary of the region lying between the graphs of  and 

 oriented in the counterclockwise direction

Answer

 units of work

5. , where  is the boundary of the region lying between the graphs of  and 

oriented in the counterclockwise direction

6. , where  consists of line segment  from  to , followed by the semicircular arc  from

 back to 

Answer

circulation = πa2 flux = 0

cosx cosy dx−sinx siny dy,∫
C

(t) = ⟨t, ⟩, 0 ≤ t ≤ 1.r⇀ t2

= Q(x, y).fy

2xy dx+(x+y)dy∫
C

C (0, 0) (1, 1) y = x3 (1, 1) (0, 0)

y = x

2xy dx+(x+y)dy∫
C

C y = 0 y = 4 −x2

2xy dx+(x+y)dy =∫
C

32

3

2 arctan( ) dx+ln( + )dy∫
C

y

x
x2 y2 C x = 4 +2 cosθ, y = 4 sinθ

sinx cosy dx+(xy+cosx siny)dy∫
C

C y = x

y = x−−√

sinx cosy dx+(xy+cosx siny)dy =∫
C

1

12

xy dx+(x+y)dy∫
C

C + = 1x2 y2 + = 9x2 y2

(−y dx+x dy)∮
C

C C1 (−1, 0) (1, 0) C2

(1, 0) (1, 0)
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 units of work

For the following exercises, use Green’s theorem.

7. Let  be the curve consisting of line segments from  to  to  and back to . Find the value of 

.

8. Evaluate line integral , where  is the boundary of the region between circles 

 and , and is a positively oriented curve.

Answer

 units of work

9. Find the counterclockwise circulation of field  around and over the boundary of the region enclosed
by curves  and  in the first quadrant and oriented in the counterclockwise direction.

10. Evaluate , where  is the positively oriented circle of radius  centered at the origin.

Answer

 units of work

11. Evaluate , where  includes the two circles of radius  and radius  centered at the origin, both with

positive orientation.

12. Calculate , where  is a circle of radius  centered at the origin and oriented in the

counterclockwise direction.

(−y dx+x dy) = π∮
C

C (0, 0) (1, 1) (0, 1) (0, 0)

xy dx+ dy∫
C

+1y2
− −−−−

√

x dx+( +2 )dy∫
C

e−2x x4 x2y2 C

+ = 1x2 y2 + = 4x2 y2

x dx+( +2 )dy = 0∫
C

e−2x x4 x2y2

(x, y) = xy +F
⇀

î y2 ĵ

y = x2 y = x

dx− dy∮
C

y3 x3y2 C 2

dx− dy = −24π∮
C

y3 x3y2

dx− dy∮
C

y3 x3 C 2 1

− y dx+x dy∮
C

x2 y2 C 2
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Answer

 units of work

13. Calculate integral  along triangle  with vertices  and ,

oriented counterclockwise, using Green’s theorem.

14. Evaluate integral , where  is the curve that follows parabola  from  then

the line from  to , and finally the line from  to .

Answer

 units of work

15. Evaluate line integral , where  is oriented in a counterclockwise path around

the region bounded by , and 

For the following exercises, use Green’s theorem to find the area.

16. Find the area between ellipse  and circle .

Answer

17. Find the area of the region enclosed by parametric equation

 for 

− y dx+x dy = 8π∮
C

x2 y2

2[y+x sin(y)] dx+[ cos(y) −3 ] dy∮
C

x2 y2 C (0, 0), (1, 0) (1, 1)

( + )dx+2xy dy∮
C

x2 y2 C y = x2 (0, 0), (2, 4),

(2, 4) (2, 0) (2, 0) (0, 0)

( + )dx+2xy dy = 0∮
C

x2 y2

(y−sin(y) cos(y))dx+2x (y)dy∮
C

sin2 C

x = −1, x = 2, y = 4 −x2 y = x−2.

+ = 1x2

9

y2

4
+ = 25x2 y2

A = 19π units2

(θ) = (cos(θ) − (θ)) +(sin(θ) −cos(θ) sin(θ))p⇀ cos2 î ĵ 0 ≤ θ ≤ 2π.
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18. Find the area of the region bounded by hypocycloid . The curve is parameterized by 

Answer

19. Find the area of a pentagon with vertices  and .

20. Use Green’s theorem to evaluate , where  is the perimeter of square  oriented

counterclockwise.

Answer

21. Use Green’s theorem to prove the area of a disk with radius  is .

22. Use Green’s theorem to find the area of one loop of a four-leaf rose . (Hint: ).

Answer

23. Use Green’s theorem to find the area under one arch of the cycloid given by the parametric equations: 

24. Use Green’s theorem to find the area of the region enclosed by curve

 for .

Answer

25. [T] Evaluate Green’s theorem using a computer algebra system to evaluate the integral , where  is

the circle given by  and is oriented in the counterclockwise direction.

26. Evaluate , where  is the boundary of the unit square , traversed

counterclockwise.

Answer

27. Evaluate , where  is any simple closed curve with an interior that does not contain point

 traversed counterclockwise.

(t) = (t) + (t)r⇀ cos3 î sin3 ĵ

t ∈ [0, 2π].

A = 3
8π

units2

(0, 4), (4, 1), (3, 0), (−1, −1), (−2, 2)

( + )dx+ dy∫
C+

y2 x3 x4 C+ [0, 1] ×[0, 1]

( + )dx+ dy = 0∫
C+

y2 x3 x4

a A = πa2 units2

r = 3 sin2θ x dy−y dx = dθr2

A = 9π
8

units2

x = t−sin t, y = 1 −cos t, t ≥ 0.

(t) = +( − t) ,r⇀ t2 î t3

3 ĵ − ≤ t ≤3–√ 3–√

A = 8 3√

5
units2

x dx+ dy∫
C

ey ex C

+ = 4x2 y2

( y−2xy+ )ds∫
C

x2 y2 C 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

( y−2xy+ )ds = 3∫
C

x2 y2

∫
C

−(y+2)dx+(x−1)dy

(x−1 +(y+2)2 )2
C

(1, −2)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/83257?pdf


Access for free at OpenStax 5.E.20 https://math.libretexts.org/@go/page/83257

28. Evaluate , where  is any piecewise, smooth simple closed curve enclosing the origin, traversed

counterclockwise.

Answer

For the following exercises, use Green’s theorem to calculate the work done by force  on a particle that is moving
counterclockwise around closed path .

29. 

30. : boundary of a triangle with vertices  and 

Answer

 units of work

31. Evaluate , where  is a unit circle oriented in the counterclockwise direction.

32. A particle starts at point , moves along the -axis to , and then travels along semicircle  to the
starting point. Use Green’s theorem to find the work done on this particle by force field .

Answer
 units of work

33. David and Sandra are skating on a frictionless pond in the wind. David skates on the inside, going along a circle of radius
 in a counterclockwise direction. Sandra skates once around a circle of radius , also in the counterclockwise direction.

Suppose the force of the wind at point  is . Use Green’s theorem to
determine who does more work.

34. Use Green’s theorem to find the work done by force field  when an object moves
once counterclockwise around ellipse 

Answer
 units of work

35. Use Green’s theorem to evaluate line integral , where  is ellipse 

 oriented counterclockwise.

36. Evaluate line integral , where  is the boundary of a triangle with vertices , and ,

with the counterclockwise orientation.

Answer

 units of work

37. Use Green’s theorem to evaluate line integral  if , where  is a triangle with vertices

 and  traversed counterclockwise.

38. Use Green’s theorem to evaluate line integral  where  is a triangle with vertices 

 and  oriented clockwise.

∫
C

x dx+y dy

+x2 y2
C

= 2π∫
C

x dx+y dy

+x2 y2

F
⇀

C

(x, y) = xy +(x+y) , C : + = 4F
⇀

î ĵ x2 y2

(x, y) = ( −3y) +(6x+5 ) , CF
⇀

x3/2 î y√ ĵ (0, 0), (5, 0), (0, 5)

W = 225
2

(2 − )dx+( + )dy∫
C

x3 y3 x3 y3 C

(−2, 0) x (2, 0) y = 4 −x2− −−−−
√

(x, y) = x +( +3x )F
⇀

î x3 y2 ĵ

W = 12π

2 3

(x, y) (x, y) = ( y+10y) +( +2x )F
⇀

x2 î x3 y2 ĵ

(x, y) = (3y−4x) +(4x−y)F
⇀

î ĵ

4 + = 4.x2 y2

W = 2π

sin2y dx+ cos 2y dy∮
C

e2x e2x C

9(x−1 +4(y−3 = 36)2 )2

dx+ dy∮
C

y2 x2 C (0, 0), (1, 1) (1, 0)

dx+ dy =∮
C

y2 x2 1

3

⋅ d∫
C

h
⇀

r⇀ (x, y) = −sinπxh
⇀

ey î ĵ C

(1, 0), (0, 1), (−1, 0),

dx+2xy dy∫
C

1 +x3− −−−−
√ C

(0, 0), (1, 0), (1, 3)
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Answer

 units of work

39. Use Green’s theorem to evaluate line integral  where  is a circle  oriented

counterclockwise.

40. Use Green’s theorem to evaluate line integral  where  is circle 

 oriented in the counterclockwise direction.

Answer

 units of work

41. Use Green’s theorem to evaluate line integral , where  is ellipse  and is

oriented in the counterclockwise direction.

42. Let  be a triangular closed curve from  to  to  and finally back to  Let 

Use Green’s theorem to evaluate 

Answer

 units of work

43. Use Green’s theorem to evaluate line integral , where  is circle  oriented in the clockwise

direction.

44. Use Green’s theorem to evaluate line integral  where  is any smooth simple closed

curve joining the origin to itself oriented in the counterclockwise direction.

Answer

 units of work

45. Use Green’s theorem to evaluate line integral  where  is the positively

oriented circle 

46. Use Green’s theorem to evaluate  where  is a triangle with vertices  and  with

positive orientation.

Answer

dx+2xy dy = −3∫
C

1 +x3− −−−−
√

y dx−x dy∫
C

x2 y2 C + = 4x2 y2

(3y− ) dx+(7x+ ) dy∫
C

esin x +1y4
− −−−−

√ C

+ = 9x2 y2

(3y− ) dx+(7x+ ) dy = 36π∫
C

esin x +1y4
− −−−−

√

(3x−5y)dx+(x−6y)dy∫
C

C + = 1x2

4
y2

C (0, 0) (1, 0) (1, 1) (0, 0). (x, y) = 4y +6 .F
⇀

î x2 ĵ

⋅ d .∮
C

F
⇀

r⇀

⋅ d = 2∮
C

F
⇀

r⇀

y dx−x dy∮
C

C + =x2 y2 a2

(y+x)dx+(x+siny)dy,∮
C

C

(y+x)dx+(x+siny)dy = 0∮
C

(y−ln( + )) dx+(2 arctan ) dy,∮
C

x2 y2 y

x
C

(x−2 +(y−3 = 1.)2 )2

xy dx+ dy,∮
C

x3y3 C (0, 0), (1, 0), (1, 2)
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 units of work

47. Use Green’s theorem to evaluate line integral  where  is ellipse  oriented in

the counterclockwise direction.

48. Let  Find the counterclockwise circulation  where  is a curve

consisting of the line segment joining  and  half circle  the line segment joining  and 
 and half circle 

Answer

 units of work

49. Use Green’s theorem to evaluate line integral  where  is a triangular closed curve that

connects the points  and  counterclockwise.

50. Let  be the boundary of square  traversed counterclockwise. Use Green’s theorem to find 

Answer

 units of work

51. Use Green’s theorem to evaluate line integral  where  and  is a

triangle bounded by  and  oriented counterclockwise.

52. Use Green’s Theorem to evaluate integral  where  and  is a unit circle oriented in

the counterclockwise direction.

Answer

 units of work

53. Use Green’s theorem in a plane to evaluate line integral  where  is a closed curve of a region

bounded by  and  oriented in the counterclockwise direction.

54. Calculate the outward flux of  over a square with corners  where the unit normal is
outward pointing and oriented in the counterclockwise direction.

Answer

55. [T] Let  be circle  oriented in the counterclockwise direction. Evaluate 

 using a computer algebra system.

56. Find the flux of field  across  oriented in the counterclockwise direction.

Answer

xy dx+ dy = 2221∮
C

x3y3

siny dx+x cosy dy,∫
C

C +xy+ = 1x2 y2

(x, y) = (cos( ) −13 ) +13 .F
⇀

x5 y3 î x3 ĵ ⋅ d ,∮
C

F
⇀

r⇀ C

(−2, 0) (−1, 0), y = ,1 −x2− −−−−√ (1, 0)

(2, 0), y = .4 −x2− −−−−√

⋅ d = 15∮
C

F
⇀

r⇀ π4

sin( )dx+2y dy,∫
C

x3 ex
2

C

(0, 0), (2, 2), (0, 2)

C 0 ≤ x ≤ π, 0 ≤ y ≤ π,

sin(x+y)dx+cos(x+y)dy.∫
C

sin(x+y)dx+cos(x+y)dy = 4∫
C

⋅ d ,∫
C

F
⇀

r⇀ (x, y) = ( − ) +( + ) ,F
⇀

y2 x2 î x2 y2 ĵ C

y = 0, x = 3, y = x,

⋅ d ,∫
C

F
⇀

r⇀ (x, y) = (x ) +x ,F
⇀

y2 î ĵ C

⋅ d = π∫
C

F
⇀

r⇀

(xy+ )dx+ dy,∮
C

y2 x2 C

y = x y = x2

(x, y) = −x +2yF
⇀

î ĵ (±1, ±1),

⋅ ds = 4∮
C

F
⇀

N
⇀

C + = 4x2 y2

[(3y− )dx+(7x+ ) dy]∮
C

earctan x +1y4
− −−−−

√

(x, y) = −x +3yF
⇀

î ĵ + = 16x2 y2
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57. Let  and let  be a triangle bounded by  and  oriented in the
counterclockwise direction. Find the outward flux of  through .

58. [T] Let  be unit circle  traversed once counterclockwise. Evaluate 

 by using a computer algebra system.

Answer

 units of work

59. [T] Find the outward flux of vector field  across the boundary of annulus 
 using a computer algebra system.

60. Consider region  bounded by parabolas  and  Let  be the boundary of  oriented counterclockwise.

Use Green’s theorem to evaluate 

Answer

 units of work

5.6: Divergence and Curl 
For the following exercises, determine whether the statement is True or False.

1. If the coordinate functions of  have continuous second partial derivatives, then  equals zero.

2. .

Answer
False

3. All vector fields of the form  are conservative.

4. If , then  is conservative.

Answer
True

5. If  is a constant vector field then .

6. If  is a constant vector field then .

Answer
True

For the following exercises, find the curl of .

7. 

8. 

Answer

⋅ ds = 32π∮
C

F
⇀

N
⇀

= ( − ) +( + ) ,F
⇀

y2 x2 î x2 y2 ĵ C y = 0, x = 3, y = x

F
⇀

C

C + = 1x2 y2

[− +sin(xy) +xy cos(xy)] dx+[ + cos(xy)] dy∫
C

y3 x3 x2

[− +sin(xy) +xy cos(xy)] dx+[ + cos(xy)] dy = 4.7124∫
C

y3 x3 x2

(x, y) = x + yF
⇀

y2 î x2 ĵ

R = {(x, y) : 1 ≤ + ≤ 4} = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}x2 y2

R y = x2 x = .y2 C R

(y+ ) dx+(2x+cos( )) dy.∮
C

e x√ y2

(y+ ) dx+(2x+cos( )) dy =∮
C

e x√ y2 1

3

: →F
⇀

R
3

R
3 curl (div )F

⇀

⋅ (x +y +z ) = 1∇
⇀

î ĵ k̂

(x, y, z) = f(x) +g(y) +h(z)F
⇀

î ĵ k̂

curl =F
⇀

0
⇀

F
⇀

F
⇀

div = 0F
⇀

F
⇀

curl =F
⇀

0
⇀

F
⇀

(x, y, z) = x +(2 y+z) +F
⇀

y2z4 î x2 ĵ y3z2 k̂

(x, y, z) = z + x +(y+2z)F
⇀

x2 î y2 ĵ k̂

curl = + +F
⇀

î x2 ĵ y2 k̂
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9. 

10. 

Answer

11. 

12. 

Answer

13. 

14. 

Answer

15. 

16.  for constants .

Answer

For the following exercises, find the divergence of .

17. 

18. 

Answer

19. 

20. 

Answer

21. 

22. 

Answer

23. 

24.  for constants .

Answer

(x, y, z) = 3xy + sinz +xF
⇀

z2 î y2 ĵ e2z k̂

(x, y, z) = yz +x z +xyF
⇀

x2 î y2 ĵ z2 k̂

curl = (x −x ) +( y−y ) +( z− z)F
⇀

z2 y2 î x2 z2 ĵ y2 x2 k̂

(x, y, z) = (x cosy) +xF
⇀

î y2 ĵ

(x, y, z) = (x−y) +(y−z) +(z−x)F
⇀

î ĵ k̂

curl  = + +F
⇀

î ĵ k̂

(x, y, z) = xyz + +F
⇀

î x2y2z2 ĵ y2z3 k̂

(x, y, z) = xy +yz +xzF
⇀

î ĵ k̂

curl  = −y −z −xF
⇀

î ĵ k̂

(x, y, z) = + +F
⇀

x2 î y2 ĵ z2 k̂

(x, y, z) = ax +by +cF
⇀

î ĵ k̂ a, b, c

curl  =F
⇀

0
⇀

F
⇀

(x, y, z) = z + x +(y+2z)F
⇀

x2 î y2 ĵ k̂

(x, y, z) = 3xy + sinz +xF
⇀

z2 î y2 ĵ e2 k̂

div = 3y +2y sinz+2xF
⇀

z2 e2z

(x, y) = (sinx) +(cosy)F
⇀

î ĵ

(x, y, z) = + +F
⇀

x2 î y2 ĵ z2 k̂

div = 2(x+y+z)F
⇀

(x, y, z) = (x−y) +(y−z) +(z−x)F
⇀

î ĵ k̂

(x, y) = +F
⇀ x

+x2 y2− −−−−−
√

î
y

+x2 y2− −−−−−
√

ĵ

div =F
⇀ 1

+x2 y2− −−−−−
√

(x, y) = x −yF
⇀

î ĵ

(x, y, z) = ax +by +cF
⇀

î ĵ k̂ a, b, c

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/83257?pdf


Access for free at OpenStax 5.E.25 https://math.libretexts.org/@go/page/83257

25. 

26. 

Answer

For exercises 27 & 28, determine whether each of the given scalar functions is harmonic.

27. 

28. 

Answer
Harmonic

29. If  and , find .

30. If  and , find .

Answer

31. Find , given that , where .

32. Find the divergence of  for vector field .

Answer

33. Find the divergence of  for vector field .

For exercises 34 - 36, use  and .

34. Find the 

Answer

35. Find the .

36. Find the .

Answer

37. Let , where  is defined on . Find .

For the following exercises, use a computer algebra system to find the curl of the given vector fields.

38. [T] 

Answer

div = a+bF
⇀

(x, y, z) = xyz + +F
⇀

î x2y2z2 ĵ y2z3 k̂

(x, y, z) = xy +yz +xzF
⇀

î ĵ k̂

div = x+y+zF
⇀

u(x, y, z) = (cosy−siny)e−x

w(x, y, z) = ( + +x2 y2 z2)−1/2

(x, y, z) = 2 +2xj+3ykF
⇀

î (x, y, z) = x −y +zG
⇀

î ĵ k̂ curl ( × )F
⇀

G
⇀

(x, y, z) = 2 +2xj+3ykF
⇀

î (x, y, z) = x −y +zG
⇀

î ĵ k̂ div ( × )F
⇀

G
⇀

div ( × ) = 2z+3xF
⇀

G
⇀

div F
⇀

= fF
⇀

∇
⇀

f(x, y, z) = xy3z2

F
⇀

(x, y, z) = ( + )(x+y) +( + )(y+z) +( + )(z+x)F
⇀

y2 z2 î z2 x2 ĵ x2 y2 k̂

div = 2F
⇀

r2

F
⇀

(x, y, z) = (y, z) + (x, z) + (x, y)F
⇀

f1 î f2 ĵ f3 k̂

r = | |r⇀ (x,y,z) = ⟨x,y,z⟩r⇀

curl r⇀

curl =r⇀ 0
⇀

curl
r⇀

r

curl
r⇀

r3

curl =
r⇀

r3
0
⇀

(x, y) =F
⇀ −y +xî ĵ

+x2 y2
F
⇀

{(x, y) ∈ R|(x, y) ≠ (0, 0)} curl F
⇀

(x, y, z) = arctan( ) +ln +F
⇀ x

y
î +x2 y2− −−−−−

√ ĵ k̂
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39. [T] 

For the following exercises, find the divergence of  at the given point.

40.  at 

Answer

41.  at 

42.  at 

Answer

43.  at 

44.  at 

Answer

For exercises 45- 49, find the curl of  at the given point.

45.  at 

46.  at 

Answer

47.  at 

48.  at 

Answer

49.  at 

50. Let . For what value of  is  conservative?

Answer

51. Given vector field  on domain , is 

conservative?

52. Given vector field  on domain , is  conservative?

Answer

 is conservative.

curl  =F
⇀ 2x

+x2 y2
k̂

(x, y, z) = sin(x−y) +sin(y−z) +sin(z−x)F
⇀

î ĵ k̂

F
⇀

(x, y, z) = + +F
⇀

î ĵ k̂ (2, −1, 3)

div = 0F
⇀

(x, y, z) = xyz +y +zF
⇀

î ĵ k̂ (1, 2, 3)

(x, y, z) = + +F
⇀

e−xy î exz ĵ eyz k̂ (3, 2, 0)

div = 2 −2F
⇀

e−6

(x, y, z) = xyz +y +zF
⇀

î ĵ k̂ (1, 2, 1)

(x, y, z) = siny − cosyF
⇀

ex î ex ĵ (0, 0, 3)

div = 0F
⇀

F
⇀

(x, y, z) = + +F
⇀

î ĵ k̂ (2, −1, 3)

(x, y, z) = xyz +y +zF
⇀

î ĵ k̂ (1, 2, 3)

curl  = −3F
⇀

ĵ k̂

(x, y, z) = + +F
⇀

e−xy î exz ĵ eyz k̂ (3, 2, 0)

(x, y, z) = xyz +y +zF
⇀

î ĵ k̂ (1, 2, 1)

curl  = 2 −F
⇀

ĵ k̂

(x, y, z) = siny − cosyF
⇀

ex î ex ĵ (0, 0, 3)

(x, y, z) = (3 y+az) + +(3x+3 )F
⇀

x2 î x3 ĵ z2 k̂ a F
⇀

a = 3

(x, y) = ⟨−y, x⟩F
⇀ 1

+x2 y2 D = = {(x, y) ∈ |(x, y) ≠ (0, 0)}
R

2

{(0, 0)}
R

2 F
⇀

(x, y) = ⟨x, y⟩F
⇀ 1

+x2 y2
D =

R
2

{(0, 0)}
F
⇀

F
⇀
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53. Find the work done by force field  in moving an object from  to . Is the force
field conservative?

54. Compute divergence .

Answer

55. Compute .

For the following exercises, consider a rigid body that is rotating about the -axis counterclockwise with constant angular
velocity . If  is a point in the body located at , the velocity at  is given by vector field 

.

56. Express  in terms of  and  vectors.

Answer

57. Find .

58. Find 

Answer

In the following exercises, suppose that  and .

59. Does  necessarily have zero divergence?

60. Does  necessarily have zero divergence?

Answer

 does not have zero divergence.

In the following exercises, suppose a solid object in  has a temperature distribution given by . The heat flow
vector field in the object is , where  is a property of the material. The heat flow vector points in the
direction opposite to that of the gradient, which is the direction of greatest temperature decrease. The divergence of the heat

flow vector is .

61. Compute the heat flow vector field.

62. Compute the divergence.

Answer

(x, y) = −xF
⇀

e−y î e−y ĵ P (0, 1) Q(2, 0)

(x, y, z) = (sinhx) +(coshy) −xyzF
⇀

î ĵ k̂

div = coshx+sinhy−xyF
⇀

curl  = (sinhx) +(coshy) −xyzF
⇀

î ĵ k̂

x

= ⟨a,b,c⟩ω⇀ P = x +y +zr⇀ î ĵ k̂ P

= ×F
⇀

ω⇀ r⇀

F
⇀

, ,î ĵ k̂

= (bz−cy) +(cx−az) +(ay−bx)F
⇀

î ĵ k̂

divF

curlF

curl  = 2F
⇀

ω⇀

⋅ = 0∇
⇀

F
⇀

⋅ = 0∇
⇀

G
⇀

+F
⇀

G
⇀

×F
⇀

G
⇀

×F
⇀

G
⇀

R
3 T(x,y,z)

= −k TF
⇀

∇
⇀

k > 0

⋅ = −k ⋅ T = −k T∇
⇀

F
⇀

∇
⇀

∇
⇀

∇
⇀2

⋅ = −200k[1 +2( + + )]∇
⇀

F
⇀

x2 y2 z2 e− + +x2 y2 z2
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63. [T] Consider rotational velocity field . If a paddlewheel is placed in plane  with its
axis normal to this plane, using a computer algebra system, calculate how fast the paddlewheel spins in revolutions per unit
time.

5.7: Surface Integrals 
In exercises 1 - 4, determine whether the statements are true or false.

1. If surface  is given by , then 

Answer
True

2. If surface  is given by , then 

3. Surface   for   is the same surface   for  
.

Answer
True

4. Given the standard parameterization of a sphere, normal vectors  are outward normal vectors.

 

In exercises 5 - 10, find parametric descriptions for the following surfaces.

5. Plane 

Answer
 for  and .

6. Paraboloid , for .

7. Plane 

Answer

 for  and .

= ⟨0, 10z, −10y⟩v⇀ x+y+z = 1

S {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 10} f(x, y, z)dS = f(x, y, 10)dx dy.∬
S

∫
1

0
∫

1

0

S {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = x} f(x, y, z)dS = f(x, y, x)dx dy.∬
S

∫
1

0
∫

1

0

= ⟨v cosu, v sinu, ⟩,r⇀ v2 0 ≤ u ≤ π, 0 ≤ v≤ 2 = ⟨ cos 2u, sin2u, v⟩,r⇀ v√ v√

0 ≤ u ≤ , 0 ≤ v≤ 4
π

2

×tu tv

3x−2y+z = 2

(u, v) = ⟨u, v, 2 −3u+2v⟩r⇀ −∞ ≤ u < ∞ −∞ ≤ v< ∞

z = +x2 y2 0 ≤ z ≤ 9

2x−4y+3z = 16

(u, v) = ⟨u, v, (16 −2u+4v)⟩r⇀
1

3
|u| < ∞ |v| < ∞
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8. The frustum of cone , for 

9. The portion of cylinder  in the first octant, for 

Answer

 for 

10. A cone with base radius  and height  where  and  are positive constants.

 

For exercises 11 - 12, use a computer algebra system to approximate the area of the following surfaces using a parametric
description of the surface.

11. [T] Half cylinder 

Answer

12. [T] Plane  above square 

 

In exercises 13 - 15, let  be the hemisphere , with , and evaluate each surface integral, in the
counterclockwise direction.

13. 

Answer

14. 

15. 

Answer

= +z2 x2 y2 2 ≤ z ≤ 8

+ = 9x2 y2 0 ≤ z ≤ 3

(u, v) = ⟨3 cosu, 3 sinu, v⟩r⇀ 0 ≤ u ≤ , 0 ≤ v≤ 3
π

2

r h, r h

{(r, θ, z) : r = 4, 0 ≤ θ ≤ π, 0 ≤ z ≤ 7}

A = 87.9646

z = 10 −z−y |x| ≤ 2, |y| ≤ 2

S + + = 4x2 y2 z2 z≥ 0

z dS∬
S

z dS = 8π∬
S

(x−2y)dS∬
S

( + )dS∬
S

x2 y2

( + )dS = π∬
S

x2 y2 64

3
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In exercises 16 - 18, evaluate  for vector field  where  is an outward normal vector to surface 

16. , and  is that part of plane  that lies above unit square 
.

17. , and  is hemisphere .

Answer

18. , and  is the portion of plane  that lies inside cylinder .

 

In exercises 19 - 20, approximate the mass of the homogeneous lamina that has the shape of given surface  Round to four
decimal places.

19. [T]  is surface , with 

Answer

20. [T]  is surface , with .

21. [T]  is surface , with .

Answer

 

22. Evaluate  where  is the surface of cube , and  in a

counterclockwise direction.

23. Evaluate surface integral  where  and  is the portion of plane  that

lies over unit square . Graph surface S.

Answer

∫ ⋅ dS∫
S

F
⇀

N
⇀

F
⇀

N
⇀

S.

(x, y, z) = x +2y +3zF
⇀

î ĵ k̂ S 15x−12y+3z = 6
0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(x, y, z) = x +y +zF
⇀

î ĵ k̂ S z = 1 − −x2 y2− −−−−−−−−
√

⋅ dS = 2π∬
S

F
⇀

N
⇀

(x, y, z) = + +F
⇀

x2 î y2 ĵ z2 k̂ S z = y+1 + = 1x2 y2

S.

S z = 4 −x−2y z ≥ 0, x ≥ 0, y ≥ 0; ξ = x.

m ≈ 13.0639

S z = +x2 y2 z ≤ 1; ξ = z

S + + = 5x2 y2 x2 z ≥ 1; ξ = θ2

m ≈ 228.5313

( z + +xz ) ⋅ dS,∬
S

y2 î y3 ĵ k̂ S −1 ≤ x ≤ 1, −1 ≤ y ≤ 1 0 ≤ z ≤ 2

gdS,∬
S

g(x, y, z) = xz+2 −3xyx2 S 2x−3y+z = 6

R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
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24. Evaluate  where  is the surface defined parametrically by 

 for , and .

25. [T] Evaluate  where  is the surface defined parametrically by  for 

.

Answer

26. [T] Evaluate where  is the surface defined by  for 
.

27. Evaluate  where  is the surface bounded above hemisphere , and below by plane .

Graph surface S.

Answer

gdS = 3∬
S

14−−√

(x+y+z)dS,∬
S

S

(u, v) = (2u+v) +(u−2v) +(u+3v)R
⇀

î ĵ k̂ 0 ≤ u ≤ 1 0 ≤ v≤ 2

(x− +z)dS,∬
S

y2 S (u, v) = +v +uR
⇀

u2 î ĵ k̂

0 ≤ u ≤ 1, 0 ≤ v≤ 1

( +y−z)dS ≈ 0.9617∬
S

x2

S (u, v) = u − +v , 0 ≤ u ≤ 2, 0 ≤ v≤ 1R
⇀

î u2 ĵ k̂

0 ≤ u ≤ 1, 0 ≤ v≤ 2

( + )dS,∬
S

x2 y2 S z = 1 − −x2 y2− −−−−−−−−
√ z = 0
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28. Evaluate  where  is the portion of plane that lies inside cylinder .

29. Evaluate  where  is the portion of cone  that lies between planes  and . Graph surface S.

Answer

30. [T] Evaluate  where  is the portion of cylinder  that lies in the first octant between planes ,

and .

31. [T] Evaluate  where  is the part of the graph of  in the first octant between the -plane and

plane .

( + )dS =∬
S

x2 y2 4π

3

( + + )dS,∬
S

x2 y2 z2 S + = 1x2 y2

z dS,∬
S

x2 S = +z2 x2 y2 z = 1 z = 4

div = a+bF
⇀

zdS =∬
S

x2 1023 π2–√

5

dS,∬
S

xz

y
S x = y2 z = 0, z = 5

y = 4

(z+y)dS,∬
S

S z = 1 −x2− −−−−√ xy

y = 3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://openstax.org/
https://math.libretexts.org/@go/page/83257?pdf


Access for free at OpenStax 5.E.33 https://math.libretexts.org/@go/page/83257

Answer

32. Evaluate  if  is the part of plane  that lies over the triangular region in the -plane with vertices (0, 0,

0), (1, 0, 0), and (0, 2, 0).

33. Find the mass of a lamina of density  in the shape of hemisphere .

Answer

34. Compute  where  and  is an outward normal vector  where  is the union

of two squares  :  and .

35. Compute  where  and  is an outward normal vector  where  is the

triangular region cut off from plane  by the positive coordinate axes.

Answer

(z+y)dS ≈ 10.1∬
S

xyz dS∬
S

S z = x+y xy

ξ(x, y, z) = z z = ( − −a2 x2 y2)1/2

m = πa3

∫ ⋅ dS,∫
S

F
⇀

N
⇀

(x, y, z) = x −5y +4zF
⇀

î ĵ k̂ N
⇀

S, S

S1 x = 0, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 : x = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1S2

∫ ⋅ dS,∫
S

F
⇀

N
⇀

(x, y, z) = xy +z +(x+y)F
⇀

î ĵ k̂ N
⇀

S, S

x+y+z = 1
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36. Compute  where  and  is an outward normal vector  where 

is the surface of sphere .

37. Compute  where  and  is an outward normal vector  where  is the

surface of the five faces of the unit cube  missing .

Answer

 

For exercises 38 - 39, express the surface integral as an iterated double integral by using a projection on  on the -plane.

38.   is the first-octant portion of plane .

39.   is the portion of the graph of  bounded by the coordinate planes and plane .

Answer

 

For exercises 40 - 41, express the surface integral as an iterated double integral by using a projection on  on the -plane.

40.   is the first-octant portion of plane .

41.  is the portion of the graph of  bounded by the coordinate planes and plane .

Answer

 

42. Evaluate surface integral  where  is the first-octant part of plane , where  is a positive constant.

43. Evaluate surface integral  where  is hemisphere 

Answer

44. Evaluate surface integral  where  is surface .

45. Evaluate surface integral  where  is the part of plane  that lies above rectangle  and 

.

⋅ dS =∬
S

F
⇀

N
⇀ 13

24

∫ ⋅ dS,∫
S

F
⇀

N
⇀

(x, y, z) = 2yz +( xz) +F
⇀

î tan−1 ĵ exy k̂ N
⇀

S, S

+ + = 1x2 y2 z2

∫ ⋅ dS,∫
S

F
⇀

N
⇀

(x, y, z) = xyz +xyz +xyzF
⇀

î ĵ k̂ N
⇀

S, S

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 z = 0

⋅ dS =∬
S

F
⇀

N
⇀ 3

4

S yz

x dS;∬
S

y2z3 S 2x+3y+4z = 12

( −2y+z)dS;∬
S

x2 S 4x+y = 8 z = 6

(4 −3y+ +z)( ) dz dy∫
8

0
∫

6

0

1

16
y2 1

4
17
−−

√

S xz

x dS;∬
S

y2z3 S 2x+3y+4z = 12

( −2y+z)dS;∬
S

x2 4x+y = 8 z = 6

[ −2(8 −4x) +z] dz dx∫
2

0
∫

6

0
x2 17−−√

yz dS,∬
S

S x+y+z = λ λ

( z+ z)dS,∬
S

x2 y2 S + + = , z ≥ 0.x2 y2 z2 a2

( z+ z)dS =∬
S

x2 y2 πa5

2

z dA,∬
S

S z = , 0 ≤ z ≤ 2+x2 y2− −−−−−√

yz dS,∬
S

x2 S z = 1 +2x+3y 0 ≤ x ≤ 3

0 ≤ y ≤ 2
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Answer

46. Evaluate surface integral  where  is plane  that lies in the first octant.

47. Evaluate surface integral  where  is the part of plane  that lies inside cylinder .

Answer

 

For exercises 48 - 50, use geometric reasoning to evaluate the given surface integrals.

48.  where  is surface 

49.  where  is surface , oriented with unit normal vectors pointing outward

Answer

50.  where  is disc  on plane  oriented with unit normal vectors pointing upward

 

51. A lamina has the shape of a portion of sphere  that lies within cone . Let  be the spherical
shell centered at the origin with radius a, and let  be the right circular cone with a vertex at the origin and an axis of symmetry
that coincides with the -axis. Determine the mass of the lamina if .

Answer

52. A lamina has the shape of a portion of sphere  that lies within cone . Let  be the spherical
shell centered at the origin with radius a, and let  be the right circular cone with a vertex at the origin and an axis of symmetry

yz dS = 171∬
S

x2 14−−√

yz dS,∬
S

S x+y+z = 1

yz dS,∬
S

S z = y+3 + = 1x2 y2

yz dS =∬
S

π2
–√

4

dS,∬
S

+ +x2 y2 z2
− −−−−−−−−−

√ S + + = 4, z ≥ 0x2 y2 z2

(x +y ) ⋅ dS,∬
S

î ĵ S + = 4, 1 ≤ z ≤ 3x2 y2

(x +y ) ⋅ dS = 16π∬
S

î ĵ

(z ) ⋅ dS,∬
S

k̂ S + ≤ 9x2 y2 z = 4

+ + =x2 y2 z2 a2 z = +x2 y2− −−−−−
√ S

C

z δ(x, y, z) = zx2y2

m =
πa7

192

+ + =x2 y2 z2 a2 z = +x2 y2− −−−−−
√ S

C
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that coincides with the z-axis. Suppose the vertex angle of the cone is , with . Determine the mass of that portion of

the shape enclosed in the intersection of  and  Assume 

53. A paper cup has the shape of an inverted right circular cone of height 6 in. and radius of top 3 in. If the cup is full of water
weighing , find the magnitude of the total force exerted by the water on the inside surface of the cup.

Answer

 

For exercises 54 - 55, the heat flow vector field for conducting objects i , where  is the temperature
in the object and  is a constant that depends on the material. Find the outward flux of  across the following surfaces

 for the given temperature distributions and assume .

54. ;  consists of the faces of cube .

55. ;  is sphere .

Answer

 

For exercises 56 - 57, consider the radial fields , where  is a real number. Let  consist of

spheres  and  centered at the origin with radii . The total outward flux across  consists of the outward flux
across the outer sphere  less the flux into  across inner sphere 

ϕ0 0 ≤ <ϕ0
π

2
S C. δ(x, y, z) = z.x2y2

62.5 lb/ft3

F ≈ 4.57 lb

= −k TF
⇀

∇
⇀

T(x,y,z)

k > 0 F
⇀

S k = 1

T (x, y, z) = 100e−x−y S |x| ≤ 1, |y| ≤ 1, |z| ≤ 1

T (x, y, z) = −ln( + + )x2 y2 z2 S + + =x2 y2 z2 a2

8πa

= =F
⇀ ⟨x,y,z⟩

( + +x2 y2 z2)

p

2

r

|r|p
p S

A B 0 < a< b S

B S A.
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56. Find the total flux across  with .

57. Show that for  the flux across  is independent of  and 

Answer
The net flux is zero.

5.8: Stokes’ Theorem 

In exercises 1 - 6, without using Stokes’ theorem, calculate directly both the flux of  over the given surface and
the circulation integral around its boundary, assuming all are oriented clockwise.

1. ;  is the first-octant portion of plane .

2. ;  is hemisphere .

Answer

3. ;  is hemisphere .

4. ;  is upper hemisphere .

Answer

5. ;  is a triangular region with vertices  and 

6. ;  is a portion of paraboloid  and is above the -plane.

Answer

 

In exercises 7 - 9, use Stokes’ theorem to evaluate  for the vector fields and surface.

7.  and  is the surface of the cube , except for the face where 
and using the outward unit normal vector.

S p = 0

p = 3 S a b.

curl ⋅F
⇀

N
⇀

(x, y, z) = + +F
⇀

y2 î z2 ĵ x2 k̂ S x+y+z = 1

(x, y, z) = z +x +yF
⇀

î ĵ k̂ S z = ( − −a2 x2 y2)1/2

(curl ⋅ )dS = π∬
S

F
⇀

N
⇀

a2

(x, y, z) = +2x +5F
⇀

y2 î ĵ k̂ S z = (4 − −x2 y2)1/2

(x, y, z) = z +2x +3yF
⇀

î ĵ k̂ S z = 9 − −x2 y2− −−−−−−−−
√

(curl ⋅ )dS = 18π∬
S

F
⇀

N
⇀

(x, y, z) = (x+2z) +(y−x) +(z−y)F
⇀

î ĵ k̂ S (3, 0, 0), (0, 3/2, 0), (0, 0, 3).

(x, y, z) = 2y +6z +3xF
⇀

î ĵ k̂ S z = 4 − −x2 y2 xy

(curl ⋅ )dS = −8π∬
S

F
⇀

N
⇀

(curl ⋅ )dS∬
S

F
⇀

N
⇀

(x, y, z) = xy −zF
⇀

î ĵ S 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 z = 0
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8. ; and  is the intersection of paraboloid  and plane , and using the outward
normal vector.

Answer

9. ; and  is the intersection of sphere  with plane , and using the outward
normal vector.

 

10. Use Stokes’ theorem to evaluate  where  is the curve given by 

, traversed in the direction of increasing 

Answer

11. [T] Use a computer algebraic system (CAS) and Stokes’ theorem to approximate line integral  where 

 is the intersection of plane  and surface , traversed counterclockwise viewed from the
origin.

12. [T] Use a CAS and Stokes’ theorem to approximate line integral  where  is the intersection of

the -plane and hemisphere , traversed counterclockwise viewed from the top—that is, from the positive -
axis toward the -plane.

Answer

13. [T] Use a CAS and Stokes’ theorem to approximate line integral  where  is a

triangle with vertices , and  oriented counterclockwise.

14. Use Stokes’ theorem to evaluate  where , and  is half of sphere 

, oriented out toward the positive -axis.

(x, y, z) = xy + +F
⇀

î x2 ĵ z2 k̂ C z = +x2 y2 z = y

(curl ⋅ )dS = 0∬
S

F
⇀

N
⇀

(x, y, z) = 4y +z +2yF
⇀

î ĵ k̂ C + + = 4x2 y2 z2 z = 0

[2x zdx+2 yz dy+( −2z)dz],∫
C

y2 x2 x2y2 C

x = cos t, y = sin t, 0 ≤ t ≤ 2π t.

⋅ dS = 0∫
C

F
⇀

(y dx+z dy+x dz),∫
C

C x+y = 2 + + = 2(x+y)x2 y2 z2

(3y dx+2z dy−5x dz),∫
C

C

xy z = 1 − −x2 y2− −−−−−−−−
√ z

xy

⋅ dS = −9.4248∫
C

F
⇀

[(1 +y) z dx+(1 +z)x dy+(1 +x)y dz],∫
C

C

(1, 0, 0), (0, 1, 0) (0, 0, 1)

curl ⋅ dS,∬
S

F
⇀

(x, y, z) = cos z + z +xyF
⇀

exy î x2 ĵ k̂ S

x = 1 − −y2 z2− −−−−−−−−
√ x
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Answer

15. [T] Use a CAS and Stokes’ theorem to evaluate  where  and  is the

curve of the intersection of plane  and cylinder , oriented clockwise when viewed from above.

16. [T] Use a CAS and Stokes’ theorem to evaluate  where 

 and  consists of the top and the four sides but not the

bottom of the cube with vertices , oriented outward.

Answer

17. [T] Use a CAS and Stokes’ theorem to evaluate  where  and  is the top

part of  above plane  and  is oriented upward.

18. Use Stokes’ theorem to evaluate  where  and  is a triangle with vertices 

 and  with counterclockwise orientation.

Answer

19. Use Stokes’ theorem to evaluate line integral  where  is a triangle with vertices 

and  traversed in the given order.

20. Use Stokes’ theorem to evaluate  where  is the curve of intersection of plane  and

ellipsoid , oriented clockwise from the origin.

Answer

⋅ dS = 0∬
S

F
⇀

(curl ⋅ )dS,∬
S

F
⇀

N
⇀

(x, y, z) = y +x +F
⇀

x2 î y2 ĵ z3 k̂ C

3x+2y+z = 6 + = 4x2 y2

curl ⋅ dS,∬
S

F
⇀

(x, y, z) =(sin(y+z) −y − ) +x cos(y+z) +cos(2y)F
⇀

x2 y3

3
î ĵ k̂ S

(±1, ±1, ±1)

curl ⋅ dS = 2.6667∬
S

F
⇀

curl ⋅ dS,∬
S

F
⇀

(x, y, z) = +3xy +F
⇀

z2 î ĵ x3y3 k̂ S

z = 5 − −x2 y2 z = 1 S

(curl ⋅ )dS,∬
S

F
⇀

N
⇀

(x, y, z) = + +xF
⇀

z2 î y2 ĵ k̂ S

(1, 0, 0), (0, 1, 0) (0, 0, 1)

(curl ⋅ )dS = −∬
S

F
⇀

N
⇀ 1

6

(z dx+x dy+y dz),∫
C

C (3, 0, 0), (0, 0, 2),

(0, 6, 0)

( dx+z dy+x dz) ,∫
C

1

2
y2 C x+z = 1

+2 + = 1x2 y2 z2
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21. Use Stokes’ theorem to evaluate  where  and  is the part of surface 

 with , oriented counterclockwise.

22. Use Stokes’ theorem for vector field  where  is surface ,  is
boundary circle , and  is oriented in the positive -direction.

Answer

23. Use Stokes’ theorem for vector field , where  is that part of the surface of plane 

 contained within triangle  with vertices  and  traversed counterclockwise as viewed
from above.

24. A certain closed path  in plane  is known to project onto unit circle  in the -plane. Let  be a

constant and let . Use Stokes’ theorem to evaluate 

Answer

25. Use Stokes’ theorem and let  be the boundary of surface  with  and  oriented with upward
facing normal. Define  and evaluate .

26. Let  be hemisphere  with , oriented upward. Let  be a

vector field. Use Stokes’ theorem to evaluate 

Answer

27. Let  and let  be the graph of function  with  oriented so

that the normal vector  has a positive y component. Use Stokes’ theorem to compute integral 

28. Use Stokes’ theorem to evaluate  where  and  is a triangle with vertices 

 and  oriented counterclockwise when viewed from above.

Answer

29. Use the surface integral in Stokes’ theorem to calculate the circulation of field   around 
which is the intersection of cylinder  and hemisphere , oriented counterclockwise when
viewed from above.

( dx+z dy+x dz) = −∫
C

1

2
y2 π

4

(curl ⋅ )dS,∬
S

F
⇀

N
⇀

(x, y, z) = x + +zF
⇀

î y2 ĵ exy k̂ S

z = 1 − −2x2 y2 z ≥ 0

(x, y, z) = z +3x +2zF
⇀

î ĵ k̂ S z = 1 − −2 , z ≥ 0x2 y2 C

+ = 1x2 y2 S z

(curl ⋅ )dS = −3π∬
S

F
⇀

N
⇀

(x, y, z) = − −2xy +yzF
⇀ 3

2
y2 î ĵ k̂ S

x+y+z = 1 C (1, 0, 0), (0, 1, 0), (0, 0, 1),

C 2x+2y+z = 1 + = 1x2 y2 xy C

(x, y, z) = x +y +zR
⇀

î ĵ k̂ (c × ) ⋅ dS.∫
C

k̂ R
⇀

(c × ) ⋅ dS = 2πc∫
C

k̂ R
⇀

C z = +x2 y2 0 ≤ x ≤ 2 0 ≤ y ≤ 1

(x, y, z) = ( sin( ) +xz) +(x−yz) +cos( )F
⇀

x3 î ĵ z4 k̂ ⋅ dS∫
C

F
⇀

S + + = 4x2 y2 z2 z ≥ 0 (x, y, z) = + +F
⇀

x2eyz î y2exz ĵ z2exy k̂

curl ⋅ dS.∬
S

F
⇀

curl ⋅ dS = 0∬
S

F
⇀

(x, y, z) = xy +( +y) +(x+y)F
⇀

î ez
2

ĵ k̂ S y = + −1
x2

9

z2

9
z ≤ 0

S curl ⋅ dS.∬
S

F
⇀

∮ ⋅ dS,F
⇀

(x, y, z) = y +z +xF
⇀

î ĵ k̂ C

(0, 0, 0), (2, 0, 0) 0, −2, 2)

∮ ⋅ dS = −4F
⇀

,F
⇀

(x, y, z) = + +zF
⇀

x2y3 î ĵ k̂ C,
+ = 4x2 y2 + + = 16, z ≥ 0x2 y2 z2
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30. Use Stokes’ theorem to compute  where  and  is a part of plane 

inside cylinder  and oriented counterclockwise.

Answer

31. Use Stokes’ theorem to evaluate  where  and  is the part of plane 

 in the positive octant and oriented counterclockwise .

32. Let  and let  be the intersection of plane  and cylinder , which is
oriented counterclockwise when viewed from the top. Compute the line integral of  over  using Stokes’ theorem.

Answer

33. [T] Use a CAS and let . Use Stokes’ theorem to compute the surface integral of curl 
 over surface  with inward orientation consisting of cube  with the right side missing.

curl ⋅ dS.∬
S

F
⇀

(x, y, z) = +x +xF
⇀

î y2 ĵ y2 k̂ S y+z = 2

+ = 1x2 y2

curl ⋅ dS = 0∬
S

F
⇀

curl ⋅ dS,∬
S

F
⇀

(x, y, z) = − +x +F
⇀

y2 î ĵ z2 k̂ S

x+y+z = 1 x ≥ 0, y ≥ 0, z ≥ 0

(x, y, z) = xy +2z −2yF
⇀

î ĵ k̂ C x+z = 5 + = 9x2 y2

F
⇀

C

curl ⋅ dS = −36π∬
S

F
⇀

(x, y, z) = x +(yz−x) +F
⇀

y2 î ĵ eyxz k̂

F
⇀

S [0, 1] ×[0, 1] ×[0, 1]
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34. Let  be ellipsoid  oriented counterclockwise and let  be a vector field with component functions that

have continuous partial derivatives.

Answer

35. Let  be the part of paraboloid  with . Verify Stokes’ theorem for vector field 
.

36. [T] Use a CAS and Stokes’ theorem to evaluate  if ,

where  is the curve given by .

Answer

37. [T] Use a CAS and Stokes’ theorem to evaluate  with  as a portion of paraboloid 
 cut off by the -plane oriented counterclockwise.

38. [T] Use a CAS to evaluate  where  and  is the surface parametrically by 

.

Answer

39. Let  be paraboloid , for , where  is a real number. Let .

For what value(s) of  (if any) does  have its maximum value?

 

For application exercises 40 - 41, the goal is to evaluate  where  and  is

the upper half of ellipsoid , where .

40. Evaluate a surface integral over a more convenient surface to find the value of 

Answer

41. Evaluate  using a line integral.

42. Take paraboloid , for , and slice it with plane . Let  be the surface that remains for ,
including the planar surface in the -plane. Let  be the semicircle and line segment that bounded the cap of  in plane 

with counterclockwise orientation. Let . Evaluate 

S + + = 1
x2

4

y2

9
z2 F

⇀

curl ⋅ = 0∬
S

F
⇀

N
⇀

S z = 9 − −x2 y2 z ≥ 0

(x, y, z) = 3z +4x +2yF
⇀

î ĵ k̂

∮ ⋅ dS,F
⇀

(x, y, z) = (3z−sinx) +( + ) +( −cosz)F
⇀

î x2 ey ĵ y3 k̂

C x = cos t, y = sin t, z = 1; 0 ≤ t ≤ 2π

⋅ d = 0∮
C

F
⇀

r
⇀

(x, y, z) = 2y + −arctanxF
⇀

î ez ĵ k̂ S

z = 4 − −x2 y2 xy

curl(F ) ⋅ dS,∬
S

(x, y, z) = 2z +3x +5yF
⇀

î ĵ k̂ S

(r, θ) = r cosθ +r sinθ +(4 − ) (0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3)r⇀ î ĵ r2 k̂

curl(F ) ⋅ dS = 84.8230∬
S

S z = a(1 − − )x2 y2 z ≥ 0 a > 0 (x, y, z) = ⟨x−y, y+z, z−x⟩F
⇀

a ( × ) ⋅ dS∬
S

∇
⇀

F
⇀

n⇀

A = ( × ) ⋅ dS,∬
S

∇
⇀

F
⇀

n⇀ = ⟨xz, −xz, xy⟩F
⇀

S

+ + 8 = 1x2 y2 z2 z≥ 0

A.

A = ( × ) ⋅ dS = 0∬
S

∇
⇀

F
⇀

n⇀

A

z = +x2 y2 0 ≤ z ≤ 4 y = 0 S y ≥ 0
xz C S z = 4

= ⟨2z+y, 2x+z, 2y+x⟩F
⇀

( × ) ⋅ dS.∬
S

∇
⇀

F
⇀

n⇀
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Answer

 

For exercises 43 - 45, let  be the disk enclosed by curve , for ,
where  is a fixed angle.

43. What is the length of  in terms of ?

44. What is the circulation of  of vector field  as a function of ?

Answer

45. For what value of  is the circulation a maximum?

 

46. Circle  in plane  has radius  and center  Evaluate  for , where  has a

counterclockwise orientation when viewed from above.

Answer

47. Velocity field , for  and , represents a horizontal flow in the -direction. Compute the curl of 
 in a clockwise rotation.

48. Evaluate integral  where  and  is the cap of paraboloid 

above plane , and  points in the positive -direction on 

Answer

 

In exercises 49 - 50, use Stokes’ theorem to find the circulation of the following vector fields around any smooth, simple
closed curve 

( × ) ⋅ dS = 2π∬
S

∇
⇀

F
⇀

n⇀

S C : (t) = ⟨cosφ cos t, sin t, sinφ cos t⟩r⇀ 0 ≤ t ≤ 2π

0 ≤ φ ≤
π

2

C φ

C = ⟨−y, −z, x⟩F
⇀

φ

C = π(cosφ−sinφ)

φ

C x+y+z = 8 4 (2, 3, 3). ⋅ d∮
C

F
⇀

r⇀ = ⟨0, −z, 2y⟩F
⇀

C

⋅ d = 48π∮
C

F
⇀

r⇀

v= ⟨0, 1 − , 0⟩x2 |x| ≤ 1 |z| ≤ 1 y

v⇀

( × ) ⋅ dS,∬
S

∇
⇀

F
⇀

n⇀ = −xz +yz +xyF
⇀

î ĵ ez k̂ S z = 5 − −x2 y2

z = 3 n⇀ z S.

( × ) ⋅ = 0∬
S

∇
⇀

F
⇀

n⇀

C.
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49. 

50. 

Answer

 

5.9: The Divergence Theorem 
For exercises 1 - 9, use a computer algebraic system (CAS) and the divergence theorem to evaluate surface integral 

 for the given choice of  and the boundary surface  For each closed surface, assume  is the outward unit

normal vector.

1. [T] ;  is the surface of cube .

2. [T] ;  is the surface of hemisphere  together with disk 
 in the -plane.

Answer

3. [T]   is the surface of the five faces of unit cube 

4. [T]   is the surface of paraboloid  for .

Answer

5. [T] ;  is the surface of sphere .

6. [T] ;  is the surface of the solid bounded by cylinder  and planes  and 
.

Answer

7. [T] ;  is the surface bounded above by sphere  and below by cone  in spherical

coordinates. (Think of  as the surface of an “ice cream cone.”)

8. [T] ;  is the surface bounded by cylinder  and planes 
 and .

Answer

9. [T] Surface integral , where  is the solid bounded by paraboloid  and plane , and 

 

= (x siny )F
⇀

∇
⇀

ez

= ⟨ , z2xy , 3x ⟩F
⇀

y2z3 z3 y2z2

0

⋅ ds∫
S

F
⇀

n⇀ F
⇀

S. N
⇀

(x, y, z) = x +y +zF
⇀

î ĵ k̂ S 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < z ≤ 1

(x, y, z) = (cosyz) + +3F
⇀

î exz ĵ z2 k̂ S z = 4 − −x2 y2− −−−−−−−−
√

+ ≤ 4x2 y2 xy

⋅ ds = 75.3982∫
S

F
⇀

n⇀

(x, y, z) = ( + − ) + y +3z ;F
⇀

x2 y2 x2 î x2 ĵ k̂ S

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 < z ≤ 1.

(x, y, z) = x +y +z ;F
⇀

î ĵ k̂ S z = +x2 y2 0 ≤ z ≤ 9

⋅ ds = 127.2345∫
S

F
⇀

n⇀

(x, y, z) = + +F
⇀

x2 î y2 ĵ z2 k̂ S + + = 4x2 y2 z2

(x, y, z) = x +y +( −1)F
⇀

î ĵ z2 k̂ S + = 4x2 y2 z = 0
z = 1

⋅ ds = 37.699∫
S

F
⇀

n⇀

(x, y, z) = + +F
⇀

x2 î y2 ĵ z2 k̂ S ρ = 2 φ =
π

4
S

(x, y, z) = + +3 z (constant a > 0)F
⇀

x3 î y3 ĵ a2 k̂ S + =x2 y2 a2

z = 0 z = 1

⋅ ds =∫
S

F
⇀

n
⇀ 9πa4

2

⋅ dS∬
S

F
⇀

S z = +x2 y2 z = 4

(x, y, z) = (x+ ) +(y+ ) +(z+ )F
⇀

y2z2 î z2x2 ĵ x2y2 k̂
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10. Use the divergence theorem to calculate surface integral , where 

and  is upper hemisphere , oriented upward.

Answer

11. Use the divergence theorem to calculate surface integral , where  and  is

the surface bounded by cylinder  and planes  and .

12. Use the divergence theorem to calculate surface integral , when  and  is

the surface of the box with vertices .

Answer

13. Use the divergence theorem to calculate surface integral , when 

 and  is a part of paraboloid  that lies above plane 
and is oriented upward.

14. [T] Use a CAS and the divergence theorem to calculate flux , where 

 and  is a sphere with center  and radius 

Answer

15. Use the divergence theorem to compute the value of flux integral , where 

 and  is the area of the region bounded by 
, and .

⋅ dS∬
S

F
⇀

(x, y, z) = ( +(y+sin( )) +(z−1)F
⇀

ey
2

î z2 ĵ k̂

S + + = 1, z ≥ 0x2 y2 z2

⋅ dS =∬
S

F
⇀ π

3

⋅ dS∬
S

F
⇀

(x, y, z) = − +4x zF
⇀

x4 î x3z2 ĵ y2 k̂ S

+ = 1x2 y2 z = x+2 z = 0

⋅ dS∬
S

F
⇀

(x, y, z) = +2xy +xF
⇀

x2z3 î z3 ĵ z4 k̂ S

(±1, ±2, ±3)

⋅ dS = 0∬
S

F
⇀

⋅ dS∬
S

F
⇀

(x, y, z) = z ( ) + ln( +1) +zF
⇀

tan−1 y2 î z3 x2 ĵ k̂ S + +z = 2x2 y2 z = 1

⋅ dS∬
S

F
⇀

(x, y, z) = ( + ) +( + ) +( + )F
⇀

x3 y3 î y3 z3 ĵ z3 x3 k̂ S (0, 0) 2.

⋅ dS = 241.2743∬
S

F
⇀

⋅ dS∬
S

F
⇀

(x, y, z) = ( +3x) +(xz+y) +(z+ cos( y))F
⇀

y3 î ĵ x4 x2 k̂ S

+ = 1, x ≥ 0, y ≥ 0x2 y2 0 ≤ z ≤ 1
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16. Use the divergence theorem to compute flux integral , where  and  consists of the union of

paraboloid , and disk , oriented outward. What is the flux through just the paraboloid?

Answer

17. Use the divergence theorem to compute flux integral , where  and  is a part of cone 

 beneath top plane  oriented downward.

18. Use the divergence theorem to calculate surface integral  for , where  is

the surface bounded by cylinder  and planes  and .

Answer

19. Consider . Let  be the solid enclosed by paraboloid  and plane 
with normal vectors pointing outside  Compute flux  across the boundary of  using the divergence theorem.

 

In exercises 20 - 23, use a CAS along with the divergence theorem to compute the net outward flux for the fields across the
given surfaces 

20. [T]   is sphere .

Answer

21. [T] ;  is the boundary of the tetrahedron in the first octant formed by plane .

22. [T] ;  is sphere 

Answer

23. [T] ;  is the surface of paraboloid , for , plus its base in the -plane.

 

For exercises 24 - 26, use a CAS and the divergence theorem to compute the net outward flux for the vector fields across the
boundary of the given regions 

24. [T] ;  is the region between spheres of radius 2 and 4 centered at the origin.

Answer

25. [T] ;  is the region between spheres of radius 1 and 2 centered at the origin.

26. [T] ;  is the region in the first octant between planes  and .

Answer

⋅ dS∬
S

F
⇀

(x, y, z) = y −zF
⇀

ĵ k̂ S

y = + , 0 ≤ y ≤ 1x2 z2 + ≤ 1, y = 1x2 z2

⋅ dS = −π∬
S

F
⇀

⋅ dS∬
S

F
⇀

(x, y, z) = x +y +F
⇀

î ĵ z4 k̂ S

z = +x2 y2− −−−−−√ z = 1

⋅ dS∬
S

F
⇀

(x, y, z) = − +4x zF
⇀

x4 î x3z2 ĵ y2 k̂ S

+ = 1x2 y2 z = x+2 z = 0

⋅ dS =∬
S

F
⇀ 2π

3

(x, y, z) = +xy +(z+1)F
⇀

x2 î ĵ k̂ E z = 4 − −x2 y2 z = 0

E. F
⇀

E

S.

= ⟨x, −2y, 3z⟩;F
⇀

S {(x, y, z) : + + = 6}x2 y2 z2

15 π6
–√

= ⟨x, 2y, z⟩F
⇀

S x+y+z = 1

= ⟨y−2x, −y, −z⟩F
⇀

x3 y2 S {(x, y, z) : + + = 4}.x2 y2 z2

− π
128

3

= ⟨x, y, z⟩F
⇀

S z = 4 − −x2 y2 z ≥ 0 xy

D.

= ⟨z−x, x−y, 2y−z⟩F
⇀

D

−703.7168

= =F
⇀ r⇀

∥ ∥r⇀
⟨x, y, z⟩

+ +x2 y2 z2− −−−−−−−−−
√

D

= ⟨ , − , ⟩F
⇀

x2 y2 z2 D z = 4 −x−y z = 2 −x−y
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27. Let . Use the divergence theorem to calculate , where  is the surface of the

cube with corners at , and , oriented outward.

28. Use the divergence theorem to find the outward flux of field  through the
cube bounded by planes  and .

Answer

29. Let  and let  be hemisphere  together with disk  in the -
plane. Use the divergence theorem.

30. Evaluate , where  and  is the surface consisting of all faces except the

tetrahedron bounded by plane  and the coordinate planes, with outward unit normal vector 

Answer

31. Find the net outward flux of field  across any smooth closed surface in  where  and 
are constants.

32. Use the divergence theorem to evaluate  where  and  is sphere 

, with constant .

Answer

33. Use the divergence theorem to evaluate  where  and  is the boundary of the

cube defined by , and .

(x, y, z) = 2x −3xy +xF
⇀

î ĵ z2 k̂ ⋅ dS∬
S

F
⇀

S

(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1) (1, 1, 1)

(x, y, z) = ( −3y) +(2yz+1) +xyzF
⇀

x3 î ĵ k̂

x = ±1, y = ±1, z = ±1

⋅ dS = 8∬
S

F
⇀

(x, y, z) = 2x −3y +5zF
⇀

î ĵ k̂ S z = 9 − −x2 y2− −−−−−−−−√ + ≤ 9x2 y2 xy

⋅ dS∬
S

F
⇀

n⇀ (x, y, z) = +xy +F
⇀

x2 î ĵ x3y3 k̂ S

x+y+z = 1 .N
⇀

⋅ dS =∬
S

F
⇀

n⇀
1

8

= ⟨bz−cy, cx−az, ay−bx⟩F
⇀

R3 a, b, c

|| || ⋅ ds,∬
S

R
⇀

R
⇀

n⇀ (x, y, z) = x +y +zR
⇀

î ĵ k̂ S

+ + =x2 y2 z2 a2 a > 0

|| || ⋅ ds = 4π∬
S

R
⇀

R
⇀

n⇀ a4

⋅ dS,∬
S

F
⇀

(x, y, z) = z + +xzF
⇀

y2 î y3 ĵ k̂ S

−1 ≤ x ≤ 1, −1 ≤ y ≤ 1 0 ≤ z ≤ 2
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34. Let  be the region defined by . Use the divergence theorem to find 

Answer

35. Let  be the solid bounded by the -plane and paraboloid  so that  is the surface of the paraboloid piece
together with the disk in the -plane that forms its bottom. If 

, find  using the divergence theorem.

36. Let  be the solid unit cube with diagonally opposite corners at the origin and  and faces parallel to the coordinate

planes. Let  be the surface of  oriented with the outward-pointing normal. Use a CAS to find  using the divergence

theorem if .

Answer

37. Use the divergence theorem to calculate the flux of  through sphere .

38. Find  where  and  is the outwardly oriented surface obtained by removing cube 

 from cube .

Answer

39. Consider radial vector field . Compute the surface integral, where  is the surface of a sphere

of radius a centered at the origin.

40. Compute the flux of water through parabolic cylinder , from , if the velocity vector is 
.

Answer

R + + ≤ 1x2 y2 z2 dV .∭
R

z2

dV =∭
R

z2 4π

15

E xy z = 4 − −x2 y2 S

xy

(x, y, z) = (xz sin(yz) + ) +cos(yz) +(3z − )F
⇀

x3 î ĵ y2 e +x2 y2
k̂ ⋅ dS∬

S

F
⇀

E (1, 1, 1),

S E, ⋅ dS∬
S

F
⇀

(x, y, z) = 2xy +3y +x sinzF
⇀

î ez ĵ k̂

⋅ dS = 6.5759∬
S

F
⇀

(x, y, z) = + +F
⇀

x3 î y3 ĵ z3 k̂ + + = 1x2 y2 z2

⋅ dS,∬
S

F
⇀

(x, y, z) = x +y +zF
⇀

î ĵ k̂ S

[1, 2] ×[1, 2] ×[1, 2] [0, 2] ×[0, 2] ×[0, 2]

⋅ dS = 21∬
S

F
⇀

= =F
⇀ r⇀

∥ ∥r⇀
⟨x, y, z⟩

( + +x2 y2 z2)1/2
S

S : y = x2 0 ≤ x ≤ 2, 0 ≤ z ≤ 3

(x, y, z) = 3 +6 +6xzF
⇀

z2 î ĵ k̂
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41. [T] Use a CAS to find the flux of vector field  across the portion of hyperboloid 

 between planes  and , oriented so the unit normal vector points away from the -axis.

42. Use a CAS to find the flux of vector field  through surface  where  is
given by  from , oriented so the unit normal vector points downward.

Answer

43. [T] Use a CAS to compute  where  and  is a part of sphere  with 

.

44. Evaluate  where  and  is a closed surface bounding the region

and consisting of solid cylinder  and .

Answer

45. [T] Use a CAS to calculate the flux of  across surface  where  is
the boundary of the solid bounded by hemispheres  and , and plane .

46. Use the divergence theorem to evaluate  where  and  is the surface consisting

of three pieces:  on the top;  on the sides; and  on the bottom.

Answer

47. [T] Use a CAS and the divergence theorem to evaluate  where 

 and  is sphere  orientated outward.

48. Use the divergence theorem to evaluate  where  and  is the boundary of the solid

enclosed by paraboloid , cylinder , and plane , and  is oriented outward.

Answer

 

For the following exercises, Fourier’s law of heat transfer states that the heat flow vector  at a point is proportional to the
negative gradient of the temperature; that is, , which means that heat energy flows hot regions to cold regions. The
constant  is called the conductivity, which has metric units of joules per meter per second-kelvin or watts per meter-kelvin. A
temperature function for region  s given. Use the divergence theorem to find net outward heat flux 

 across the boundary  of  where .

49. ;

⋅ dS = 72∬
S

F
⇀

(x, y, z) = z +z +F
⇀

î ĵ +x2 y2− −−−−−
√ k̂

+ = +1x2 y2 z2 z = 0 z =
3–√

3
z

(x, y, z) = ( +x) +(3 cos(xz) −y) +zF
⇀

ey î ĵ k̂ S, S

= 4 +4z2 x2 y2 0 ≤ z ≤ 4

⋅ dS = −33.5103∬
S

F
⇀

⋅ dS,∬
S

F
⇀

(x, y, z) = x +y +2zF
⇀

î ĵ k̂ S + + = 2x2 y2 z2

0 ≤ z ≤ 1

⋅ dS,∬
S

F
⇀

(x, y, z) = bx +b y +( + )F
⇀

y2 î x2 ĵ x2 y2 z2 k̂ S

+ ≤x2 y2 a2 0 ≤ z ≤ b

⋅ dS = π∬
S

F
⇀

a4b2

(x, y, z) = ( +y sinz) +( +z sinx) +3zF
⇀

x3 î y3 ĵ k̂ S, S

z = 4 − −x2 y2− −−−−−−−−
√ z = 1 − −x2 y2− −−−−−−−−

√ z = 0

⋅ dS,∬
S

F
⇀

(x, y, z) = xy − +zF
⇀

î
1

2
y2 ĵ k̂ S

z = 4 −3 −3 , 1 ≤ z ≤ 4x2 y2 + = 1, 0 ≤ z ≤ 1x2 y2 z = 0

⋅ dS = π∬
S

F
⇀ 5

2

⋅ dS,∬
S

F
⇀

(x, y, z) = (2x+y cosz) +( −y) + zF
⇀

î x2 ĵ y2 k̂ S + + = 4x2 y2 z2

⋅ dS,∬
S

F
⇀

(x, y, z) = x +y +zF
⇀

î ĵ k̂ S

y = + −2x2 z2 + = 1x2 z2 x+y = 2 S

⋅ dS =∬
S

F
⇀ 21π

2

F
⇀

= −k TF
⇀

∇
⇀

k > 0
D

⋅ dS = −k T ⋅N dS∬
S

F
⇀

n⇀ ∬
S

∇
⇀

S D, k = 1

T (x, y, z) = 100 +x+2y+z
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50. ;

Answer

51. ;  is the sphere of radius  centered at the origin.

 

Chapter Review Exercises 
True or False?  Justify your answer with a proof or a counterexample.

1. The vector field  is conservative.

Answer
False

2. For vector field , if  in open region , then 

3. The divergence of a vector field is a vector field.

Answer
False

4. If , then  is a conservative vector field.

 

Draw the following vector fields.

5. 

Answer

6. 

 

D = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

T (x, y, z) = 100 +e−z

D = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

−(1 − )e−1

T (x, y, z) = 100e− − −x2 y2 z2
D a

(x, y) = y + xF
⇀

x2 î y2 ĵ

(x, y) = P (x, y) +Q(x, y)F
⇀

î ĵ (x, y) = (x, y)Py Qz D P dx+Q dy = 0.∫
∂D

curl =F
⇀

0
⇀

F
⇀

(x, y) = +2xF
⇀ 1

2
î ĵ

(x, y) =F
⇀ y +3xî ĵ

+x2 y2

− −−−−−−−−

√
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Are the following the vector fields conservative? If so, find the potential function  such that .

7. 

Answer
Conservative, 

8. 

9. 

Answer
Conservative, 

10. 

 

Evaluate the following integrals.

11. , along  from  to 

Answer

12. , where 

13.  where  is the surface 

Answer

 

Find the divergence and curl for the following vector fields.

14. 

15. 

Answer
Divergence:  
Curl: 

 

Use Green’s theorem to evaluate the following integrals.

16. , where  is a square with vertices  and 

17. , where  is a circle centered at the origin with radius 

Answer

F
⇀

= fF
⇀

∇
⇀

(x, y) = y +(x−2 )F
⇀

î ey ĵ

f(x, y) = xy−2ey

(x, y) = (6xy) +(3 −y )F
⇀

î x2 ey ĵ

(x, y) = (2xy+ ) +( +2yz) +(2xz+ )F
⇀

z2 î x2 ĵ y2 k̂

f(x, y, z) = y+ z+ xx2 y2 z2

(x, y, z) = ( y) +( +z) +( + )F
⇀

ex î ex ĵ ex y2 k̂

dy+(2x−3xy)dx∫
C

x2 C : y = x
1

2
(0, 0) (4, 2)

−
16

3

y dx+x dy∫
C

y2 C : x = , y = t−1, 0 ≤ t ≤ 1t√

x dS,∬
S

y2 S z = −y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 4x2

(3 −1)
32 2–√

9
3–√

(x, y, z) = 3xyz +xy −3xyF
⇀

î ex ĵ k̂

(x, y, z) = + −F
⇀

ex î exy ĵ exyz k̂

+x +xyex exy exyz

xz −yz +yexyz î exyz ĵ exy k̂

3xy dx+2x dy∫
C

y2 C (0, 0), (0, 2), (2, 2) (2, 0).

3y dx+(x+ )dy∮
C

ey C 3.

−2π
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Use Stokes’ theorem to evaluate .

18. , where  is the upper half of the unit sphere

19. , where  is the upward-facing paraboloid  lying in cylinder 

Answer

 

Use the divergence theorem to evaluate .

20. , over cube  defined by 

21. , where  is bounded by paraboloid  and plane 

Answer

 

22. Find the amount of work performed by a 50-kg woman ascending a helical staircase with radius 2 m and height 100 m. The
woman completes five revolutions during the climb.

23. Find the total mass of a thin wire in the shape of a semicircle with radius , and a density function of .

Answer

24. Find the total mass of a thin sheet in the shape of a hemisphere with radius  for  with a density function 
.

25. Use the divergence theorem to compute the value of the flux integral over the unit sphere with 
.

Answer
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curl ⋅dS∬S F
⇀

(x, y, z) = y −x +zF
⇀

î ĵ k̂ S

(x, y, z) = y +xyz −2zxF
⇀

î ĵ k̂ S z = +x2 y2 + = 1x2 y2

−π

⋅dS∬
S

F
⇀

(x, y, z) = ( y) +(3y− ) +(z+x)F
⇀

x3 î ex ĵ k̂ S −1 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 2

(x, y, z) = (2xy) +(− ) +(2 )F
⇀

î y2 ĵ z3 k̂ S z = +x2 y2 z = 2

31π/2

2–√ ρ(x, y) = y+x2

(2 +π)2–√

2 z ≥ 0
ρ(x, y, z) = x+y+z

(x, y, z) = 3z +2y +2xF
⇀

î ĵ k̂

2π/3
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I
initial point

1.2: Vectors in the Plane 
inner product

1.4: The Dot Product 
interior point

3.3: Limits and Continuity 
intermediate variable

3.6: The Chain Rule for Multivariable Functions 
Interpretation of Curl

5.8: Stokes’ Theorem 
iterated integration

4.1: Iterated Integrals and Area 

J
Jacobian

4.7: Change of Variables in Multiple Integrals 

K
Kepler’s laws of planetary motion

2.5: Motion in Space 

L
Lagrange multiplier

3.9: Lagrange Multipliers 
level curve of a function of two variables

3.2: Functions of Several Variables 
level surface of a function of three
variables

3.2: Functions of Several Variables 
LIMIT LAWS FOR FUNCTIONS OF
TWO VARIABLES

3.3: Limits and Continuity 
line integrals

5.3: Line Integrals 
linear approximation

3.5: Tangent Planes and Linear Approximations 

M
Möbius strip

5.7: Surface Integrals 
magnitude

1.2: Vectors in the Plane 
mass flux

5.7: Surface Integrals 
method of Lagrange multipliers

3.9: Lagrange Multipliers 
mixed partial derivatives

3.4: Partial Derivatives 
Moments of Inertia

4.6: Calculating Centers of Mass and Moments of
Inertia 
Multiple Integration

4: Multiple Integration 
4.1: Iterated Integrals and Area 

N
normal component of acceleration

2.5: Motion in Space 
normal plane

2.4: Arc Length and Curvature 
normal vector

1.6: Equations of Lines and Planes in Space 

Normalization
1.2: Vectors in the Plane 

O
objective function

3.9: Lagrange Multipliers 
octants

1.3: Vectors in Three Dimensions 
open set

3.3: Limits and Continuity 
optimization problem

3.9: Lagrange Multipliers 
orientation of a surface

5.7: Surface Integrals 
orthogonal vectors

1.4: The Dot Product 
osculating circle

2.4: Arc Length and Curvature 
osculating plane

2.4: Arc Length and Curvature 

P
paraboloid

1.7: Cylindrical and Quadric Surfaces 
parallelepiped

1.5: The Cross Product 
parallelogram method

1.2: Vectors in the Plane 
parameter domain

5.7: Surface Integrals 
parameter space

5.7: Surface Integrals 
parameterized surface

5.7: Surface Integrals 
parametric equations of a line

1.6: Equations of Lines and Planes in Space 
parametric surface

5.7: Surface Integrals 
Parametric Surfaces

5.7: Surface Integrals 
partial derivative

3.4: Partial Derivatives 
partial differential equation

3.4: Partial Derivatives 
Partial Differentiation

3.4: Partial Derivatives 
planar transformation

4.7: Change of Variables in Multiple Integrals 
plane curve

2.2: Vector-Valued Functions and Space Curves 
Polar Areas

4.3: Double Integrals in Polar Coordinates 
polar rectangle

4.3: Double Integrals in Polar Coordinates 
Polar Volumes

4.3: Double Integrals in Polar Coordinates 
principal unit normal vector

2.4: Arc Length and Curvature 
principal unit tangent vector

2.3: Calculus of Vector-Valued Functions 
projectile motion

2.5: Motion in Space 

Q
Quadric Surfaces

1.7: Cylindrical and Quadric Surfaces 

R
radius of curvature

2.4: Arc Length and Curvature 
radius of gyration

4.6: Calculating Centers of Mass and Moments of
Inertia 
region

3.3: Limits and Continuity 
regular parameterization

5.7: Surface Integrals 
reparameterization

2.2: Vector-Valued Functions and Space Curves 
rotational field

5.2: Vector Fields 
rulings

1.7: Cylindrical and Quadric Surfaces 

S
saddle point

3.8: Maxima/Minima Problems 
scalar

1.2: Vectors in the Plane 
Scalar Equation of a Plane

1.6: Equations of Lines and Planes in Space 
SCALAR LINE INTEGRAL

5.3: Line Integrals 
scalar multiplication

1.2: Vectors in the Plane 
scalar product

1.4: The Dot Product 
scalar projection

1.4: The Dot Product 
skew lines

1.6: Equations of Lines and Planes in Space 
smooth

2.4: Arc Length and Curvature 
space curve

2.2: Vector-Valued Functions and Space Curves 
sphere

1.3: Vectors in Three Dimensions 
spherical coordinate system

1.8: Cylindrical and Spherical Coordinates 
spherical coordinates

1.8: Cylindrical and Spherical Coordinates 
standard equation of a sphere

1.3: Vectors in Three Dimensions 
standard unit vectors

1.2: Vectors in the Plane 
Stokes’ Theorem

5.8: Stokes’ Theorem 
5.9: The Divergence Theorem 

surface
3.2: Functions of Several Variables 

surface area
5.7: Surface Integrals 

surface independent
5.8: Stokes’ Theorem 

surface integral
5.7: Surface Integrals 
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